

Edinburgh Research Explorer

Seastar: A Comprehensive Framework for Telemetry Data in HPC
Environments

Citation for published version:
Weidner, O, Barker, A & Atkinson, M 2017, Seastar: A Comprehensive Framework for Telemetry Data in
HPC Environments. in ROSS '17 Proceedings of the 7th International Workshop on Runtime and Operating
Systems for Supercomputers ROSS 2017., 5, ACM, 7th International Workshop on Runtime and Operating
Systems for Supercomputers, Washington D.C, United States, 27/06/17. DOI: 10.1145/3095770.3095775

Digital Object Identifier (DOI):
10.1145/3095770.3095775

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ROSS '17 Proceedings of the 7th International Workshop on Runtime and Operating Systems for
Supercomputers ROSS 2017

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131073557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3095770.3095775
https://www.research.ed.ac.uk/portal/en/publications/seastar-a-comprehensive-framework-for-telemetry-data-in-hpc-environments(a58b3124-eb9b-4617-a2aa-0f75aaa8c547).html

Seastar: A Comprehensive Framework for Telemetry Data
in HPC Environments

Ole Weidner
School of Informatics

University of Edinburgh, UK
ole.weidner@ed.ac.uk

Adam Barker
School of Computer Science
University of St Andrews, UK

adam.barker@st-andrews.ac.uk

Malcolm Atkinson
School of Informatics

University of Edinburgh, UK
malcolm.atkinson@ed.ac.uk

ABSTRACT
A large number of 2nd generation high-performance com-
puting applications and services rely on adaptive and dy-
namic architectures and execution strategies to run efficiently,
resiliently, and at scale on today’s HPC infrastructures. They
require information about applications and their environ-
ment to steer and optimize execution. We define this infor-
mation as telemetry data.

Current HPC platforms do not provide the infrastruc-
ture, interfaces and conceptual models to collect, store, an-
alyze, and access such data. Today, applications depend on
application and platform specific techniques for collecting
telemetry data; introducing significant development over-
heads that inhibit portability and mobility. The develop-
ment and adoption of adaptive, context-aware strategies is
thereby impaired. To facilitate 2nd generation applications,
more efficient application development, and swift adoption
of adaptive applications in production, a comprehensive frame-
work for telemetry data management must be provided by
future HPC systems and services.

We introduce Seastar, a conceptual model and a software
framework to collect, store, analyze, and exploit streams of
telemetry data generated by HPC systems and their appli-
cations. We show how Seastar can be integrated with HPC
platform architectures and how it enables common applica-
tion execution strategies.

CCS Concepts
•Social and professional topics → Centralization /
decentralization; Software selection and adaptation;
•Computer systems organization → Reliability;

Keywords
HPC platform models; HPC platform APIs; telemetry data
management; context awareness; adaptive applications

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ROSS ’17, June 27, 2017, Washingon, DC, DC, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5086-0/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3095770.3095775

With computational methods, tools and workflows be-
coming ubiquitous in more and more disciplines, the soft-
ware applications and user communities on HPC platforms
are rapidly growing diverse. Many of the 2nd generation
HPC applications [22] have moved beyond tightly-coupled,
compute-centric methods and algorithms and embrace more
heterogeneous, multi-component workflows, which involve
adaptive, dynamic, computation and data-centric method-
ologies. While diverging from the traditional HPC appli-
cation profiles, many of these applications still rely on the
large number of tightly coupled cores, cutting-edge hard-
ware and advanced interconnect topologies provided by HPC
clusters. Examples of 2nd generation applications are user-
level scheduling frameworks like pilot jobs, and applications
with dynamic, or hard-to-predict runtime trajectories like
Kalman Filter and Adaptive Mesh Refinement (AMR) ap-
plications.

The more traditional HPC applications and frameworks
like MPI have also started to explore adaptive techniques
to scale up on platforms that are continuously growing in
capacity. For these applications, running at extreme scales
bears a twofold risk: a statistically increased risk of hard-
ware and software failure, and increasing costs in case of
application failure. Implementing adaptivity and resilience
can alleviate these risks. For example, an application that
understands its performance profile with a given configu-
ration might decide to terminate early or adjust when it
detects inefficient execution, e.g., due to excessive swapping
or slow I/O.

Most of these dynamic and adaptive techniques require
the applications to have a model about themselves (self
aware) and their environment (context aware). With such
a model, applications can implement mechanisms like feed-
back loops to validate their execution parameters and trajec-
tory, and to react and adjust according to their objectives.

Telemetry data is the continuous streams of run-time in-
formation that is generated by HPC systems, and the ser-
vices and applications running on them. It includes oper-
ating system metrics at the process, and thread level, met-
rics describing the state of I/O resources, network intercon-
nects, and storage facilities, as well as metrics describing the
state of job schedulers and other HPC services. In short,
telemetry data integrates all the information that is gener-
ated about platforms and applications. It is distinct from the
data that is generated by the applications, which we refer to
as application data.

Existing approaches to context awareness and manage-
ment and provisioning of telemetry data are scattered through-

http://dx.doi.org/10.1145/3095770.3095775

out the application and infrastructure landscape. None are
comprehensive across platforms, environments and applica-
tions. This causes significant development overheads, with
duplication of localized solutions that reduce portability and
mobility. It impedes the development and adoption of adap-
tive, context aware strategies and architectures. From our
perspective, a comprehensive and unifying framework for
telemetry data management must be provided by future
HPC platforms as a system service to facilitate a more effi-
cient application development lifecycle, and a swift adoption
of adaptive application research into production.

1.1 Approach and Contributions
We propose a solution to the provisioning and integration

of telemetry data on HPC platforms. This is important and
timely because an increasing number of HPC applications
rely on it to implement context aware, dynamic and adaptive
execution strategies. We are not aware of any other solution
emerging. This paper introduces Seastar, a model, API,
and implementation blueprint that facilitates the collection,
management and use of telemetry data on HPC platforms,
and simplifies the development of context aware HPC appli-
cations. This paper makes conceptual and practical contri-
butions to HPC platform and application design:

1. It develops a graph-based model called Seastar that al-
lows to capture telemetry data within a dynamic graph
that represents the continuously changing application and
platform structure of an HPC cluster.

2. It defines a programming interface (API) for applications
and system services to query and analyze platform and
application structure and telemetry data as a core con-
cept to simplify the development of adaptive applications
(section 5).

3. It describes an architecture blueprint for a framework
that implements Seastar on an existing HPC cluster
(section 6).

2. BACKGROUND
In [22] we have argued that bringing together applica-

tion developers with HPC-resource providers on both tech-
nical and cultural levels is a big challenge with substantial
potential benefits. The prevailing separation between the
two communities is the main cause for the lack of interfaces
and information flow across the application-platform divide.
Similar observations can be found in [9] where Fialho et al.
point out a lack of a common frameworks for telemetry data
as many HPC performance optimization tools implement
some or several aspects of the full performance optimiza-
tion task but almost none are comprehensive across archi-
tectures, environments, applications, and workloads. Simi-
larly, Ábrahám et al. [1] propose methodologies to efficiently
collect run-time information as a preparation for autonomic
exascale applications.

2.1 Application Areas
Use-cases for telemetry data are manifold and an exhaus-

tive survey would not be feasible in this context. Here we
lay out six high-level application areas for telemetry data
in HPC along with brief examples to illustrate the broad
landscape of telemetry data usage.

Application Development Lifecycle is an iterative pro-
cess from concept to production. It requires profiling, col-
lecting information about performance data, networking, and
I/O patterns so that the application developer can decide
between alternatives or fine-tune for a specific architecture.
Profiling data is collected by instrumenting either the pro-
gram source code, its binary executable, or its run-time
environment. Especially during the development of large-
scale parallel code, profiling tools like e.g., Vampir/NG [4],
PAPI [3], and TAU(g) [12] play a critical role in the opti-
mization process. While all these tools collect large amounts
of telemetry data, the data is not accessible outside these
frameworks or programmatically during the runtime of an
application.

Adaptive Applications have many application areas. Some
of the more prominent examples are Adaptive Mesh Re-
finement (AMR) and Kalman-Filters which exhibit hard-
to-predict execution trajectories and heterogeneous compu-
tational loads. When these are ignored, the performance of
these applications can suffer significantly. Adaptivity is also
needed to handle external factors, e.g., Eisenhauer et al. [7]
have shown how one application’s massive I/O operations
perturb the performance of other applications on the same
system. Telemetry data is critical to implement adaptivity.

Adaptive Runtime Systems provide low-level load bal-
ancing and scaling capabilities for parallel and distributed
applications. Adaptive MPI [11] for example is an alter-
native run-time for MPI applications. Charm++ [14] and
Parallax/HPX [13] provide their own programming models
and APIs. All frameworks collect telemetry data via op-
erating system interfaces and evaluate them via a perfor-
mance model to make (re-)scheduling decisions. However,
the model and associated data is generally not easily acces-
sible externally.

Computational Steering allows applications to be dy-
namically configured (steered) at run-time; as opposed to
adaptive run-time systems where adaptivity is transparently
provided by the underlying framework. Here the feedback
loop is moved into the application space, which also requires
context data available in application space. Hence steering
frameworks often have a monitoring component, e.g., FAL-
CON [10], an on-line monitoring and steering framework for
large-scale parallel applications, and [6] an object-based in-
frastructure for program monitoring and steering.

Resource Aware Scheduling allows the (re-)scheduling
of HPC workloads based on the observed resource utiliza-
tion. I/O aware scheduling [23] for example, can control the
status of jobs on the fly during execution based on run-time
monitoring of system state and I/O activities. Another ex-
ample is the COBALT scheduler [19]. In comparison, most
existing HPC job schedulers employ a static, a priori perfor-
mance model. Fluctuations in the performance metrics of a
resource, e.g., disk or network I/O hotspots are not moni-
tored or acted upon. While this works well with static and
homogeneous workloads, it fails with the increasing presence
of 2nd generation applications.

Application-Level Scheduling is a tactic to circumvent
the static constraints and granularity of HPC job schedulers.
A commonly used method is to employ pilot jobs or “place-
holder jobs” submitted as a single job to the job scheduler.
Once they are active they accept user jobs that are then ex-

ecuted within the placeholder job. Examples of application-
level scheduling frameworks are HTCondor [20] and RAD-
ICAL Pilot [16]. Most application-level scheduling systems
collect telemetry data via operating-system interfaces to de-
termine how to schedule their computational workload most
efficiently and to detect errors.

2.2 Context Awareness
The term context awareness is often used in close proxim-

ity with monitoring and telemetry data. If we look again at
the application areas in section 2.1, all of them require some
understanding of the HPC platform context, whether it is
information about other applications running, the execution
environment or the state of the platform and its components.
Context awareness is not used consistently in the literature.
We offer our own definition to avoid ambiguity. Our defini-
tion uses the fundamental building block of the executable
representation of an application: the operating system (OS)
process. An HPC application consists of many, potentially
communicating processes. Their composition and proper-
ties change throughout the application’s life-/run-time. To-
gether with the related terms, self awareness and location
awareness, our working definition of context awareness is as
follows:

Self Awareness: An application is logically self aware if
it collects information about its application-level structure,
properties, and data with the aim to use these information
to control and optimize its internal processing workflows,
algorithms, etc. An application is physically self aware if
it collects information about of its OS process structure and
properties.

Location Awareness: An application is location aware if
it has a model to understand of the spatial mapping of its
processes within the HPC platform.

Context Awareness: An application is context aware if it
is location aware and has an understanding of the properties
of the executing platform and can correlate these with its
own properties.

2.3 HPC System Monitoring
System monitoring is at the heart of most HPC systems.

It allows system administrators to have a high-level overview
of the entire system and to identify potential issues and bot-
tlenecks. A problem with system monitoring in HPC is that
it is often considered an administrative tool and not exposed
to users and applications. One of the most widely used mon-
itoring systems is Ganglia [15], a client-server system that
extracts telemetry data from node operating systems and
hypervisors. While data in Ganglia is internally represented
in XML, it is normally available only as pre-rendered graphs
rather than programmatically. Ganglia does not have the
notion of an application, which makes it difficult to corre-
late application behavior with observed metrics.

New monitoring systems and tools have evolved in the
context of cloud computing. Naturally, cloud resources are
treated as ephemeral and their performance can fluctuate
due to both, internal as well as external factors. Hence, sys-
tem monitoring has emerged as an important pillar for cloud
applications and infrastructure. Important tools in this area
are Amazon AWS CloudWatch [2] and Prometheus [18]. As
opposed to the monitoring systems found on HPC platforms,
these systems provide extensive APIs that can easily be con-
sumed by applications and other system services. However,

neither of the two system captures the structure of the un-
derlying platform.

3. CHALLENGES AND MOTIVATION
As diverse as the application areas for telemetry data, as

diverse are the approaches for its management. From this
diversity arises a number of challenges towards a compre-
hensive, unified framework for telemetry data management
in HPC environments. In this section we list the ones we
consider most important along with a specific use-case that
has motivated our research in this area.

3.1 Challenges
From the application areas and use-cases we have identi-

fied a set of challenges and shortcomings related to operation
telemetry data management:

Data Access: Applications access operating system facil-
ities, such as the Linux /proc file-system, and sometimes
higher-level interfaces to extract telemetry data. None of
these interfaces are entirely consistent across platforms and
operating systems which introduces portability issues. In ad-
dition, many of the interfaces are relatively low-level which
can pose additional hurdles in the development process.

Historical Data: Existing operating system interfaces only
provide ad hoc data. If HPC applications require historical
telemetry data, e.g., to analyze previous or similar runs, they
need to collect and store this data themselves.

Data Contextualization: Just looking at telemetry data
in isolation is not sufficient to understand the behavior of
an application or system. The data needs to be interpreted
in its context. Application performance data like network
and filesystem I/O, can only be interpreted if we have an
understanding of the properties of the underlying hardware
and software stack, as well as an understanding of the other
actors sharing the same resources. Similarly, the more in-
formation that is made available about the running applica-
tions the better the interpretation of the behavior of hard-
ware and system services.

Data Correlation: It is often not feasible to collect all
telemetry data that is necessary to contextualize a set of
metrics in the same context. Some metrics can only be
collected in an application context, others might be only
accessible through a system service. In order to correlate
data that is generated by different, independent entities, a
common spatial and temporal reference system is required.
In order to correlate for example the I/O throughput of a
specific operating-system thread with the status and load
of distributed file-system partition, information about the
locality of the thread is required.

Data Analysis: The volume of telemetry data can become
quickly very large at scale. This makes it difficult to ana-
lyze, especially on the application-side. For example, trying
to find suspicious I/O patterns in an application running
across 10,000 processes is not a trivial endeavor. None of
the analyzed systems provide or can make use of analytics
facilities that would allow them to derive high-level signals
from a high-volume stream of complex input data.

3.2 Motivating Use-Case
We use the RADICAL-Pilot [16] pilot job system to de-

velop bioinformatics workflows. Many of these workflows

spawn large numbers of short-running processes that can ex-
hibit highly irregular I/O and computation patterns. Con-
fined to the static resources allocated by HPC schedulers, we
use pilot jobs to (re-)schedule workflow tasks based on their
actual behavior and communication requirements. Further-
more, we want to circumvent system issues like filesystem
I/O and network bottlenecks, which seem to occur in a sur-
prisingly consistent frequency due to other applications run-
ning in the same vicinity. Lastly, we want to capture and
catalog the execution trajectories and properties of all our
workflows to be able to make predication about the behav-
ior of similar workloads. While RADICAL-Pilot provides
effective mechanisms to run many jobs within a single HPC
queueing system job, it does not provide any convenient
mechanisms to collect the telemetry data required. We ex-
plored multiple different ways to collect this data as part of
the application logic. The overhead and inefficiency encoun-
tered in the process, especially at larger scales, required us
to take a step back and think about what would be required
to support applications like ours. Seastar is the direct out-
come of this.

4. SEASTAR MODEL
To provide a generic model to capture telemetry data

on an HPC platform, we define a set of requirements from
which we then derive the graph-based Seastar model. The
overarching goal is not to introduce yet another platform-
or application-specific framework orthogonal to already ex-
isting approaches. Instead, we strive to develop a generic
framework that is (a) agnostic, i.e., applicable to a broad
set of HPC applications and platforms, and can (b) incor-
porate existing data sources and put them into a common
context. We define the following requirements:

1. The model must capture the physical representation (the
anatomy) of an application, i.e., its processes, threads,
and the interdependencies between them.

2. The model must capture the layout (anatomy) of the plat-
form, i.e., its hardware components, and the interdepen-
dencies between them.

3. The model must capture the mapping between the ap-
plication and the platform anatomies, i.e., the physical
application representation within its platform context.

4. Different actors are interested in different aspects of the
system. The model must support structure and data at
an arbitrary level of detail.

5. Depending on the use-case, current (live) and / or previ-
ous (historic) data might be required. The model must
capture both.

HPC applications span a wide area of categories, ranging
from tightly-coupled parallel applications to distributed work-
flows and service-oriented architectures. Each class of ap-
plication has its own internal logical representation, con-
cepts and building blocks. The only commonality that exists
across all applications is that once they run, they have the
same physical representation. The physical representation of
applications and platforms, i.e., their anatomies serve as the
starting point for our model definition. For the application
anatomy, we assume a time-variant network of communicat-
ing processes. Each process and communication link can be
split up into hierarchical networks of sub-components. We

make an analogous assumption for the platform anatomy.
We make the following assumptions for the Seastar model:

1. The physical anatomy of an application can be described
as nested, hierarchical networks of connected entities.

2. The physical anatomy of an application can change dur-
ing its lifetime.

3. The anatomy of an HPC platform can also described as
nested, hierarchical networks of connected entities.

4. The anatomy of an HPC platform can change during its
lifetime.

5. The context of an application is defined as its locality
within an HPC platform, i.e., the mapping of an applica-
tion anatomy to a platform anatomy.

6. The context of an application can change during its life-
time.

Based on these assumptions, we define a graph-based repre-
sentation of applications and platforms. It consists of multi-
layer, directed anatomy graphs that represent applications
and platforms. Vertices and edges of anatomy graphs can
hold an arbitrary number of time-series attributes that rep-
resent observed telemetry data. A mapping of the applica-
tion anatomy graphs to a platform graph, called the context
graph, represents the time-variant localities of applications
within a platform (fig. 1).

4.1 Anatomy Graphs
Anatomy graphs capture the changing anatomies of appli-

cations (AAG) and the HPC platform (PAG). They are the
foundation for the context graph, which captures the map-
ping between (AAGs) and (PAG). Anatomy graphs are
nested directed graphs which represent application compo-
nents (vertices) and the connection between them (edges).
Each vertex and edge can have an arbitrary number of at-
tributes that represent a time series of data that can be
associated with it. Vertices can have pointers to a nested
graph that represents its parent component at a finer level
of granularity. Nesting is strictly hierarchical: edges can
only connect vertexes within the same (sub-) graph. Con-
necting the vertices of subgraphs with different parent edges
is not allowed, even if the subgraphs are at the same hier-
arch depth. Anatomy graphs can be conveniently written as
typed and attributed E-Graphs [5]:

AG = (Vg, Vd, Eg, Ena, Eea, (sourcei, targeti)i=1,2,3),

with graph nodes Vg and data nodes Vd, graph edges Eg,
node attribute edges Ena, and edge attribute edges Eea,
and source and target functions:

source1 : Eg → Vg, source2 : Ena → Vg, source3 : Eea → Eg

target1 : Eg → Vg, target2 : Ena → Vd, target3 : Eea → Vd

We amend the E-Graphs definition in [5] so that data nodes
(Vd) can be a pointer to another (nested) anatomy graph
AGn. To capture the potential changes in application and
platform anatomy over time, AG is time-dependent:

AAG(t) =

(Vg(t), Vd(t), Eg(t), Ena(t), Eea(t), (sourcei, targeti)i=1,2,3)

AG(n)App1 = (VApp1, EApp1)

AG(1)App1 = (VApp1, EApp1)

v
2

v
3

v
4

v
5

v
1

. . .

v
2

v
3

v
4

v
5

v
1

v
2

v
3

v
4

v
5

v
1

v
6

v
7

3

1

2

2

4

5

1
3

t=
0

54

2 4

5

1

3 7

6

t=
1

t=
n

CG(0)
App1

v
1

v
2

v
4

v
3

AG(0)App1 = (VApp1, EApp1)

CG(1)
App1

CG(n)
App1

v
1

v
2

v
4

v
3

v
1

v
4

v
3

PG(0)

PG(1)

PG(n)

Application Anatomy Context Graph Platform Anatomy
ti

m
e

Figure 1: A context graph maps the spatial-
temporal application anatomy graphs to the spatial-
temporal platform graphs. Each instance of a con-
text graph captures the structure and properties of
applications and platforms at a given instant.

Figure 1 shows and example of application and platform
anatomy graphs. Anatomy graphs allow us to capture a
complete picture of the changing structures of applications
and HPC platform. By changing the time parameter t for an
AAG(t), we can “navigate” back and forth in the evolution
of an application from beginning (startup) to end (termi-
nation). The ability to track the anatomy of an evolving
application is very important for the post mortem and ad-
hoc analysis and optimization of dynamic applications and
task scheduling frameworks.

4.2 Context Graph
Context graphs (fig. 1 r.) capture the time-varying rela-

tionship between a platform anatomy graph and application
graphs.

The locality of all applications AGApp1..An(t) within the
platform AGP is captured through a fixed mapping function
(•). We define the resulting graph as the global context graph
(CGGlobal) (see Figure 1 c.):

CGGlobal(App, P, t) = AGP •AGApp1..Appn(t)

Additionally, we define application-specific context graphs
(CGAppn) as sub-graphs of CGGlobal:

CGApp1(App1, P, t) = AGP •AGApp1(t)

This spatio-temporal representation creates a set of graph
structures in which the individual components and their
mappings can be attributed with context information.

We can think of the vertices of an application graph (VApp)
as the operating system processes comprising an application
and of the platform graph vertices (VP) as the physical or
virtual nodes of an HPC cluster. The edges can then rep-
resent communication between processes (EA) and network
links between nodes (EApp) respectively.

4.3 Time-Series Data
Telemetry data, e.g., operating system metrics, is cap-

tured as time-series data and attached to the node and edge

attributes of the graphs. Currently, the Seastar model
does not make assumptions about this data. Timestamps
are set by the entity collecting the data. On an implenenta-
tion level, this assumes that all HPC platform components
(nodes) use the same, synchronized timebase.

5. SEASTAR API
Seastar provides the structure to capture telemetry data

in a graph-based model. The Seastar API allows applica-
tions, platform services and human actors to explore and
interact with this model. The API uses a RESTful rep-
resentation and the JSON format to describe return ob-
jects. The return object structure is that of an attributed
graph or edge node. From each node, the hierarchical graph
can be traversed via parent_nodes, child_node, and sib-

ling_nodes. A timestamp field positions the object in tem-
poral space. Attributes describing edge connections between
siblings, e.g., the communication between two MPI processes
follow the the same pattern.

{ timestamp: 1491830507,
parent_node: {

job: <id>
},
child_nodes: {

threads: []
},
sibling_nodes: {

processes: []
},
attributes: {

m1: [], m2: [], ...
}

}

Listing 1: JSON resource object structure

The current iteration of the API defines only a subset of
possible resource types but it can easily be extended to ad-
ditional types and hierarchies. For application graphs, job,
process, and thread are defined. For the platform graph
node, processor, and core are defined.

5.1 Model Queries
The API uses GraphQL [8] as the query language to the

context graph hierarchies. GraphQL allows the caller to
extract complex structures from the model in a single API
call.

{
process(id: 1) {

siblings {
processes {

memory_uses
}

}
}

}

Listing 2: Get memory consumption of all sibling
processes of a job via a GraphQL query.

5.2 Context Awareness
Context awareness requires self awareness and location

awareness. Self awareness can be established via the special
self path element. In the current iteration of the API it can
be called on a job, process, or thread resource and returns

the appropriate object for the application from which it was
called.

GET /job/self
GET /process/self
GET /thread/self

Listing 3: Self awareness via self

Location awareness is realized via the special context path
element. It allows to follow the context mapping from plat-
form graph to application graph(s) and vice versa:

GET /thread/self/context # on application
GET /node /42/ context # on platform

Listing 4: Location awareness via context.

Accessing context from a thread for example will return a
processor core object, accessing it from a core will return a
list of thread objects and so on. Combined with the use of
parent, self and context allows for comprehensive context
awareness and exploration.

5.3 Derived Metrics
Derived metrics are a core concept of the API as they allow

to define high-level metrics relevant to a specific use-case,
user group, experiment, etc. Derived metrics are generally
applied to the telemetry data on the framework side, i.e.,
within the Seastar service. This allows developers to push
complexity out of their applications. For example, an I/O-
sensitive application might want to terminate or reconfigure
if the overall I/O throughput is below a certain threshold.
Instead of periodically querying the I/O metrics for all pro-
cesses comprising an application, it is possible to register a
derived metric “I/O Threshold”.

PUT /dmetrics
data {

metric_name: "i_o_threshold",
scope: "job",
function: "..."

}

Listing 5: Adding a derived metric on job-level.

Once a metric is registered, it is available via the metrics

section of the resource object(s) defined in scope. Currently
the API does not come with its own language to define the
custom metric function. It simply uses the query language
of the backend system. For our implementation blueprint
explained in more detail in the next section, it uses the
functional expression language used by the Prometheus time
series database.

5.4 Notifications
Together with derived metrics, notifications are another

key concept to address the endemic pull-based data gath-
ering process found in many applications. The notification
API allows the caller to subscribe to one or more metrics
via a callback mechanism. Whenever the metric changes
(beyond a defined threshold), the callback is engaged. No-
tifications are user-defined HTTP callbacks, so-called web-
hooks. When a new notification is available, the Seastar
API server makes an HTTP request to the client URI con-
figured for the webhook.

PUT /callbacks
data {

callback_uri: "http://host/path ...",
scope: "job",
metric: "i_o_threshold",

}

Listing 6: Adding a derived metric on job-level.

6. IMPLEMENTATION BLUEPRINT
Seastar tries to be agnostic of applications and plat-

form architectures and hence does not make many assump-
tions about how it should be implemented. In this section,
we discuss the blueprint for one possible implementation of
Seastar within an existing HPC cluster. This blueprint
has its origin in the Seastar research prototype [17] we
have been building to explore various concepts around the
API.

In lieu of an actual HPC cluster, our experimental environ-
ment Elasticluster [21] to start up an on-demand SLURM-
based Linux cluster in the AWS Cloud. This allows us to
experiment in isolation, and also to dynamically change the
scale of the cluster. Our implementation of Seastar is
mostly based on existing technology, not only to minimize
the implementation overhead, but also because there are a
plethora of open-source tools available that provide subsets
of the required functionality at a level of maturity and scal-
ability that would be otherwise impossible to accomplish.

The implementation architecture (fig. 2 l.) consists of four
main components: the model server which holds a persistent
copy of the context graph and metrics, the API server which
provides the Seastar API, and the data sensors, which col-
lect OS, and cluster-level metrics, and the data backbone
which provides a high-throughput, scalable, and buffered
data transport mechanism.

6.1 Model Database
The implementation of the Seastar model is split across

two different databases. A graph-database contains the con-
text, i.e., the spatial-temporal layout of applications and
platform. Another database specialized in storing and serv-
ing large volumes of time-series data efficiently stores the
telemetry data. The node and edge attributes in the graph-
database representing the telemetry data are pointers to the
respective entries in the time-series database. This distinc-
tion is not visible in the Seastar API where structure and
data appear consistent again.

6.1.1 Context Graph Database
To store the time-variant context graph, we use OrientDB,

an open source multi-model, NoSQL database management
system written in Java (fig. 2 l. - A). It supports graph, doc-
ument, key/value, and object models, with all relationships
managed with direct connections between records.

6.1.2 Time-Series Database
For the time-series database we have chosen Prometheus,

an open source monitoring system and time-series database
(fig. 2 l. - B). Prometheus can store and process time-series
data very efficiently. It has a built-in functional expression
language that lets the user select and aggregate time series
data in real time. Furthermore, it has an Alertmanager com-
ponent which can trigger notifications based on predefined

MODEL

Cluster Node Partition 1 (cluster node)

Local

cache

seastar_apid

frontend

Aux.
Sensor

OS
Sensor

App
Proc.

App
Proc.

Partition N (cluster node)

Local

cache

seastar_apid

frontend

Aux.
Sensor

OS
Sensor

App
Proc.

App
Proc.

. . .

seastar_apid

master

… …

……

Kafka
Streaming

Kafka
Streaming

OrientDB

<structure>

Prometheus

<data>

Kafka
Streaming

Kafka
Streaming

seastar_apidnode_exporter

context_

exporter

A BC

HF

G

E
D

Figure 2: (Left) The Seastar implementation architecture: model databases, data sensors and API services
are connected via Kafka. (Right) The API service (seastar_apid) is implemented as a multi-level, partitioned
caching architecture to minimize telemetry data traffic on the platform. Frontend instances provide the Data
API to the consumers via a local cache which is populated with data relevant to the instance’s partition.

queries. This allows for a straight-forward implementation
of the derived metrics and notification functionality of the
Seastar API.

6.2 Data Transport
We use Apache Kafka, an open-source stream process-

ing platform Kafka as the data transport layer (fig. 2 l. -
C). Kafka provides a publish-subscribe-based, unified, high-
throughput, low-latency platform for handling real-time data
feeds. Kafka makes extensive use of memory channels, and
uses disks as buffers if communication channels are con-
gested or streaming targets are temporarily not available.
This feature adds the necessary resilience to a distributed
system like Seastar. Kafka can furthermore be scaled out
easily by adding additional nodes. Kafka is responsible for
streaming data in two directions: from the graph- and time-
series- databases to the local API services on the individual
cluster nodes (fig. 2 l. - D) and from the data sensors to the
graph- and time-series- databases (fig. 2 l. - E).

6.3 Data Sensors
Data sensors need to capture both, telemetry data as well

as the data that is required to maintain the global context
graph, i.e., the relationship between platform and applica-
tion. They consist of two components: the node_exporter

and the context_exporter. The node_exporter (fig. 2 l. -
F) is part of the Prometheus ecosystem and exports operating-
system metrics to the Prometheus server. The context_exporter
gathers process, job and queueing system information and
sends them to the model database server (fig. 2 l. - G).

6.4 API Service
The API service seastar_apid (fig. 2 l. - H) is imple-

mented as a partitioned caching architecture to minimize
network traffic. (fig. 2 r.)The service can be instantiated
in three different modes: master-mode, forwarder-mode and
frontend-mode. The frontend instances provide the Seastar
API described in Section 5. Frontend instances do not have
a direct connection to the database, but they maintain a
local data cache which is fed either by an upstream mas-
ter instance (2-tier setup) or a forwarder instance (n-tier
setup). If a frontend or forwarder instance cannot serve an

API request (cache miss), it sends a request to its upstream
service to provide the missing data set. seastar_apid is
implemented in Python and uses Python’s FLASK HTTP
framework. A Python API wrapper provides a more con-
venient, programmatic client access to the API service. Es-
pecially the well-defined data types free the user from the
burden of parsing JSON return values by hand.

from seastar import PlatformAPI

p = PlatformAPI(endpoint=’localhost ’)

rObj = p.self.context.parent
print rObj.kind # dhcp.type_cpu
print.rObj.metrics # [’ memory_total ’, ...]

rObj.register_callback(cb_func , ...)

Listing 7: Python API client

The Python API wrapper is only one example of a language-
specific wrapper for the Data API. Any language for which
an HTTP client library exists can interface with the Seastar
service endpoints. Programming language independence and
the use of standard, well documented protocols fosters adop-
tion of Seastar across many different application commu-
nities.

7. CONCLUSION AND FUTURE WORK
In this paper we have picked up the telemetry data man-

agement challenge which we have identified in our previous
work [22] as one of the current challenges in today’s HPC
ecosystems. We have outlined a solution, Seastar, that
provides a conceptual framework, and coherent program-
ming interface for the provisioning and integration of teleme-
try data on HPC platforms. We have furthermore sketched
out how such a system can be implemented and integrated
with existing HPC platforms. A first prototype implemen-
tation of the model database and API service has the poten-
tial to simplify application development significantly. How-
ever, further investigation, specifically a larger real-world
use-case, study still needs to be conducted.

The work presented in this paper is exploratory and the
focus has been on finding the right concepts and abstrac-

tions. Future work will focus on the evaluation of Seastar
and the implementation of application uses cases.

In-Depth Evaluation: we will evaluate Seastar along
two axes: applicability at scale and applicability across dif-
ferent systems. This will include extensive performance mea-
surements of the suggested architecture blueprint. The im-
plementation of an adaptive user-level scheduling framework
based on Seastar as a driving application use-case is al-
ready under development.

Distributed Systems: many distributed applications strive
to run not just on a single HPC platform but to spread
their workload and components across multiple platforms
concurrently. We will extend the Seastar model to dis-
tributed systems and explore architectural alternatives for a
distributed implementation.

Extreme Scales and Big (Telemetry) Data: derived
metrics are one of the important concepts in Seastar to
provide telemetry data to multiple different audiences at dif-
ferent level of abstraction. While easy enough to manage at
small scale, at large scales processing derived metrics in real
time would require a significant amount of computational
resources.

8. REFERENCES
[1] E. Ábrahám, C. Bekas, I. Brandic, S. Genaim, E. B.

Johnsen, I. Kondov, S. Pllana, and A. Streit.
Preparing HPC applications for exascale: Challenges
and recommendations. In Proceedings of the 18th
International Conference on Network-Based
Information Systems, pages 401–406. IEEE, 2015.

[2] Amazon Web Services, Inc. AWS CloudWatch website:
http://aws.amazon.com/cloudwatch/.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors.
International Journal of High Performance Computing
Applications, 14(3):189–204, 2000.

[4] H. Brunst, W. E. Nagel, and A. D. Malony. A
distributed performance analysis architecture for
clusters. In Proceedings of the IEEE International
Conference on Cluster Computing, pages 73–81.
IEEE, 2003.

[5] H. Ehrig, U. Prange, and G. Taentzer. Fundamental
theory for typed attributed graph transformation. In
Proceedings of the International Conference on Graph
Transformation, pages 161–177. Springer, 2004.

[6] G. Eisenhauer and K. Schwan. An object-based
infrastructure for program monitoring and steering. In
Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, pages 10–20. ACM,
1998.

[7] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan.
Event-based systems: Opportunities and challenges at
exascale. In Proceedings of the Third ACM
International Conference on Distributed Event-Based
Systems, page 2. ACM, 2009.

[8] Facebook Inc. GraphQL website:
https://github.com/facebook/graphql.

[9] L. Fialho and J. Browne. Framework and modular
infrastructure for automation of architectural
adaptation and performance optimization for hpc

systems. In Proceedings of the International
Supercomputing Conference, pages 261–277. Springer,
2014.

[10] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan,
J. Stasko, J. Vetter, and N. Mallavarupu. Falcon:
On-line monitoring and steering of large-scale parallel
programs. In Proceedings of the Fifth Symposium on
the Frontiers of Massively Parallel Computation,
pages 422–429. IEEE, 1995.

[11] C. Huang, O. Lawlor, and L. Kale. Adaptive MPI.
Languages and Compilers for Parallel Computing,
pages 306–322, 2004.

[12] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.
TAUg: Runtime global performance data access using
MPI. In European Parallel Virtual Machine/Message
Passing Interface User Group Meeting, pages 313–321.
Springer, 2006.

[13] H. Kaiser, M. Brodowicz, and T. Sterling. Parallex an
advanced parallel execution model for scaling-impaired
applications. In Proceedings of the International
Conference on Parallel Processing Workshops, pages
394–401. IEEE, 2009.

[14] L. V. Kale and S. Krishnan. Charm++: A portable
concurrent object oriented system based on C++. In
ACM Sigplan Notices, volume 28, pages 91–108.
ACM, 1993.

[15] M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia distributed monitoring system: Design,
implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[16] A. Merzky, M. Santcroos, M. Turilli, and S. Jha.
RADICAL-Pilot: Scalable execution of heterogeneous
and dynamic workloads on supercomputers. Computer
Research Repository (CoRR), abs/1512.08194, 2015.

[17] Ole Weidner. SEASTAR website:
https://github.com/oweidner/seastar.

[18] Prometheus Authors. Prometheus website:
https://prometheus.io.

[19] W. Tang, N. Desai, D. Buettner, and Z. Lan.
Analyzing and adjusting user runtime estimates to
improve job scheduling on the blue gene/p. In
Proceedings of the IEEE International Symposium on
Parallel & Distributed Processing, pages 1–11. IEEE,
2010.

[20] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the Condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[21] University of Zurich. Elasticluster website:
http://gc3-uzh-ch.github.io/elasticluster/.

[22] O. Weidner, M. Atkinson, A. Barker, and
R. Filgueira Vicente. Rethinking high performance
computing platforms: Challenges, opportunities and
recommendations. In Proceedings of the ACM
International Workshop on Data-Intensive Distributed
Computing, pages 19–26. ACM, 2016.

[23] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang,
J. Wang, and Z. Lan. I/O-aware batch scheduling for
petascale computing systems. In Proceedings of the
IEEE International Conference on Cluster Computing,
pages 254–263. IEEE, 2015.

http://aws.amazon.com/cloudwatch/
https://github.com/facebook/graphql
https://github.com/oweidner/seastar
https://prometheus.io
http://gc3-uzh-ch.github.io/elasticluster/

	Introduction
	Approach and Contributions

	Background
	Application Areas
	Context Awareness
	HPC System Monitoring

	Challenges and Motivation
	Challenges
	Motivating Use-Case

	Seastar Model
	Anatomy Graphs
	Context Graph
	Time-Series Data

	Seastar API
	Model Queries
	Context Awareness
	Derived Metrics
	Notifications

	Implementation Blueprint
	Model Database
	Context Graph Database
	Time-Series Database

	Data Transport
	Data Sensors
	API Service

	Conclusion and Future Work
	References

