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Abstract 

This paper analyses two different configurations of horizontal axis Tidal Stream Turbines (TSTs) using 

a Blade Element Momentum Theory (BEMT) model. Initially, a ‘conventional’ three bladed and bare 

turbine is assessed, comparing against experimental measurements and existing literature. Excellent 

agreement is seen, increasing confidence in both the implementation of the theory and the 

applicability of the method. The focus of the paper lies on the analysis of a ducted and open centre 



turbine. An analytical adjustment to the BEMT model is applied, using empirical expressions detailed 

in the literature which are devised from Computational Fluid Dynamics (CFD) studies. This is 

modified to a symmetrical duct profile, calibrating certain geometrical parameters against blade 

resolved CFD studies of a bi-directional device. The results are validated with a coupled CFD blade 

element model (RANS BEM), where both models align very closely (within 2%) for most tip speed 

ratios (TSRs), including the peak power condition. Over predictions are seen at higher TSRs of up to 

25% in power and 13% in thrust at TSR=5, due to model limitations in replicating fully the complex 

flow interactions around the hub and the open centre. The presented approach benefits from 

significantly lower computational requirements, several orders of magnitude lower than reported in 

the RANS-BEM case, allowing practicable engineering assessments of turbine performance and 

reliability.  

Keywords: Tidal stream turbine, marine current turbine, ducted, bidirectional, open centre, blade 

element momentum 

  



1 Introduction 1 

Tidal Stream Turbine (TST) technology has been in the early stage developmental phase for a 2 

number of years, as engineering challenges in designing for extreme operating environments, 3 

combined with political and environmental factors has limited the rate of maturity. One of the 4 

earliest landmark projects was the MCT SeaGen, a 1.2MW twin rotor device installed in the 5 

Strangford Loch, Northern Ireland in 2008, due to be decommissioned  this year after generating 6 

10GWh electricity (ReNews 2016). Despite hindrances in the industry, recent progression has led to 7 

the deployment of full scale arrays around the UK and France. Although there are many designs of 8 

tidal energy converters, the industry appears to have converged upon two configurations, which 9 

have seen the furthest advancement to date in terms of commercial scale deployment.  10 

The first is a ‘classical’, 3 bladed horizontal axis design, similar to its wind turbine counterpart. The 11 

MeyGen project phase 1A (MeyGen 2016) has seen the installation of its first three turbines of a 12 

6MW array as of January 2017 in the Pentland Firth, Scotland (shown in Figure 1-1).  13 

 14 

Figure 1-1 Andritz Hydro Hammerfest 1.5MW rated TST (left, image credit: Atlantis) with installation into the Pentland 15 
Firth, Scotland (right, image credit: MeyGen) as part of the MeyGen Phase 1A deployment  16 

The second is a high solidity, ducted and open-centre turbine design. Ducts are primarily designed to 17 

increase the power extraction by increasing the mass flow rate through the rotor. Additional 18 

benefits include aligning yawed flow, providing a housing for a direct drive rim generator and 19 

removing the requirement for mechanical systems such as a gearbox. DCNS / OpenHydro have 20 



installed a pair of 500kW rated capacity turbines (shown in Figure 1-2), as a demonstration array in 21 

Paimpol-Bréhat, Northern France, in collaboration with EDF. 22 

 23 

Figure 1-2 DCNS / OpenHydro 500 kW rated turbine (left, image credit: The Canadian Press) with installation at the Paimpol 24 
Bréhat site, Northern France (right, image credit: DCNS) 25 

Hydrodynamic assessments are performed in order to gain insight into various aspects of the 26 

turbine. An extensive range of numerical models exist, each designed to perform different tasks and 27 

selected depending on the area of interest or objective of the study. Highly complex, high fidelity 28 

models are commonly used in design refinement, or to perform detailed assessments of turbine 29 

components under specific operating conditions. These can also be used to determine wake 30 

formation to measure the impact of the turbines on the tidal flow, as well as to describe the 31 

interactions of multiple turbines in an array.  32 

Simpler models employ a more basic approach which are able to compute the force distributions 33 

along the rotor blades, and determine the overall performance of a turbine, aiding early stage 34 

decision making on optimal device designs for specific sites. Significantly lower computational 35 

requirements and fast processing time can be exploited for engineering applications where many 36 

analyses are required, such as performing numerous design iterations, analysing multiple or varying 37 

inflow conditions, or assessing fatigue loading. 38 

Several industrial and academic codes are based on BEMT, (Batten et al. 2007; Masters et al. 2011; 39 

DNV GL Garrad Hassan 2012) among which is a commercial standard software tool, ‘Tidal Bladed’, by 40 

the classification society DNV-GL. These models are simple, but are well established and reliable, 41 



based on experience from the wind turbine industry. The BEMT code developed in this study is 42 

initially applied to a bare, 3-bladed turbine, where a full validation study is detailed in (Allsop et al. 43 

2016). However, the availability of such models for ducted, high solidity and open centre turbines is 44 

limited. At present, these types of devices are analysed using blade resolved CFD, which has a high 45 

computational requirement and is therefore not practical for multiple calculation applications. Less 46 

computationally intensive alternatives have been applied (Fleming et al. 2011; Turnock et al. 2011; 47 

Belloni et al. 2016) based on a coupled Reynolds Averaged Navier Stokes with blade element 48 

momentum (RANS-BEM), where case studies report good comparison with fully blade resolved 49 

studies, at a fraction of the processing time (McIntosh et al. 2012).  50 

This paper aims to assess the performance of an analytical / empirical methodology to account for 51 

the presence of a duct, which is implemented within a BEMT code. This ducted BEMT model is 52 

applied to a bi-directional ducted turbine and results are compared with those of a coupled RANS 53 

BEM simulation.  54 

The remainder of this paper is structured into 5 main sections: i) a brief outline of the underlying 55 

theory considered in the model; ii) the setup and implementation of the numerical model; iii) main 56 

results for the three bladed and ducted, open centre turbine; iv) a discussion comparing the 57 

different numerical models and implications as well as v) a conclusion of the main findings and 58 

recommendations for further work. 59 

2 Methodology 60 

The principles of BEMT are well defined in the literature, where this section aims to give a brief 61 

outline of the methodology. For further details and full derivations, the reader is referred to the 62 

following texts (Burton et al. 2011; DNV GL Garrad Hassan 2012; Moriarty & Hansen 2005). 63 

Section 2.1 describes the BEMT model for a classical 3 bladed, bare turbine, with Section 2.2 64 

outlining the adaptations based on an analytical framework to account for the presence of a duct. 65 



Section 2.3 defines output parameters that are used to validate the two models, with Sections 2.4 66 

and 2.5 defining various correction factors in order to account for physical occurrences that are 67 

neglected in the BEMT.  68 

2.1 Blade element momentum theory  69 

One-dimensional momentum theory models the turbine as an infinitely thin, semi-permeable 70 

actuator disc exerting zero friction, bounded by a stream-tube (Figure 2-1). Flow velocities and 71 

pressures at various locations along this control volume can be related using continuity and 72 

Bernoulli’s equations. The axial force (thrust) on the disc as a result of the change in pressure can be 73 

equated to the change in axial momentum. The disc is split into a number of discrete annular rings as 74 

shown in Figure 2-2a, assuming the momentum is extracted only from fluid passing through each 75 

individual ring. The pressure / momentum balance can be applied independently to each ring such 76 

that: 77 

𝑑𝑇 = 4𝜋𝜌𝑈0
2𝑎(1 − 𝑎)𝑟𝑑𝑟 78 

eq. 1 79 

Where: 𝑎 = (𝑈0 − 𝑈𝑑) / 𝑈0 = (𝑈0 − 𝑈∞)/ 2𝑈0 is the axial induction factor, dT is the element thrust 80 

(N), ρ is the fluid density (kg m-3), U0 is the reference upstream velocity (m s-1), Ud is the flow velocity 81 

at the disc (m s-1), r is the local element mean radius (m) and dr is the radial length of each ring (m). 82 



 83 

Figure 2-1 Schematic of the actuator disc model within a stream-tube, showing a representation of axial changes in 84 
pressure and velocity 85 

Associated with the change in axial momentum of the fluid as a result of the presence of the disc is 86 

also a change in angular momentum as a result of the turbine rotation. The fluid entering the turbine 87 

is considered straight, with zero rotational motion. The fluid passing through the rotating disc exerts 88 

a torque on the rotor, which requires an equal and opposite torque imposed on the fluid. This 89 

reaction torque causes the fluid to rotate in an opposite direction to turbine rotation. This has an 90 

associated gain in angular momentum, as the wake flow now has a velocity component tangential to 91 

the rotation (see Figure 2-2b). This increase in angular momentum can be related to the torque of 92 

each annular ring as a function of the tangential velocity and radial position: 93 

𝑑𝑄 = 4𝜋𝜌𝑎′Ω𝑈0(1 − 𝑎)𝑟3𝑑𝑟 94 

eq. 2 95 

Where: 𝑎′ = 𝜔 / 2Ω is the tangential induction factor which expresses the change in tangential 96 

velocity, dQ is the element torque (N m), ω the angular velocity of the wake (rad s-1) and Ω the 97 

angular velocity of the turbine (rad s-1).  98 



 99 

Figure 2-2 a) split of rotor disc into annular rings compared to overall turbine geometry (left) b) depiction of a particle 100 
interacting with rotor showing changes in rotational velocity (right) 101 

Blade element theory divides the blade into a number of discrete hydrofoil sections, which are 102 

analysed two dimensionally, neglecting any span-wise (radial) interactions. The flow at each 2D 103 

element has associated axial and tangential components of velocity, with the inflow angle (ɸ) 104 

located between (see Figure 2-3). The aerodynamic lift and drag forces on the blade element act 105 

parallel and perpendicular to this inflow angle, and can be determined using the standard aerofoil 106 

equations for lift and drag (DNV GL Garrad Hassan 2012): 107 

𝑑𝐿 =
1

2
𝐶𝐿 𝜌 𝑊2𝑐 𝑑𝑟  , 𝑑𝐷 =

1

2
𝐶𝐷 𝜌 𝑊2𝑐 𝑑𝑟 

eq. 3  eq. 4 

Where W is the resultant fluid velocity (m s-1) and c the blade chord (m). Coefficients of lift (CL) and 108 

drag (CD) are input from two dimensional aerofoil data as a function of angle of attack (α), which can 109 

be determined from the inflow angle (ϕ) and the geometrical twist down the blade length (β). The 110 

forces causing thrust and torque can then be resolved trigonometrically, where B is the number of 111 

blades: 112 

𝑑𝑇 =
1

2
𝜌𝑊2𝐵𝑐(𝐶𝐿 𝑐𝑜𝑠 𝜙 + 𝐶𝐷 𝑠𝑖𝑛 𝜙)𝑑𝑟 , 𝑑𝑄 =

1

2
𝜌𝑊2𝐵𝑐(𝐶𝐿 𝑠𝑖𝑛 𝜙 − 𝐶𝐷 𝑐𝑜𝑠 𝜙)𝑟𝑑𝑟 

eq. 5  eq. 6 



 113 

Figure 2-3 a) Blade element flow velocity vectors (left) b) Blade element forces as a function of the aerodynamic forces and 114 
inflow angle (right) 115 

BEMT assumes that the change in momentum of each annular ring is solely accountable from the 116 

hydrodynamic forces on the corresponding blade elements (Burton et al. 2011). Hence the axial and 117 

tangential force equations from each theory are equated, giving expressions for calculating axial and 118 

tangential induction factors: 119 

𝑎

(1 − 𝑎)
=  

𝜎𝑟(𝐶𝐿 cos 𝜙 +  𝐶𝐷 sin 𝜙)

4 sin2 𝜙
 

, 

𝑎′

(1 + 𝑎′)
=

 𝜎𝑟  (𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙) 

4 sin 𝜙 cos 𝜙
 

eq. 7  eq. 8 

Where 𝜎𝑟 = 𝐵𝑐/2𝜋𝑟 is the local blade solidity. As the aerofoil coefficients vary non-linearly with 120 

angle of attack, these equations must be solved iteratively. 121 

As the method neglects radial interactions, and considers only flow in the control volume, the 122 

approach is limited when considering physical phenomena such as vortex shedding and mixing with 123 

free stream fluid. Various correction factors can be applied to equations 7 and 8 to account for these 124 

effects, which are described in Sections 2.4 and 2.5.  125 

2.2 Ducted BEMT 126 

The incorporation of a duct aims to direct more flow through the turbine, and hence increase the 127 

momentum available for extraction. This is achieved by forcing of expansion in the diffuser reduces 128 

the pressure downstream, which augments the flow at the throat and results in a higher mass flow 129 



rate. The presence of the structure alters the flow profile as shown in Figure 2-4, which makes the 130 

momentum equations based on the previous stream tube assumption unsuitable.  131 

 132 

Figure 2-4 Schematic of ducted turbine incorporating the actuator disc bounded by a stream tube, with numbers 133 
corresponding to sections in which areas, pressures and velocities are taken, consisting of: 0 – inflow upstream; 1 – duct 134 
inlet; 2 – actuator disc upstream; 3 – actuator disc downstream; 4 – duct outlet; 5 – wake downstream; 6 – wake far 135 
downstream 136 

The effects of the duct can be categorised by four main factors: i) the diffuser ratio (ratio of outlet 137 

area to throat area); ii) the flow separation within the diffuser; iii) the back pressure reduction at the 138 

exit and iv) the associated viscous losses (van Bussel 2007).  139 

An analytical model devised by (Lawn 2003) relates the change in velocity using Bernoulli's equations 140 

to the change in pressure at various locations along the streamtube. These can be expressed in 141 

terms of the inlet efficiency (η02), diffuser efficiency (η34) and base pressure coefficient (Cp,b) by the 142 

following: 143 

𝜂02 =
𝑝2 − 𝑝0

1
2

𝜌(𝑈0
2 − 𝑈2

2)
 

, 

𝜂34 =
𝑝4 − 𝑝3

1
2

𝜌𝑈3
2 (1 −

𝐴3
2

𝐴4
2)

 

, 

𝐶𝑝,𝑏  =
𝑝0 − 𝑝4

1
2

𝜌𝑈0
2

 

eq. 9  eq. 10  eq. 11 

Experimental measurements or CFD results are then required to solve these equations. This 144 

framework is adopted by (Shives & Crawford 2011), where efficiencies are quantified using RANS 145 

simulations incorporating an actuator disc representation of the rotor. Several geometries of 146 

unidirectional ducts are analysed based on NACA0015 aerofoil shapes (Abbott & Von Doenhoff 147 



1959), with varying geometrical parameters of: inlet contraction ratio (A1/A3); the diffuser expansion 148 

ratio (A4/A3); inner and outer diffuser surface angles (θin and θout), as shown in Figure 2-5. 149 

 150 

Figure 2-5 Figure 2 5 Ducted turbine a) rotor split into annular rings (left) and b) definition of geometrical parameters (right) 151 

Empirical approximations of the analytical expressions are then derived by (Shives & Crawford 2011), 152 

based on the CFD results. The inlet efficiency (𝜂02) was found to be within 5% of unity for all 153 

geometries considered, and therefore taking an efficiency of 100% was considered to have a 154 

negligible effect on the overall rotor forces. The diffuser efficiency can be written in terms of duct 155 

geometry, to characterise flow separation within the duct: 156 

𝜂34 = 𝑎1 + 𝑏1 (
𝐴3

𝐴4
) + 𝑐1𝜃𝑖𝑛 + 𝑑1 (

𝐴1

𝐴2
) 157 

eq. 12 158 

Where 𝐴𝑖 = 𝜋𝑅𝑖
2 is the area at various positions along the stream tube (m2). Similarly, the base 159 

pressure coefficient caused by obstruction of the flow is determined by: 160 

𝐶𝑝,𝑏 = 𝑎2 + 𝑏2 (
𝐴3

𝐴4
) + 𝑐2𝜃𝑜𝑢𝑡 + (𝑑2 + 𝑒2𝜃𝑜𝑢𝑡)𝐶𝑇 + 𝑓2𝐶𝑇

2 161 

eq. 13 162 

Where all coefficients are found using a least squares optimisation, summarised in Table 2-1. 163 

Table 2-1 Coefficients for empirical expressions of diffuser efficiency and base pressure coefficient, from (Shives & Crawford 164 
2011) 165 



a1 b1 c1 d1 a2 b2 c2 d2 e2 f2 

0.8867 0.5212 -0.0108 -0.1313 0.2701 -0.333 0.0269 0.1068 -0.0152 -0.1275 

The pressure change through the diffuser can be defined using the continuity equations, such that 166 

the coefficient of pressure between positions 3 and 4 can be written: 167 

𝐶𝑝,34 =
𝑝4 − 𝑝3

1
2

𝜌𝑈3
2

=  𝜂34 (1 −
𝐴3

2

𝐴4
2) 168 

eq. 14 169 

And the axial induction factor can finally be calculated using the following equation, where wake 170 

swirl is neglected: 171 

1 − 𝑎 =  √
𝜂02 − 𝐶𝑇𝑖 + 𝐶𝑝,𝑏

𝜂02 − 𝐶𝑝,34
 172 

eq. 15 173 

The empirical/ analytical model is validated against power and thrust curves generated with CFD on 174 

three additional validation duct geometries, where reasonable agreement is seen.  175 

2.3 Rotor power and thrust 176 

Once axial and tangential induction factors are converged, coefficients of power (CP) and trust (CT) 177 

for the rotor are calculated to present non-dimensionalised turbine properties for comparative 178 

studies. These are often presented as a variation against the tip speed ratio (TSR), defined as: 179 

𝐶𝑇 =
∑ 𝑑𝑇𝑅

𝑟ℎ𝑢𝑏

1
2

𝜌𝐴𝑈0
2

 , 𝐶𝑃 =
∑ 𝑑𝑄𝛺𝑅

𝑟ℎ𝑢𝑏

1
2

𝜌𝐴𝑈0
3

 , 𝑇𝑆𝑅 =
𝛺𝑅

𝑈0
 

eq. 16  eq. 17  eq. 18 

Where 𝐴 = 𝜋𝑅2 is the area of the disc (m2), or 𝐴 = 𝜋𝑅𝑑𝑢𝑐𝑡
2  in the case of the ducted turbine. 180 



Comparisons of bare and ducted turbines have previously been assessed using the rotor diameter 181 

(Hansen 2008). In order to fairly compare the same relative areas, the RANS BEM study takes the 182 

area at the duct inlet, and neglects the open centre, as explained by (Belloni et al. 2016). Although 183 

this is not the objective of the present study, these definitions are used in order to gain directly 184 

comparable results for validation. The tip speed ratio is defined in all cases using the rotational 185 

velocity at the outer radius of the rotor, despite the fact that the blades are connected at either end 186 

in the ducted case. In addition, the thrust coefficient at the local elements can be calculated as: 187 

𝐶𝑇,𝑙𝑜𝑐 =
𝑇

1
2

𝜌𝐴𝑟𝑜𝑡𝑜𝑟𝑈𝑑
2

 188 

eq. 19 189 

2.4 Tip and hub losses 190 

Radial movement of fluid occurs at the blade tips and at the hub, as it is drawn from the pressure to 191 

the suction side of the rotor. Due to the 2-dimensional nature of the blade element and momentum 192 

methods, this movement is not accounted for directly in the theory and therefore has to be included 193 

through an alternative method. Although exact solutions such as proposed by Bessel and Biot-194 

Savart, the issues arise with integrating into the BEMT method (Burton et al. 2011). The Prandtl 195 

approximation solution yields a relatively simple analytical function which has been previously 196 

employed to account for the effects of the tip losses (Chapman et al. 2013), and is easily 197 

implemented into BEMT.  Flow shedding at the blade tips leads to rotating helical structures in the 198 

wake, which Prandtl conceptualises as a succession of discs travelling at a velocity between the free 199 

stream and the wake (Burton et al. 2011). The loss factor can approximate the reduction in 200 

hydrodynamic efficiency at the tip, and be expressed in the closed solution form proposed by 201 

Prandtl: 202 

𝐹𝑡𝑖𝑝     =
2

𝜋
𝑐𝑜𝑠−1 𝑒−𝑓𝑡𝑖𝑝 203 

eq. 20 204 



Where the tip exponential term can be expressed: 205 

𝑓𝑡𝑖𝑝          = 𝜋 (
𝑅𝑤 −  𝑟

𝑑
) 206 

eq. 21 207 

Where RW – r is the distance from the wake edge and d is the normal distance between successive 208 

vortex sheets. This distance is related to the flow angle ɸs and the number of vortex sheets 209 

intertwining from B number of blades: 210 

𝑑 =
2𝜋 𝑅𝑤

𝐵
sin 𝜙𝑠 =

2𝜋 𝑅𝑤

𝐵
 
𝑈0(1 − 𝑎)

𝑊𝑠
 211 

eq. 22 212 

Taking the resultant wake velocity 𝑊𝑆 =  √(𝑈0(1 − 𝑎))2 + (Ω 𝑟)2 and taking the Glaeurt 213 

adjustment such that 
𝑅𝑤

𝑊𝑠
≈

𝑟

𝑊
 (Masters et al. 2011): 214 

𝐹𝑡𝑖𝑝 =
2

𝜋
𝑐𝑜𝑠−1 𝑒

− 
𝐵
2  

𝑅 − 𝑟
𝑟

1
sin 𝜙 215 

eq. 23 216 

A similar expression is also suggested to account for losses at the hub (Moriarty & Hansen 2005): 217 

𝐹ℎ𝑢𝑏 =
2

𝜋
𝑐𝑜𝑠−1 𝑒

− 
𝐵
2  

𝑟 − 𝑟ℎ
𝑟ℎ

1
sin 𝜙 218 

eq. 24 219 

These can then be combined as an overall loss correction factor defined by:  220 

𝐹 = 𝐹𝑡𝑖𝑝 𝐹ℎ𝑢𝑏 221 

eq. 25 222 

The combined tip/ hub loss factor can then be input directly as a multiplication factor into the 223 

expressions (Chapman et al. 2013) for thrust and torque from momentum theory (eq. 1 and eq. 2) 224 

such that: 225 



  𝑑𝑇 = 4𝜋𝜌𝑈0
2𝑎(1 − 𝑎)𝑟𝑑𝑟𝑭 , 𝑑𝑄 = 4𝜋𝜌𝑎′Ω𝑈0(1 − 𝑎)𝑟3𝑑𝑟𝑭 

 
eq. 26 

 
eq. 27 

Axial and tangential forces from blade element theory are derived from aerodynamics equations, so 226 

remain unchanged.  227 

2.5 Highly loaded conditions 228 

At high axial induction factors, thrust forces are under predicted by the momentum equations as the 229 

stream tube representation does not account for interactions with the free stream fluid.  For 𝑎 >230 

0.5 an unphysical reversal of flow in the wake is seen, from: 𝑈∞ =  𝑈0 (1 − 2𝑎). In reality, turbulent 231 

mixing occurs with the free stream flow, injecting momentum into the slow moving fluid behind the 232 

turbine. Physical experiments with flat plates carried out by Glauert have shown much higher thrusts 233 

at axial induction factors above 0.4, as shown in Figure 2-6a.  234 

 235 

Figure 2-6 Thrust coefficient against axial induction factor, showing comparisons against BEMT with a) experimental values 236 
(points) and semi-empirical corrected values (left) and b) highly loaded corrected values with an arbitrary tip / hub loss of 237 
0.8 applied (right) 238 

Various best line fits to this data have been proposed, including a parabola proposed by Glauert 239 

(Burton et al. 2011) such that: 240 

For  𝑎 ≤ 0.4:    𝐶𝑇 = 4𝑎(1 − 𝑎) 241 

eq. 28 242 



For  𝑎 > 0.4:   𝐶𝑇 = 0.889 − 
0.0203−(𝑎−0.143)2

0.6427
 243 

eq. 29 244 

However, when combined with the tip/hub loss correction factor, a numerical instability occurs due 245 

to a gap at transition to the highly loaded regime (see Figure 2-6b). A solution as devised by Buhl 246 

(Buhl 2005) has previously successfully been implemented into BEMT (Chapman et al. 2013), which 247 

yields a smooth transition from the Glauert parabola to the prediction based on the axial 248 

momentum equations. Buhl reported reasonable agreement with the experimental data, as well as 249 

fixed boundary condition at a=1, analogous to a solid plate fully impeding flow.  250 

For   𝑎 ≤ 0.4: 𝐶𝑇 = 4𝐹𝑎(1 − 𝑎) 251 

eq. 30 252 

For   𝑎 > 0.4:  𝐶𝑇 =
8

9
+ (4𝐹 −

40

9
) 𝑎 + (

50

9
− 4𝐹) 𝑎2 253 

eq. 31 254 

As these are relating to the overall rotor, we can implement this back to the momentum equations 255 

to write expressions for each annular ring as: 256 

For   𝑎 ≤ 0.4:  𝑑𝑇 = 4𝜋𝜌𝑈0
2𝑎(1 − 𝑎)𝑟𝑑𝑟𝐹 257 

For   𝑎 > 0.4:   𝑑𝑇 = 𝜋𝜌𝑈0
2 (

8

9
+ (4𝐹 −

40

9
) 𝑎 + (

50

9
− 4𝐹) 𝑎2) 𝑟𝑑𝑟 258 

eq. 32 259 

3 Model setup and input definitions 260 

This section addresses the implementation of the BEMT into the code and defines the various input 261 

data for the validation cases. Sections 3.1 and 3.2 describe the BEMT code structure for the 262 

conventional, 3-bladed case and the ducted open centre case respectively. Sections 3.3 and 3.4 263 

detail the process of generating aerofoil coefficients, followed by the definition of other input 264 

parameters for the conventional and ducted validation cases in Sections 3.5 and 3.6 respectively.  265 



3.1 Numerical implementation 266 

The BEMT equations are solved iteratively with a programme written in Python. The overall code 267 

structure that has been utilised in the work presented in this paper is shown in Figure 3-1. 268 

 269 

Figure 3-1 General BEMT code structure implemented in Python 270 

Here the convergence shown is based purely on the axial induction factor, however this is improved 271 

to include both axial and tangential induction factors in the convergence criteria. The iterations are 272 

performed using a minimisation package, an objective function similar to that of fmincon within 273 

Matlab, used in other codes (Masters et al. 2011; Shives 2011). The thrust and torque from each 274 

theory is considered equal, therefore the values from momentum and blade element can be 275 

rearranged and summed to equal the minimisation value (g): 276 

𝑔 = (𝑑𝑇1 − 𝑑𝑇2)2 + (𝑑𝑄1 − 𝑑𝑄2)2 277 

eq. 33 278 

To implement the highly loaded condition: 279 



For  𝑎 ≤ 0.4:  280 

𝑔 = (4𝜋𝑈0
2𝑎(1 − 𝑎)𝑟𝐹 −

1

2
𝑊2𝐵𝑐(𝐶𝐿 𝑐𝑜𝑠 𝜙 + 𝐶𝐷 𝑠𝑖𝑛 𝜙))

2
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+ (4𝜋𝑎′Ω𝑈0(1 − 𝑎)𝑟2𝐹 −
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2
𝑊2𝐵𝑐(𝐶𝐿 𝑠𝑖𝑛 𝜙 − 𝐶𝐷 𝑐𝑜𝑠 𝜙))
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 282 

eq. 34 283 

For 𝑎 > 0.4: 284 

𝑔 = (𝜋𝑈0
2𝑟 (
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9
) 𝑎 + (
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9
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2
𝑊2𝐵𝑐(𝐶𝐿 𝑐𝑜𝑠 𝜙 + 𝐶𝐷 𝑠𝑖𝑛 𝜙))
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+ (4𝜋𝑎′Ω𝑈0(1 − 𝑎)𝑟2𝐹 −
1

2
𝑊2𝐵𝑐(𝐶𝐿 𝑠𝑖𝑛 𝜙 − 𝐶𝐷 𝑐𝑜𝑠 𝜙))
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 286 

eq. 35 287 

Where each part is squared to avoid convergence to an incorrect solution. 288 

The minimise function within SciPy offers a variety of optimisation algorithms, which can be selected 289 

based on the nature of the problem (SciPy Community 2016). In this case, the Sequential Least 290 

Squares Programming (SLSQP) gave the best compromise between running time, convergence and 291 

operational constraints. A maximum iteration limit was set to 1000, and a tolerance for the value g 292 

of 1.0E-10. Boundary constraints were set to ensure that induction factors stay within reasonable 293 

limits, where tangential values being less than 0.5, and axial between -0.9 to 0.9.  294 

3.2 Duct model implementation 295 

The same minimise objective function is applied, however the minimisation value is defined as: 296 

𝑔 = ((𝜂02 − 𝐶𝑇𝑖 + 𝐶𝑝𝑏 − (𝜂02 − 𝐶𝑃34)(1 − 𝑎)2)
4

297 

+ (4𝜋𝑎′Ω𝑈0(1 − 𝑎)𝑟2𝐹 −
1

2
𝑊2𝐵𝑐(𝐶𝐿 𝑠𝑖𝑛 𝜙 − 𝐶𝐷 𝑐𝑜𝑠 𝜙))

4

 298 

eq. 36 299 

Here the highly loaded condition is not included, as the axial induction factor never converges on 300 

𝑎 > 0.4. The equation now incorporates the axial induction factor expression from the duct 301 



analytical / empirical model as defined in eq. 15, and thrust coefficient CTi calculated from the blade 302 

element theory using eq. 5. The thrust and torque sides are increased to the power 4 in this case, as 303 

it was discovered to have a higher stability. The iterative loop steps through the induction factors 304 

searching for equilibrium between the momentum and blade element theories, in order to satisfy 305 

the minimisation condition (g). The higher stability is thought to be achieved with the larger 306 

exponent value due to smaller increments imposed when the approaches the equilibrium value. This 307 

increases the number of steps taken to reach convergence, however does not noticeably affect the 308 

running time. 309 

Where available, the duct geometry is taken directly from the reference (Belloni et al. 2016), 310 

including duct inlet and outlet radii. The inlet and outlet diffuser surface angles required by the 311 

analytical model are not given, and not easily defined for a bi-directional ducts. A calibration study 312 

was thus performed to estimate appropriate values, by applying the model to a commercial open 313 

centre device, and comparing the corresponding thrust and power curves with blade resolved CFD 314 

simulations.  Appropriate values were determined as: θin = 30° and θout = 10°. 315 

Due to the configuration of blade tips being connected, the formation of tip vortices is restricted, 316 

which has implications on the tip-losses seen in classical turbines. CFD studies have reportedly 317 

shown that the change in axial velocity at the tip is small (Fleming & Willden 2016) and therefore the 318 

tip loss factor is set to unity.  319 

For this case, an open centre hub is incorporated, connecting the ends of the blades at the centre. 320 

This is thought to constrain the vortex shedding which is the basis of the Glauert hub loss, and 321 

therefore is assumed to be unity in this case. This is a limitation of the model, as the complex nature 322 

of the flow in this region is thought to have associated 3 dimensional effects and therefore 323 

associated hydrodynamic efficiency losses. An alternative correction factor is currently being sought, 324 

however due to the additional complexity in the mixing with flow through the open centre, requires 325 

extensive blade resolved CFD studies.  326 



3.3 Aerofoil coefficients 327 

Aerofoil characteristics are required in determining the element aerodynamic forces, which can be 328 

obtained directly from catalogued data such as (Abbott & Von Doenhoff 1959) which are based on 329 

wind tunnel experiments at specific Reynold’s numbers. XFOIL is an alternative method: a Fortran 330 

based programme incorporating a linear vorticity function panel method with a viscous boundary 331 

layer and wake model (Drela 1989). For NACA profiles not contained within the XFOIL database, 332 

surface ordinates are obtained from catalogued data (UIUC Applied Aerodynamics Group 2015) and 333 

prescribed, along with the chord based Reynolds number as: 334 

𝑅𝑒𝑐ℎ =
 𝜌𝑐𝑊

𝜇
 335 

eq. 37 336 

Where 𝑊 = √𝑈0
2 + (𝛺𝑟)2 denotes the resultant velocity over the surface of the aerofoil (ms-1) and 337 

μ is the dynamic fluid viscosity (Nsm-2). Small changes in Reynold’s number were found to have an 338 

insignificant on the overall rotor performance, and therefore the rotational velocity is taken at the 339 

optimal performance of the turbine. As the Viterna extraoplation function uses chord and thickness 340 

values at 75% down the length of the blade (Ning 2013), it seems reasonable to use the same 341 

location in Reynolds number calculation. 342 

Aerofoil coefficients for the bare 3-bladed turbine uses XFOIL generated data (at Rech = 3.0E+05), 343 

whereas the ducted case takes catalogued data (at Rech = 1.5E+06). 344 

3.4 Corrections to aerofoil coefficients 345 

As XFOIL calculations and experiments are based on 2D static wind tunnel measurements, the 3D 346 

nature of flow due to the rotation of the blade is not accounted for. In reality, radial forces in the 347 

fluid induce a Coriolis Effect, acting in the direction of the trailing edge which effectively delays the 348 

onset of boundary layer separation. This delayed stall phenomenon varies as a function of chord and 349 



radius, and can be accounted for by applying a Du-Selig (Tangler & Selig 1997) model to the lift 350 

coefficients, and an Eggers (Hansen 2004) adjustment to the drag.  351 

As a result of BEMT iteratively solving for inflow angle, data for large range of angles of attack is 352 

required, in some cases exceeding the point of stall, which is beyond the capabilities of XFOIL. Values 353 

in these conditions can be generated using an extrapolation function as proposed by Viterna 354 

(Viterna & Janetzke 1982), using the aerofoil aspect ratio 75% down the length of the blade. 355 

3.5 Classical bare turbine properties 356 

Validation of the classical BEMT model for bare turbines is performed against 1/20th scale model 357 

experiments (Batten et al. 2006). The 3-bladed turbine has a rotor radius (R) of 0.4m, and tests are 358 

performed in a fully enclosed cavitation tunnel. Radial distribution of blade chord (c), thickness (t) 359 

and twist (β) are detailed in Table 3-1. 360 

Table 3-1 1/20th scale turbine properties showing distributions with normalised radius (Bahaj et al. 2007) 361 

 r/R β (°) c/R t/c (%) 

 0.20 15.0 0.125 24.0 

 0.30 9.5 0.116 20.7 

 0.40 6.1 0.106 18.7 

 0.50 3.9 0.097 17.6 

 0.60 2.4 0.088 16.6 

 0.70 1.5 0.078 15.6 

 0.80 0.9 0.069 14.6 

 0.90 0.4 0.059 13.6 

 1.00 0.0 0.050 12.6 

Three flow rates and turbine configuration are considered: 362 



Table 3-2 1/20th scale model experimental case conditions (Bahaj et al. 2007) 363 

Parameter Case 1 Case 2 Case 3 

Inflow velocity (m/s) 1.73 1.54 1.3 

Blade pitch (°) 5 10 12 

The flow through the water column under experimental conditions is inherently unsteady and non-364 

uniform, combined with complex interactions with the surrounding walls. The blockage ratio of the 365 

experimental setup is 17%, and results are quoted by the author in their blockage corrected form 366 

(Bahaj et al. 2007). As tests are run in a cavitation tunnel, there are no free surface effects. Within 367 

the BEMT, the inflow is assumed as a steady and ‘frozen’, where in this analysis a shear profile is 368 

incorporated in order to approximate the effects of bottom friction as a 1/7th power law: 369 

𝑈0 = 𝑈ℎ𝑢𝑏 (
𝑧

𝑧ℎ𝑢𝑏
)

1
7

 370 

eq. 38 371 

Where Uhub is the average flow velocity at the hub height (ms-1), z is the height of the element above 372 

the seabed (m) and zhub is the height of the hub above bottom, taken as 0.6m. z is calculated as a 373 

function of the blade azimuth and element radial location and inserted in the above equation to 374 

determine the inflow velocity for each element. This velocity is then used in the BEMT loop, where 375 

an azimuth stepping function is applied. Rotor power and thrust coefficients are then determined by 376 

taking the average axial and tangential forces over one turbine rotation. 377 

The blade profile consists of NACA63-8xx aerofoil sections, xx being the thickness to chord ratio. The 378 

lift and drag coefficients against angle of attack for a Reynolds number of 3.0E+05 (corresponding to 379 

1.73ms-1 inflow velocity) are shown in Figure 3-2, generated using XFOIL. Values are 3D stall delay 380 

corrected as a function of location along the blade, and extrapolated past stall condition. 381 



 382 

Figure 3-2 Coefficient of lift (dashed lines) and drag (solid lines) against angle of attack for NACA63-8xx profiles for various 383 
normalised radii, at a Reynold’s number 3.0E+05 384 

3.6 High solidity, ducted, open-centre turbine properties 385 

To assess the performance of the duct BEMT model, comparisons are made against a coupled RANS 386 

BEM study of a bidirectional ducted and open centre turbine. This is based on full scale geometry, 387 

with general dimensions of duct radius (Rduct), rotor radius (Rrotor) and hub radius (Rhub) given in 388 

Figure 3-3. Values of inlet and outlet angles (indicated in Figure 2-5) are calibrated with the blade 389 

resolved CFD studies, where θin = 30° and θout = 10° show the best representation. A sensitivity 390 

analysis of these parameters is shown in Section 5.6. 391 

 392 

Figure 3-3 Ducted open centre turbine overall dimensions (Belloni et al. 2016) 393 

The number of blades, aerofoil chord lengths and thicknesses are incorporated into values of solidity 394 

(σr), where radial distributions are detailed in Table 3-3.  395 

Table 3-3 Ducted and open centre turbine properties variation with normalised radius. Data reproduced from (Belloni et al. 396 
2016) 397 



 r/R β (°) σr 

 0.30 29.7 0.420 

 0.40 25.6 0.305 

 0.50 20.8 0.220 

 0.60 17.2 0.163 

 0.70 14.2 0.124 

 0.80 12.0 0.100 

 0.90 10.3 0.083 

 1.00 8.4 0.070 

One flow condition is considered, based on a uniform inflow with no bottom friction, at a constant 398 

velocity of 2ms-1. This has a corresponding chord based Reynolds number of approximately 1.0E+06. 399 

The blades consist of Risø-A1-24 aerofoils, with lift and drag coefficients as shown in Figure 3-4, 400 

taken from wind tunnel data at a Reynolds number of 1.6E+06 (Fuglsang et al. 1999) . These raw 401 

values are directly applied to the mode, with no 3D correction implemented, to be consistent with 402 

the validation methodology (Belloni 2013). No extrapolation function is used, where if α<5°, CL and 403 

CD are equal to those at α=5°. Additionally, for α>35°, CL and CD are equal to those at α=35°. 404 

 405 

Figure 3-4 Coefficients of lift and drag against angle of attack for Riso-A1-24 aerofoil under a Reynold’s number 1.6E+06 406 
(Fuglsang et al. 1999) 407 



4 Results 408 

This section presents the results of the two BEMT models and compare them with various validation 409 

data from the literature. Section 4.1 gives the comparison of the conventional 3-bladed case with 410 

previous scale model experimental data. Sections 4.2 and 4.3 present the results of the ducted BEMT 411 

compared to a coupled RANS-BEM model, where overall rotor performance as well as span-wise 412 

variations are shown.  413 

4.1 Classical bare turbine validation 414 

Using the described input data, the model is run for each individual inflow velocity and pitch. 415 

Intermediate calculation steps are inspected in order to assess the model performance, to ensure 416 

convergence is well established and to gain indications of magnitude and location at which 417 

correction factors are being applied. Figure 4-1 shows the distribution of axial and tangential 418 

induction factors as well as the tip/hub loss correction factor along the blade length for an inflow 419 

velocity of 1.73ms-1. The axial induction factor is seen to exceed the transition to the highly loaded 420 

regime only at this inflow, occurring mainly at the blade tips except for at a TSR of 8. The tip/hub loss 421 

describes the reduction in hydrodynamic efficiency along the blade, becoming more influential 422 

towards the tip and hub as per its definition. The magnitude of this efficiency decreases with TSR, 423 

where the tip losses are clearly more significant in all cases considered. For the lowest TSRs, the 424 

correction can be seen to apply along the entire length of the blade. 425 

 426 

Figure 4-1 a) axial induction factor (left), b) tangential induction factor (middle) and c) tip/hub correction factor (right) 427 
variation with normalised radius at various tip speed ratios, for inflow of 1.73ms-1, pitch 5, taken at an azimuth of 0° 428 



Figure 4-2 shows the power and thrust curves for the turbine, comparing measured and numerical 429 

data. Overall trends are similar for each inflow: levels generally increase to a peak at an optimal TSR, 430 

the largest corresponding to the highest inflow. For the most part, results from the BEMT models 431 

show excellent agreement with the experimental data. Inter comparison of the numerical models 432 

also shows very similar trends, with little divergence in the power at the lowest inflow velocity. 433 

Regions of over prediction in power are evident towards the higher TSRs. This is potentially caused 434 

by the large blockage correction factor applied to the experimental data.  435 

 436 

Figure 4-2 Coefficient of power (top) and thrust (bottom) variation with tip speed ratio for 1/20th scale classical bare turbine 437 
for velocities and blade pitches: 1.73ms-1, 5°; 1.54ms-1, 10°; and 1.3ms-1, 12°. Comparing experimental data with BEMT 438 
results from present study and with University of Southampton (SERG) 439 

4.2 Ducted rotor performance and thrust 440 

The axial induction factor for all cases is found to be below the transition to the highly loaded regime 441 

for all TSR, so no highly loaded correction factor is applied. 442 

Figure 4-3 shows the coefficient of power and thrust, which again follows an increasing trend up to a 443 

maximum at an optimal TSR. Comparison of the ducted BEMT results with RANS-BEM shows 444 

exceptional agreement, particularly up to the optimal at 3.0. Beyond the peak, a divergence is seen 445 



between the datasets, where ducted BEMT calculates up 25% higher in power and 13% in thrust at 446 

TSR 5. 447 

 448 

Figure 4-3 a) coefficient of power (top) and b) thrust (bottom) variation with tip speed ratio for full scale open centre and 449 
ducted turbine, comparing present ducted BEMT with RANS-BEM results 450 

4.3 Ducted rotor blade distribution 451 

Rotor averaged values give an overall indication to the performance of a turbine, however it is also 452 

important to be able to assess the force distributions along the blade length, particularly when 453 

performing loading and bending moments for structural assessments. Figure 4-4 shows the blade 454 

distributions of certain parameters calculated in the model, namely the velocity at the disc, angle of 455 

attack and local element coefficient of thrust. Comparing the ducted BEMT to RANS-BEM, excellent 456 

agreement is seen for angles of attack at all TSRs considered, as well as for velocity and local 457 

element thrust up to TSR 3. Some discrepancies are evident when inspecting the velocity and local 458 

thrust at TSRs 4-5. This is in accordance with the results for the entire rotor, but here we can identify 459 

the divergences are located at blade elements towards the hub (for low r/R values).  460 



 461 

Figure 4-4 Variations of a) flow velocity at the disc divided by velocity at the inlet (top), b) angle of attack (middle) and c) 462 
local elemental thrust coefficient (bottom) with normalised radius for various tip speed ratios, comparing ducted BEMT 463 
(lines) with RANS-BEM (points) 464 

5 Discussion 465 

Here we discuss the findings from the results, with Section 5.1 focussing on the validation of the 466 

classical code with a conventional turbine and Section 5.2 on the ducted BEMT model. Additional 467 

observations, model limitations, computational requirements and sensitivity to duct diffuser angles 468 

are then explored in Sections 5.3 – 5.6. 469 

5.1 Validation and implementation of the BEMT method 470 

It is seen that converged axial induction levels are below the transition to the highly loaded regime 471 

for the majority of calculations, except at the blade tips and at high TSRs outside of the optimal 472 



operating conditions. Intermediate calculations of flow parameters show that convergence is fully 473 

established within the model limits for each simulation. 474 

The comparison of the classical BEMT model with the University of Southampton model (SERG) 475 

results shows that the developed code presented here achieves a good implementation of the 476 

theory. The models also show very good agreement with the experimental measurements of CP and 477 

CT, with a slight tendency to over predict at higher TSR values. This is thought to be accounted for by 478 

the blockage effects within the experimental set up. In engineering applications, these TSRs are of 479 

less interest as they exceed the optimal operating conditions of the turbine. Further validation of the 480 

code is carried out against additional experiments and are detailed in (Allsop et al. 2016). 481 

5.2 Ducted BEMT comparison with RANS BEM 482 

The overall values of rotor CP and CT are almost identical for TSRs below 4, which include the optimal 483 

operating conditions.  484 

Both methodologies make use of the blade element theory, using similar geometrical parameters, 485 

aerofoil lift and drag coefficients and correction factors. The differences in the results from the two 486 

studies are therefore purely a function of how the changes in fluid momentum are treated. As there 487 

is good agreement seen between the results, the suggestion is that the momentum changes 488 

calculated within the analytical ducted BEMT are very similar to those computed by the CFD model. 489 

Further analysis of the radial distributions indicate the calculations are similar on an elemental level 490 

and not only rotor averaged. Although this has positive implications for the approach taken, this is 491 

not a comprehensive validation of the method and more representative of an early stage 492 

qualification. In order to increase confidence in the method, further comparisons are recommended 493 

ideally against higher fidelity blade resolved CFD. 494 

Over predictions seen at higher TSRs are likely due to the more complex flow characteristics at these 495 

conditions, which are better captured using the more detailed CFD. Assessment of the blade 496 

distributions shows that the over predictions of disc velocity are located closer to the hub, with the 497 



tips shows more reasonable correlation. This is thought to stem from flow interactions with the hub, 498 

with fluid likely being drawn through the open-centre and therefore reducing the hydrodynamic 499 

efficiency of the blade elements towards this region. As the model does not account for span wise 500 

flow, the application of a hub-loss factor could be considered, based on further analysis of these 501 

interactions. 502 

5.3 Additional observations 503 

Axial induction factors converge on values less than the transition point to the highly loaded regime, 504 

therefore under the input conditions considered, the results are always solved as per the ducted 505 

BEMT calculations. This shows a non-dependency on the Buhl correction factor, which has 506 

associated uncertainties due to semi-empirical nature of the correction based on experiments with a 507 

significant spread.  508 

In order to remain consistent with the inputs of the RANS-BEM model, the lift and drag coefficients 509 

at angles of attack above 35° are kept constant with the reason being that this is a rare occurrence at 510 

non-optimal operating conditions. It is seen that for low TSR, the angles of attack are consistently 511 

above this limit, and therefore a post stall model could be used such as the Viterna extrapolation 512 

function which is commonly employed, in order to improve the accuracy of the aerodynamic 513 

coefficients.  514 

5.4 Computational requirements 515 

Studies on conventional turbines quoted computational requirement of 100 CPU-hours per turbine 516 

rotation using blade resolved RANS CFD and 12 CPU-hours for each simulation using coupled RANS-517 

BEM (McIntosh et al. 2012). No details on the computational set up is given by this reference.  518 

The coupled RANS-BEM study was performed on a 16 node computer cluster, with 8 cores per node. 519 

Steady computations were completed in 8 hours using 4 cores, equivalent to 32 core hours for each 520 

of the 5 simulations (Belloni 2013).  521 



The present ducted BEMT computations were performed using a laptop running an Intel CoreTM i5 522 

2.9 GHz dual core processor with 8 GB RAM. Simulations were completed within 3 minutes, 523 

generating all 60 points on the power and thrust curves, equivalent to 6 core minutes. 524 

Computational time from separate studies cannot be directly compared, due to dependencies on 525 

factors such as the computer used, processor type, number of partitions and clock time. There are 526 

also dependencies on certain CFD parameters such as the mesh definition, domain size and time 527 

step used. However, differences of several orders of magnitude seen in this study is indicative of 528 

substantial computational cost savings when using the current model. This highlights an advantage 529 

in the application of performing engineering assessments such as fatigue damage or when making 530 

multiple design iterations. 531 

5.5 Model limitations 532 

Both the ducted BEMT and RANS BEM models are based on the blade element theory restrictions, 533 

where any span wise flow is not considered, and individual aerofoil sections are analysed as a 534 

function of the lift and drag coefficients. In order to reduce the limitations of 2D analyses, 535 

corrections for physical behaviour could be included, such as the delayed stall effects by applying the 536 

Du-Selig and Eggers adjustments to lift and drag coefficients. However, the complex flow through 537 

the different turbine configuration is likely to have impacts on the Coriolis Effects of flow, and would 538 

need to be further analysed.  539 

RANS has the ability to capture the spanwise flow, however this is beyond the capabilities of the 540 

momentum equations which are based on independent annular rings, capturing no radial 541 

interactions between elements. This is thought to be more significant around the open centre hub 542 

geometry. As the bending stress is a function of all forces along the blade, this is thought to have 543 

implications on blade life, and should be considered when feeding the loads into a structural 544 

analysis. 545 



The incorporation of the duct effects in the BEMT equations are devised from CFD studies of 546 

unidirectional duct geometries. When applying this to the bi-directional duct in this case, the inlet 547 

and outlet angles are less easy to define, yet are incorporated within the empirical expressions. 548 

These angles were empirically calibrated using a separate study on an open centre device, 549 

comparing the resultant CP and CT curves with blade resolved CFD studies. There are inevitably 550 

inaccuracies with this approach due to the differences in the geometry of machines, as well as 551 

calibrating against a methodology that models individual blades. 552 

The BEMT model is unable to characterise the flow in the wake, and does not consider any mixing 553 

with the fluid surrounding the stream tube. The present study only considers a flow direction 554 

perpendicular to the rotor plane, however this could be adapted to additionally assess yaw. The flow 555 

is also considered inviscid and steady and therefore does not account for dynamic effects such as 556 

turbulence or inertia. Quasi static simulations can be performed, where frozen inflow conditions are 557 

applied at each time step.  558 

5.6 Sensitivity to duct model parameters 559 

Additional simulations were performed in order to assess the effect of adding the duct correction, as 560 

well as the impact the diffuser parameters has on the power and thrust predictions. Figure 5-1Error! 561 

Reference source not found. shows that the classical BEMT results are lower than those predicted 562 

by the ducted BEMT for the majority of TSRs, as expected due to the flow augmentation effects. 563 

Additionally, various duct parameters are tested, using: θin = 0° / θout = 0° (as a low extreme), θin = 564 

30° / θout = 10° (as the reference values from a calibration study) and θin = 60° / θout = 20° (as a high 565 

extreme of twice the reference values from a calibration study). It can be seen that power and thrust 566 

predictions using extreme values are within 5% of those when using the reference in this study, 567 

indicating a small sensitivity to these parameters.  568 



 569 

Figure 5-1a) coefficient of power (top) and b) thrust (bottom) variation with tip speed ratio for full scale open centre and 570 
ducted turbine, comparing classical BEMT with Ducted BEMT with various diffuser parameters 571 

6 Conclusion 572 

This study details a ‘classical’ BEMT model, developed for analysing power output and rotor thrust 573 

forces on 3-bladed, bare TSTs. The developed BEMT code is implemented and verified by comparing 574 

results to an academic code and proves being capable of representing physical effects with good 575 

agreement to scale model experimental measurements.  576 

An analytical model which aims to characterise the effects of flow through a duct as a function of the 577 

inlet efficiency, diffuser efficiency and base pressure is considered. Empirical expressions for these 578 

parameters are formulated in the literature, based on CFD studies of various different unidirectional 579 

ducts, as functions of numerical coefficients and duct geometry. The empirical expressions are 580 

combined to formulate a new expression for the axial induction factor, which is incorporated into 581 

the BEMT iterative procedure. Due to the geometrical differences of a bidirectional duct, certain 582 

values are calibrated through applying the model using blade resolved CFD results.  583 



The rotor power and thrust predicted by the ducted BEMT model is almost identical to a RANS BEM 584 

study, for TSRs up to the optimal operating condition. As the blade element theory application is 585 

consistent in each method, this suggests a similar computation of the momentum change from the 586 

empirical expression and the CFD. This is further emphasised by similarities seen in the blade 587 

distribution of flow velocity, angle of attack and local elemental thrust.  588 

Some divergence is seen at higher TSRs, with differences up to 25% higher power and 13% higher 589 

thrust compared to RANS BEM. These are a result of over predictions in the elemental flow velocity 590 

close to the hub, thought to be due to the flow around the hub and through the open centre, which 591 

are beyond the capability of the BEMT method to capture. A hub loss factor could be introduced to 592 

approximate the reduced hydrodynamic efficiency in this region, however would require detailed 593 

CFD analysis to ensure the complex flow interactions are well represented.  594 

The ducted BEMT has shown significantly lower computational requirements compared with the 595 

coupled RANS BEM method, in the order of a few minutes on a laptop rather than a few hours on a 596 

computer cluster. This highlights the advantage of the model when multiple engineering 597 

assessments are required in performing fatigue analyses, or when access to high performance / 598 

clustered computational resources are restricted.  599 

Despite the positive implications of these results, it should be noted that this study is not a 600 

comprehensive validation of the method. Due to the limited number of data points for comparison, 601 

this result is more representative only of an early stage qualification. Assessment against additional 602 

cases, preferably with alternative models or experimental measurements should be performed to 603 

form a more definitive conclusion.  604 

As further and ongoing work, the presented model is being applied to commercial turbines, for 605 

further validation against blade resolved CFD studies under several inflow velocities. Sensitivity 606 

studies will also be performed on other duct parameters such as the inlet and diffuser ratios, to gain 607 

a better understanding of the model dependencies. The model will then be extended to calculate 608 



the associated stress distributions along the blade. The fast computation of this method will enable a 609 

higher number of analyses to be performed with many different inflow parameters, and ultimately 610 

used to predict blade fatigue damage. 611 
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