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Abstract 

The application of gene editing (GE) technology to create precise changes to the genome of 

bird species will provide new and exciting opportunities for the biomedical, agricultural and 

biotechnology industries, as well as providing new approaches for producing research 

models. Recent advances in modifying both the somatic and germ cell lineages in chicken 

indicate that this species, and conceivably soon other avian species, has joined a growing 

number of model organisms in the gene editing revolution. 

 

Bird germline transgenesis 

The chicken has been an exceedingly useful model for the study of early vertebrate 

development and patterning (Stern 2005). As the new genome editing technologies are 

applied to bird species, it is certain that these research efforts will provide new insights into 

avian diseases, reproduction, growth and nutrition, and beyond. The advent of gene editing 

of the avian genome follows on from over 30 years of transgenic research in chickens. 

Transgenesis in birds has always lagged behind the advances made in other vertebrate species 

because of the inaccessibility and complex yolky structure of the avian zygote (Romanoff and 

Romanoff 1949). Many of the early technical advances in avian transgenesis used 

microinjection of retroviruses, culminating in lentiviral vectors, to achieve efficient germline 

modification without subsequent vector silencing (Salter et al. 1987; Bosselman et al. 1989; 

Page et al. 1991; McGrew et al. 2004; Lee et al. 2007). More recently, direct electroporation 

and lipofection of DNA transposons or site-specific DNA recombinases into early 

developmental stage embryos has been used for the non-targeted integration of transgenic 

constructs in both the germ lineage and somatic tissues of the chicken (Kong et al. 2008; 

Takahashi et al. 2008; Serralbo et al. 2013; Tyack et al. 2013; Jordan et al. 2014). The use of 

these techniques in transgenic studies has already been extensively reviewed (McGrew 2013; 

Nishijima and Iijima 2013; Collarini et al. 2014). These previous studies have increased our 

knowledge of immune function (Thompson et al. 1987; Sayegh et al. 1999) and embryonic 

development (Sato et al. 2007; Macdonald et al. 2012; Glover et al. 2013), and have led to the 

development of new disease models (Dodgson and Romanov 2004; Wick et al. 2006; Williams 

and Bohnsack 2015).  

 

Gene editing tools 

The field of functional genomics was transformed with the arrival of zinc-finger 

nucleases, allowing the efficient targeted integration of transgenes, or the introduction of 

targeted mutations to the genome (Bibikova et al. 2002, Fan et al. 2011). Now, breakthroughs 
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with TALEN and CRISPR/Cas9 technology permit genome editing with rapid construction of 

targeting plasmids and at lower costs. Direct injection of editors into zygotes also replaces the 

need for the culturing of embryonic stem cells as intermediaries in the process of producing 

genetically-altered offspring.  

TALEs (Transcription activator-like effectors) are naturally occurring proteins from the 

plant pathogenic bacteria genus Xanthomonas, and contain DNA-binding domains composed 

of a series of repeat units 33-35 amino acids long, with each unit recognising a single base-

pair, depending on two highly variable residues in the middle of each unit (Boch et al. 2009; 

Moscou and Bogdanove 2009). By fusing the DNA-cleavage domain of FokI onto a TALE, TALE-

nucleases (TALENs) were produced and shown to be applicable to gene editing outside their 

native plant-host system for generating genetic changes by both non-homologous end joining 

(NHEJ) and homology directed repair (HDR) (Fig. 1) (Miller et al. 2011; Wood et al. 2011). 

Injection of mammalian zygotes with TALEN mRNA followed by transfer to surrogate host 

animals has been successful in producing genome-edited animals, including rat and mice 

(Wang et al. 2013; Ponce De León et al. 2014), as well as in mammalian livestock species such 

as pigs and cattle (Carlson et al. 2012; Lillico et al. 2013). 

The CRISPR/Cas9 system, based on the CRISPR-Cas adaptive immune system found in 

a number of bacterial and archaeal species (Jinek et al. 2012), uses small non-coding RNAs to 

guide the Cas9 nuclease to a target site in the eukaryotic genome, where it then cleaves the 

double-stranded DNA target. The guide RNA usually contains a 20 nucleotide sequence 

complementary to the target site, with the target site further restricted by the required 

presence of an adjacent 3-nucleotide sequence termed the protospacer adjacent motif 

(PAM). The ease of synthesising and cloning custom guide RNAs for Cas9 recognition is an 

improvement upon the sequential cloning protocols needed to produce custom DNA-binding 

domains for TALENs (Cermak et al. 2011). Though CRISPR/Cas9 is a quick and flexible tool for 

the recognition and cutting of specific genomic sites, it is met with similar problems 

encountered by TALENs when applied to avian germline transgenesis. Transferring this 

technology to avian embryos is confounded by the difficulties in accessing the early avian 

zygote in the hen, and subsequently supporting the developing embryo post-

injection/transfection (Perry 1988; Sherman et al. 1998). For this reason, most genome 

editing studies reported so far for birds have described the application of CRISPR/Cas9 to 

avian somatic cells and tissues. 
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Figure 1. TALENs and CRISPR/Cas9 target DNA and generate genomic edits through the NHEJ 

and HDR repair pathways. (A) TALE proteins consists of repeated modules, fused to 

nonspecific FokI cleavage domains that generate double-stranded DNA breaks upon 

dimerisation. Each repeated unit differs at amino acids 12 and 13, and the dipeptide 

combination at this position determines the nucleotide-binding. (B) The CRISPR/Cas9 complex 

includes a 20-nucleotide guide RNA (gRNA) that guides Cas9 to the target DNA. Cas9 nuclease 

activation requires a PAM (NGG) sequence to lie immediately downstream of the target DNA. 

The bound RNA complex activates double-stranded cleavage through two domains on the 

Cas9 nuclease, at a position close to the PAM site. (C) Breaks in the DNA are then repaired by 

the NHEJ or HDR pathway. 

 

Gene editing of avian somatic tissue and cells 

The somatic chicken B cell line, DT40, has proved invaluable for providing insights into the 

function of adaptive immunity, and has been key for investigating the genetic mechanisms 

involved in repairing double-stranded breaks in the genome by both the NHEJ and HDR 

pathways (Takata et al. 1998; Brown et al. 2003). These cells are unusual as they exhibit higher 

frequencies of targeted versus random integration of transgenes into the genome, in 

comparison to other somatic vertebrate cell lines (Buerstedde and Takeda 1991). For this 

reason, these cells have been particularly useful for loss-of-function and protein-tagging in 

vitro studies (Chavali and Gergely 2015; Kobayashi et al. 2015; Daly et al. 2016). 

DT40 cells and chick embryonic fibroblasts (such as the DF-1 cell line) have also been 

instrumental in developing the application of CRISPR/Cas9 to the chicken. Initial transfection 

studies demonstrated the efficient creation of directed mutations in numerous chicken loci 

across both micro- and macrochromosomes, and the removal of large continuous sections 

(>75 kb) of the genome in these cell lines (Bai et al. 2016; Dad Abu-Bonsrah et al. 2016). By 
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employing Rad52, an HDR-enhancing element, researchers demonstrated a greatly improved 

efficiency of CRISPR/Cas9 editing in DF-1 cells (Wang et al. 2017). Furthermore, researchers 

have used conserved avian promoter modules to drive Cas9 protein expression in the somatic 

tissue of other bird species, thus introducing NHEJ edits to the MLPH locus of a quail myoblast 

cell line (Ahn et al. 2016). The use of CRISPR/Cas9 in genetic studies has also been 

demonstrated in avian cell lines; frameshift deletions in the Grb2 locus were used to analyse 

B cell receptor signalling in DT40 cells, and a CRISPR/Cas9 deletion analysis provided insight 

into interactions between the surface receptor CD22 and plasma membrane transport 

proteins in DF-1 cells (Chen et al. 2016). 

 Additionally, CRISPR/Cas9 has been useful for the in ovo study of gene function in 

developing somatic tissues. It is relatively easy to introduce DNA vectors into chicken 

embryonic cells by direct electroporation of developing tissues of the chicken embryo for the 

study of spatio-temporal gene functions; for example the somites, the primitive streak, and 

the cranial neural crest (Marcelle et al. 1995; Dubrulle et al. 2001; Bronner-Fraser and García-

Castro 2008). Electroporation of CRISPR/Cas9 vectors into embryos lead to lineage-specific 

loss-of-function, and chimaeric chicken embryos produced in this manner were used to study 

loss-of-function of genetic targets in the developing neural tube and somites (Véron et al. 

2015). Strikingly, this remains the only published report for the in ovo electroporation of 

CRISPR/Cas9 vectors into chicken embryos. 

So far, the in ovo editing of chicken embryos has not produced genetic modifications 

that have been transmitted through the germ cell lineage to offspring. This may be due to the 

distinct developmental ontogeny of the avian germ cell lineage. Yet, by directly targeting 

chicken primordial germ cells (PGCs), it is possible to introduce specific edits into the chicken 

genome, and to use these edited germ cells to produce gene edited (GE) chickens. In the past, 

the genetic manipulation of germ cells has been hampered by impracticalities of targeting 

these cells in vivo and the inability to propagate PGCs in vitro. However, recent advances in 

culturing PGCs have enabled the efficient generation of GE germ cells which can subsequently 

be used to generate GE chicken. 

 

Primordial germ cells for genome editing 

Current evidence supports the hypothesis that avian PGC specification occurs through 

maternal factors deposited as germplasm in the developing oocyte (Petitte et al. 1997). In the 

laid chicken egg, the embryonic blastoderm consists of approximately 60,000 cells, containing 

40 PGCs clustered in the centre of the disc, as evidenced by the expression of PGC-specific 

nucleic acid-binding proteins DDX4 and DAZL (Tsunekawa et al. 2000; Lee et al. 2015). In the 

first 12 hours of incubation, PGCs translocate to the forming hypoblast, then migrate 

anteriorly as the primitive streak elongates from the posterior border of the blastoderm. The 

PGCs come to reside within the germinal crescent, the mesoderm located anterior to the head 

fold, where they remain until the extraembryonic blood islands form in that region. At 48-60 

hours of incubation, a population of approximately 100-200 PGCs enters the circulatory 

system and exit into the lateral plate mesoderm to finally migrate to the genital ridge of the 
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nascent gonads (Ginsburg and Eyal-Giladi 1986, Nakamura et al. 2007). PGCs are accessible at 

many of these stages of development, either through dissection of the embryo or aspiration 

of embryonic blood. Genetic manipulation of PGCs during short-term culture, using standard 

transfection reagents, can be achieved and used for transgenesis (Hong et al. 1998). More 

recently, it was shown that circulating PGCs can be targeted directly via intravenous injection 

of transfection reagents to produce transgenic offspring (Tyack et al. 2013) (Fig. 2). While in 

this case a transposon vector was used for the genomic insertion of a GFP reporter, it seems 

plausible that this technique could be adapted for use of TALEN or CRISPR/Cas9 vectors, and 

provide a platform for gene editing in other bird species. Germline transmission using these 

techniques was infrequent so it is not clear if gene editing of avian PGCs in ovo will be possible. 

However, the chicken is one of the few vertebrate species for which the long-term in vitro 

propagation of primordial germ cells is possible, so performing gene editing of cultured PGCs 

is becoming a standard practice.  

 The in vitro culture of PGCs is possible using a complex medium containing chicken 

and bovine serum, conditioned media, feeder cells, and growth factors such as FGF2 (van de 

Lavoir et al. 2006, Han et al. 2010, MacDonald et al. 2010). Recently it has been shown that a 

feeder replacement medium containing growth factors to activate the FGF, insulin, and TGF-

β signalling pathways could be used to propagate PGCs (Whyte et al. 2015). Furthermore in 

this report, use of ovotransferrin as a replacement for the iron-carrying proteins present in 

avian serum permitted feeder-free and serum-free propagation of PGCs, with cells 

maintaining a high rate of proliferation. A rapid rate of in vitro cell division also aids genome 

editing experiments, as it increases the potential number of HDR targeting events (Fig 2). 

 To produce GE chickens from PGCs edited in vitro, the exogenous edited germ cells 

are injected intravenously into surrogate host embryos, at a stage when their endogenous 

PGCs are migrating to the genital ridge. The edited ‘donor’ PGCs must remain viable and 

outcompete the endogenous PGCs if they are to colonise the forming gonad and transmit the 

edited chromosome(s) through the germline. To provide donor PGCs with an advantage, the 

number of endogenous PGCs can be reduced by chemical or genetic ablation (Smith et al. 

2015). Exposing the blastoderm of surrogate embryos to emulsified busulfan has been shown 

to increase germline transmission of donor PGCs to over 90%, though this rate drops 

significantly if PGCs have been cultured or cryopreserved (Nakamura et al. 2008, Naito et al. 

2015). In other animal species, transgenes have been used to successfully target the germ 

lineage for ablation (Xu and Chisholm 2016). This genetic strategy permits the direct ablation 

of germ cells when a transgene is expressed or translated specifically in the germ lineage. In 

salmon, CRISPR/Cas9 was used to knock out the gene dead end, a germ cell survival factor, 

generating fish which lacked germ cells (Wargelius et al. 2016). Thus, ablation of endogenous 

germ cells by means of chemicals, transgenes or deletion of gene products critical to PGC 

survival, could improve the efficiency of the production of GE birds from exogenous edited 

PGCs. 
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Figure 2: Targeting the avian germ lineage. A) Derivation and transfection of avian PGC 

cultures. Blood is collected from the embryo once PGCs have begun circulating in the 

vasculature. Derived PGC cultures can then be transfected via lipofection or electroporation. 

B) PGCs are purified with a selectable marker, or by culturing and sequencing clonal 

populations. Use of a semi-defined culture media increases proliferation in vitro, with 

potential increases to gene targeting efficiency. C) Injection of surrogate embryos with 

transfected PGCs. Transfection reagents can also be injected at this stage to edit germ cells in 

ovo. D) Semen transfection with CRISPR/Cas9 constructs is subsequently used for artificial 

insemination (AI). 
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GE chickens 

To date, there has been less than a handful of published reports on the use of TALENs and 

CRISPR/Cas9 vectors to produce GE chickens, the majority of which make use of cultured PGCs 

to introduce genetic modifications into the chicken genome. Park and colleagues used TALENs 

to generate indel mutations at the beginning of the ovalbumin (OVA) gene coding sequence 

(Park et al. 2014). Somatic DF-1 cells were used to optimise the TALEN vectors, and a transient 

GFP reporter plasmid was co-transfected to permit fluorescence-sorting of transfected cells. 

Interestingly, although the mutation rate between DF-1 cells and PGCs was similar in this 

study, DF-1 cells showed a greater variety of indels, whereas only deletions were observed in 

the PGCs. 41% of progeny were derived from the donor PGCs, and 8% of the offspring 

contained mostly nonsense frameshift mutations.  

 Oishi and co-workers also targeted the OVA locus, and a second locus, ovomucoid 

(OVM), another albumen protein, using CRISPR/Cas9 vectors, and used transient antibiotic 

selection to purify the transfected PGCs (Oishi et al. 2016). Semen from founders containing 

these donor PGCs and the subsequent offspring, showed a number of deletions (1 – 31 bp) at 

the targeted sites of the OVM locus. Again, no insertions were observed, nor were any edits 

detected at off-target locations. The researchers also obtained high transmission rates, with 

73% of progeny deriving from the donor PGCs and 53% of these contained deletions in the 

OVM locus. 

 Dimitrov and colleagues were the first to report HDR editing in chicken by 

CRISPR/Cas9, using a chicken line which had previously been targeted at the JH segment of 

the IgH locus using classical homologous recombination (Dimitrov et al. 2016). A site upstream 

of the VH segment of the IgH locus was targeted in PGCs from the JH-knockout line, and an 

additional loxP site and antibiotic selection marker were inserted using HDR. Germline 

transmission rates varied between PGC lines, as well as between injected founder birds 

containing the same donor germ cells. Most founder birds transmitted the edited allele at a 

frequency between 0% and 16%, although two founders, injected with the same clonal PGC 

line, transmitted at higher rates, 36% and 96%. 

Recently, TALENs were used to target the DDX4 locus in chicken PGCs (Taylor et al. 

2017). DDX4 is located on the chicken Z sex chromosome and the mRNA is only expressed in 

the germ cell lineage. Efficient HDR (8%) of a GFP-puromycin reporter construct was achieved 

in cultured PGCs, and the targeted cells showed no expression of DDX4. Targeted female 

progeny (ZW) were hemizygous for DDX4, and were also found to be sterile. In these hens, 

the germ cells were present at early developmental stages and later lost during meiosis, 

indicating the requirement of DDX4 for oocyte differentiation. 

 An interesting alternative to the use of PGCs is the direct transfection of spermatozoa 

using CRISPR/Cas9 vectors (Fig. 2). The CRISPR/Cas9 vectors are thought to target the male or 

female genome either during sperm decondensation or during syngamy in the post-

fertilisation oocyte. DF-1 cells were used to optimise targeting to 200 bp regions in either a 

GFP transgene, or the sex determination factor, DMRT1. Deletion in these coding sequence 

regions were found in 15% of GFP-targeted cells and 9% of DMRT1-targeted cells (Cooper et 
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al. 2016). However, insemination of transfected sperm from GFP and wild-type roosters 

resulted in progeny with single base substitutions and short insertion edits (1 – 5 bp). 

Inexplicably, indels were located approximately 25 bp 5’ to the predicted CRISPR/Cas9 

cleavage sites. Transmission rates of indels from a GFP transgene to chicks produced from the 

transfected sperm were 14%, while edits to the DMRT1 locus were found only in embryos 

targeted at a single location in the coding sequence, and co-transfected with a 100 bp HDR 

oligo (3 embryos, 4% of total), though no actual HDR edits were detected. Although the 

transmission rates were relatively low, transfecting sperm with CRISPR/Cas9 vectors to the 

zygote removes the need to transfect cultured PGCs, greatly reducing the time taken to 

produce genetically modified birds. It may also be relatively simple to adapt this technique to 

introduce genetic modifications into other poultry and bird species, although the precise 

position of the resulting indels appears unpredictable. 

Genome editing in chicken is an emerging field and examples of gene editing in bird 

species other than chicken are currently lacking. This is likely to be addressed once there is 

improved knowledge on the culture requirements for non-chicken avian PGCs, and further 

demonstrations of the efficiency of gene editing in somatic cells or tissues will surely follow. 

 

Applications for gene editing in birds 

Bioreactors 

One of the major aims of early research to genetically modify the chicken was to develop the 

use of the chicken egg as a bioreactor for producing recombinant proteins (reviewed in Lillico 

et al. 2005). The advantage of the chicken egg over other mammalian bioreactor systems is 

that the evolutionary distance between birds and mammals makes it possible to produce 

many chemo-active mammalian recombinant proteins in birds that will not be recognised by 

avian cells and organ systems. Additionally the egg is a sterile self-contained environment 

with low protease activity and chicken flocks offer favourable scale-up time and relatively low 

animal costs. The egg bioreactor platform is currently used for the production of human flu 

vaccine, which means existing regulatory procedures can be adapted for the new bio-

products. 

Most transgenic chickens bioreactor platforms use regulatory regions from albumen 

(egg white) expression-specific loci, such as ovalbumin (OVA) locus, with high levels of target 

protein secreted by cells in the magnum of the oviduct as a result (Zhu et al. 2005; Lillico et 

al. 2007). Recent reports have demonstrated the production of antimicrobial peptides (Liu et 

al. 2015a), monoclonal antibodies for breast cancer therapy (Oishi et al. 2011), epitope 

peptides for pollen (Kawabe et al. 2012) and tissue plasminogen activator for anti-thrombotic 

therapies (Kaleri et al. 2011; Lee et al. 2013) in egg white. In fact, the first egg-specific 

pharmaceutical protein, Kanuma, was recently approved for treatment of lysosomal acid 

lipase deficiency (Sheridan 2016). The flexibility of genome editing will open many avenues 

for implementing therapeutic protein production in chicken eggs. 
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Models for aging and behaviour  

Bird brains are a useful comparative model for neuroplasticity, with songbirds (e.g. zebra finch 

and canary), hummingbirds and parrots sharing the human behaviour of vocal learning. 

Similar to speech acquisition, these birds form long-term memories from birdsong mentors 

and their song is highly suited for quantitative analysis (Bolhuis and Gahr 2006; Mello 2014). 

Many birds also show resistance to age-related degenerative processes, despite possessing 

traits commonly found in short-lived animals such as an elevated body temperature and a 

rapid metabolic rate. The parallels of age-related disease progression between many bird and 

mammalian species may reveal novel mechanisms for resistance to senescence with further 

study (Austad 2011). Transgenic vectors have been used sparingly in song birds (Agate et al. 

2009; Velho and Lois 2014; Mak et al. 2015), and have been used to investigate vocal learning 

(Abe et al. 2015) and neural disorders (Liu et al. 2015b) but this system has proven to be 

technically difficult. The application of gene editing will conceivably facilitate the use of these 

bird species as comparative models to current rodent models for learning and age related 

brain disorders. 

 

Poultry production 

With 62 billion broilers raised and slaughtered for meat worldwide each year, in addition to 7 

billion layers (FAO 2014), chickens represent enormous value to the agricultural industry. 

Such tremendous numbers are generated by crossbreeding with select standard lines, each 

line bearing its own commercially desirable traits. Modern breeding methods, i.e. quantitative 

genetics, have resulted in great advances for traits such as feed conversion and growth. 

However, there are phenotypic drawbacks to these gains, including reduced fecundity, 

skeletal defects and other metabolic diseases (Emmerson 1997; Hocking 2010). Furthermore, 

as a consequence of intensive selection over numerous generations it is estimated that 

commercial poultry has lost one half of its original genetic diversity; in chickens, turkey and 

likely other poultry species (Rathgeber et al. 2013; Aslam et al. 2014; Whyte et al. 2015). 

Further loss of genetic diversity may be mitigated with cryopreservation strategies, where 

storage of stem cells or tissue from specialised breeds will allow integration of their genetics 

into future poultry lines, should their traits become commercially valuable (Liu et al. 2013). 

 The use of genetic markers to assist selection can provide great benefit to breeding 

programmes. In cases such as disease resistance and immune function, pedigree stocks are 

challenged without the need for disease exposure, and aspects such as environmental 

variance can be easily controlled (Wheeler 2003; Fulton 2004). But genetic selection may not 

be enough by itself to achieve the value required in traits targeted for future commercial 

breeding. Genome editing can provide additional benefit, through either production of novel 

markers or manipulation of the genome to introduce new traits. Recently, chickens with 

reduced transmission of avian influenza virus were produced by lentiviral transfection of 

embryos to insert an RNA hairpin molecule into the genome to interfere with viral replication 

(Lyall et al. 2011). Greater understanding of the pathogenicity of specific diseases could open 

new avenues for avian disease management, through the application of genome editing. 
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Figure 3. Areas of research and industry which will benefit from advances in avian genome 

editing technology - (A) Production of antibodies and other therapeutic proteins through 

precise editing of albumen-specific loci, making use of the chicken egg as a pharmaceutical 

bioreactor. (B) Gene editing in non-poultry avian research models will improve our 

understanding in areas such as neuroplasticity and senescence. (C) Preservation of valuable 

genetics across poultry lines, through cryopreservation, and clever use of genetic information 

to introduce valuable traits into pre-existing lines. 
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Concluding remarks 

Editing of the chicken genome is becoming a routine practice in several avian research 

institutes. With rapid improvements to the reference genome and the cost effectiveness of 

modern deep sequencing, there are increasing opportunities to target regions of the avian 

genome for industrial or research applications. Technological improvements will be required 

for the genetic manipulation of non-chicken avian species to introduce gene edits that persist 

through the germline. The adaption and application of editing technology for use in other 

amniote organisms (such as non-avian reptiles), as yet untouched by genome-editing, will 

prove invaluable in the years to come. These advances will be supported by improvements to 

avian PGC culture, artificial insemination with transfected sperm, or the production of 

suitable surrogate hosts to carry gene edited PGCs to term. 
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