

Edinburgh Research Explorer

ParTeCL: Parallel Testing Using OpenCL

Citation for published version:
Yaneva, V, Rajan, A & Dubach, C 2017, ParTeCL: Parallel Testing Using OpenCL. in Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, pp. 384-387 , ACM
SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, United States,
10/07/17. DOI: 10.1145/3092703.3098227

Digital Object Identifier (DOI):
10.1145/3092703.3098227

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/131073485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3092703.3098227
https://www.research.ed.ac.uk/portal/en/publications/partecl-parallel-testing-using-opencl(dfc54c33-b836-4f72-924f-f827590d291d).html

ParTeCL: Parallel Testing Using OpenCL*

Vanya Yaneva
University of Edinburgh, UK

vanya.yaneva@ed.ac.uk

Ajitha Rajan
University of Edinburgh, UK

arajan@staffmail.ed.ac.uk

Christophe Dubach
University of Edinburgh, UK
christophe.dubach@ed.ac.uk

ABSTRACT
With the growing complexity of software, the number of test
cases needed for effective validation is extremely large. Exe-
cuting these large test suites is expensive and time consuming,
putting an enormous pressure on the software development
cycle. In previous work, we proposed using Graphics Pro-
cessing Units (GPUs) to accelerate test execution by running
test cases in parallel on the GPU threads. However, the
complexity of GPU programming poses challenges to the
usability and effectiveness of the proposed approach.

In this paper we present ParTeCL - a compiler-assisted
framework to automatically generate GPU code from sequen-
tial programs and execute their tests in parallel on the GPU.
We show feasibilitiy and performance achieved when execut-
ing test suites for 9 programs from an industry standard
benchmark suite on the GPU. ParTeCL achieves an average
speedup of 16× when compared to a single CPU for these
benchmarks.

CCS CONCEPTS
�Software and its engineering �Software testing and
debugging; Source code generation; �Computer sys-
tems organization �Embedded software;

KEYWORDS
Functional testing, GPUs, Embedded software, Compilers,
Automated testing

ACM Reference format:
Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017.
ParTeCL: Parallel Testing Using OpenCL. In Proceedings of 26th
ACM SIGSOFT International Symposium on Software Testing
and Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17-
DEMOS), 4 pages.
DOI: 10.1145/3092703.3098227

1 INTRODUCTION
Testing to ensure the software meets its requirements is a
notoriously hard and time consuming process, often repre-
senting 50% of the cost of software development [2, 6]. As
the scale and complexity of software increases, the number
of tests needed for effective validation becomes extremely
large, slowing down development and hindering programmer
productivity with time consuming test runs.

To combat this problem, industry is moving towards dis-
tributing test execution among multiple machines, executing
them concurrently to reduce execution time of the entire test
suite. This approach, however, is costly in terms of resources,
infrastructure, maintenance and energy consumed. Present
day commodity parallel accelerators, such as Graphics Pro-
cessing Units (GPUs), offer enormous computing power while
also being cheap, easily available and energy efficient. A
single GPU offers thousands of parallel threads with the po-
tential to execute a large number of test cases concurrently.

*This work was supported by grant EP/L01503X/1 from EPSRC.

ISSTA’17-DEMOS, Santa Barbara, CA, USA
2017. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3098227

However, GPUs are notoriously hard to program and require
significant expertise and a thorough understanding of the
hardware and programming model to unlock their potential.

We plan to address these problems in the context of test
execution using our ParTeCL framework. ParTeCL has the
following goals,

(1) Increase the usability and feasibility of GPUs for
test execution.

(2) Increase the performance and effectiveness with
compiler optimisations that analyse the tests and
the program.

Our recently accepted paper [10] in the main research track
of ISSTA 2017 presents empirical evaluations of our approach
and discusses the performance and effectiveness of using
GPUs for test execution. In this paper, we tackle the fea-
sibility and ease of use challenge by designing a framework
that allows test cases to be automatically launched on the
GPU without requiring any GPU programming knowledge
and improving supported program features.

Users. ParTeCL’s envisioned users are software engineers
and testers of systems with large numbers of functional tests.
ParTeCL does not require software engineers to have GPU
programming knowledge.

2 RELATED WORK
There has been no work in the past examining the use of
GPUs to accelerate test execution and our paper [7] was
the first in exploring this possibility. The approach in [7],
however, manually transforms the program and tests to run
on the GPU. This approach is incomplete in tackling GPU
limitations with respect to ease of programming, unsupported
program features, and performance optimizations.

GPU programming poses many challenges for the devel-
oper, both in terms of programmability and performance.
The use of low-level programming models, such as CUDA
and OpenCL, requires familiarity with the architecture in or-
der to write correct parallel code, and effective optimizations
in order to reach the full performance potential of the GPU.
Previous research addresses these challenges by proposing
high-level programming frameworks, compilers and code gen-
eration tools. For instance, [8, 9] introduce and evaluate a
framework, which automatically generates low-level OpenCL
code from high-level parallel primitives. Another example is
SYCL [3], which provides a high level-abstraction of OpenCL
to allow programmers to write GPU code in standard C++.

These existing tools and frameworks provide high-level
mechanisms to both discover and express parallelism for the
GPU. They are, however, not suited for our purposes since
the need in our approach is not identification of parallelism,
as that is inherent in test execution - the test cases are
directly mapped to the GPU threads. The need lies in a
code generation tool that will take the CPU program and
transform it into an OpenCL kernel, without affecting the
core program functionality, while also launching it with a
different test case on each GPU thread. None of the existing
tools can provide this capability. In the next sections, we
describe the design and implementation of our framework
that addresses these needs.

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA V. Yaneva et al.

3 DESIGN & IMPLEMENTATION
ParTeCL consists of two systems, illustrated in Figure 1.
1) ParTeCL CodeGen - a code generation tool: It
translates the tested C program to an OpenCL kernel. It also
generates data structures and functions, used by the runtime,
to transfer test cases and results between the CPU and GPU
memories.
2) ParTeCL Runtime - a test execution system: It
uses the OpenCL kernel generated by ParTeCL CodeGen to
launch the test cases on the GPU in the following steps: (1)
Read the test cases and transfer them to the GPU memory.
(2) Build the generated OpenCL kernel and launch it in
parallel on the GPU threads. (3) Transfer the testing results
back to the CPU for inspection.

Runtime

Runtime
parser

Test cases
(in CSV format)

CodeGen
Unmodified
source files

Config file

Read test cases

Memory
structures

Store in an array and
transfer to GPU memory

Build OpenCL kernel & launch
tests on the GPU threads

Transfer results to CPU
memory & check

OpenCL
kernel

Figure 1: ParTeCL: automated test execution on the
GPU.

We describe the above two systems in Section 3.1 using a
simple use case program. Section 3.2 presents code transfor-
mations supported by ParTeCL, and Section 3.3 discusses
the implementation of the two systems.

3.1 Use Case
To help describe ParTeCL, we use a simple C program, shown
in Figure 2. The example program reads a string and a
character through standard input, str and ch, and counts
the number of occurances of the character in the string.
It prints the results to standard output. A test case for
this program would consist of values for the string and the
character, and the expected result would be a value for the
variable occurs.

User inputs required by ParTeCL are discussed in Sec-
tion 3.1.1. We describe the workings of the two systems,
ParTeCL CodeGen and ParTeCL Runtime, using the exam-
ple program, in Sections 3.1.2 and 3.1.3 respectively.

3.1.1 User Inputs. To launch the test cases for the program
using ParTeCL, the user needs to supply three inputs: the un-
modified source code for the tested program, a configuration
file and the test cases.

Configuration File. Describes the test case inputs and
results for the tested program. It is used by ParTeCL Code-
Gen to generate the data structures which are used to transfer
test inputs and results between the CPU and GPU memories.
Figure 3 presents the configuration file for the example pro-
gram. The configuration shows that the program takes two
inputs, a string and a character, through the standard input,
and produces a single integer result, which corresponds to the
occurs variable. ParTeCL supports the use of both built-in

and custom data types, as well as pointers and arrays for the
test case inputs and results.

Figure 3 also shows the data structures generated by
ParTeCL CodeGen: struct partecl_input for the test case
inputs and struct partecl_result for test case results.

Finally, the configuration is used to generate a parser for
the ParTeCL Runtime, which is used to read values for the
test cases and assign them to members of the generated
memory structures.

Test Cases. ParTeCL assumes that the test cases are
provided in a CSV (Comma Separated Value) file where, (1)
each row corresponds to a test case, (2) first column contains
the id of the test case, (3) subsequent columns contain the
input variables, in the order in which they are given in the
configuration file.

For the example in Figure 2, a sample CSV file with 5 test
cases is presented below,

1 <"Tests are important." <"t"
2 <"" <"a"
3 <"bbbbbbbbbbbbbbbbb" <"b"
4 <"0 + 0 = 0" <"0"
5 <"Hello, World!" <"!"

where the values for inputs str and ch for test case 1 are
“Tests are important.” and “t” respectively, for test case 2
they are an empty string and “a”. The ’<’ symbol denotes
that both these inputs are read through standard input in
the program being tested. ParTeCL Runtime also supports
custom data structures and arrays for the test case inputs.
Within the CSV, users can also choose to provide test case
data in separate files.

3.1.2 ParTeCL CodeGen. In addition to using the configu-
ration to generate the memory structures and test case parser,
ParTeCL CodeGen also generates an OpenCL kernel which
executes the tested program on the GPU.

Figure 2 shows the kernel generated for the example pro-
gram. ParTeCL CodeGen changes the signature to the main
function, which now takes two arguments, (1) the test in-
puts; values for which are initialised by the CPU, and (2) the
test results, which will be calculated by the kernel. It uses
the memory structures partecl_input and partecl_result,
generated by ParTeCL CodeGen. On lines 9 − 11, each GPU
thread, identified by its global id (idx), selects a different
test case for execution (input_gen) as well as a different test
result, in which to record its outputs (result_gen). On lines
19 and 21, ParTeCL CodeGen has replaced reading of the
input parameters from standard input with reading from the
input value for test case input_gen. It also replaces calls
to the standard library functions fgets and fgetc with our
custom OpenCL implementation of those functions, which is
found in cl-stdio.h. Finally, the tool adds an assignment
of the results of the test, variable occurs, to result_gen.

It is important to note that ParTeCL CodeGen does not
change the core algorithm of the program, only the input/out-
put interface, thus ensuring that the tested functionality
remains the same.

3.1.3 ParTeCL Runtime. Once ParTeCL CodeGen gener-
ates the code necessary for launching the tests on the GPU,
ParTeCL Runtime executes them in the following steps:

(1) Reading test cases. ParTeCL Runtime uses the
parser generated by ParTeCL CodeGen to read the values
of the test cases from the user supplied CSV file and stores
them in an array of type sruct partecl_input.

(2) Kernel build and launch. The array with test
case inputs is transferred to GPU memory, from where each

ParTeCL: Parallel Testing Using OpenCL ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA

Listing 1: Original C program.
1 #include <stdio.h>
2
3 int main(int argc , char* argv []){
4 char str [1000] , ch;
5
6 printf("Enter a string: ");
7 fgets(str , 1000, stdin);
8 printf("Enter a character: ");
9 ch = fgetc(stdin);

10
11 char* str_ptr = str;
12 int occurs = 0;
13 while(* str_ptr != ’\0’){
14 if(* str_ptr == ch){
15 occurs ++;
16 }
17 str_ptr ++;
18 }
19
20 printf("’%c’ occurs %d times.\n", ch, occurs);
21 }

Listing 2: Automatically generated OpenCL kernel.
1 #include "structs.h"
2 #include "cl-stdio.h"
3 //#include <stdio.h>
4
5 kernel void main_kernel(
6 global struct partecl_input* inputs ,
7 global struct partecl_result* results)
8 {
9 int idx = get_global_id (0);

10 struct partecl_input input_gen = inputs[idx];
11 global struct partecl_result *result_gen = &results[idx];
12 int argc = input_gen.argc;
13 result_gen ->test_case_num = input_gen.test_case_num;
14 int stdin_count_gen = 0;
15
16 char str [1000] , ch;
17
18 /* printf (" Enter a string: "); */
19 fgets(str , 1000, input_gen.stdin1 , &stdin_count_gen);
20 /* printf (" Enter a character : "); */
21 ch = fgetc(input_gen.stdin2 , &stdin_count_gen);
22
23 char* str_ptr = str;
24 int occurs = 0;
25 while(* str_ptr != ’\0’){
26 if(* str_ptr == ch){
27 occurs ++;
28 }
29 str_ptr ++;
30 }
31
32 /* printf ("’%c’ occurs %d times .\n", ch , occurs);*/
33 result_gen ->occurs = occurs;
34 }

Figure 2: Example of converting a C program into an OpenCL GPU kernel using ParTeCL CodeGen.

Listing 3: Configuration file.
stdin: char* stdin1
stdin: char stdin2
result: int occurs variable: occurs

Listing 4: Generated data structures - file structs.h.
typedef struct partecl_input{

int test_case_num;
int argc;
char* stdin1;
char stdin2;

} partecl_input;

typedef struct partecl_result{
int test_case_num;
int occurs;

} partecl_result;

Figure 3: Configuration file and generated data
structures for the example program.

GPU thread reads its respective test case and executes it, as
described in Section 3.1.2. The ParTeCL Runtime builds and
launches the OpenCL kernel generated by CodGen, using the
standard OpenCL API.

(3) Results validation. Once the GPU kernel has exe-
cuted, we transfer results back to the host where the results
are validated against the golden output. Any difference ob-
served is recorded and presented to the user.

3.2 Code Transformations
While generating the OpenCL kernel, ParTeCL CodeGen
performs code transformations for C features, which are not
readily supported by the OpenCL standard.

Global scope variables. OpenCL does not support as-
signment to global scope variables. ParTeCL CodeGen moves
them to local scope by moving their declarations into the ker-
nel function, main_kernel, and passing them as arguments to
any functions using them. By using pointers, the tool ensures
that any changes made to their values would be visible to
the all the other functions.

Standard input and output. A value for every standard
input needs to be supplied as part of the test case, as is
shown in our use case. ParTeCL CodeGen then replaces ref-
erences to the standard input with references to the memory
structures containing the test cases. Standard output is com-
mented out by ParTeCL CodeGen by default, but the user
can choose to save it to the testing results using an option
in the configuration file. In those cases, the tool replaces it
with a write to the generated test_result structure.

Command line arguments. Similar to standard input,
values for command line arguments should be supplied as
part of the test case input. ParTeCL CodeGen replaces
references to the command line arguments with references
to the corresponding values in the generated partecl_input
structure.

Standard library calls. The OpenCL standard does not
support calls to the C Standard Library. We have im-
plemented a small subset of Standard Library functions
in OpenCL, namely functions in ctype.h, string.h and
stdio.h. We took inspiration from uClibc [1], a very
small C standard library typically used for embedded sys-
tems. In our future work, we plan to add OpenCL imple-
mentations of other standard library functions as the need
for them arises. The code for this project is hosted on
https://github.com/wyaneva/clclibc.

https://github.com/wyaneva/clclibc

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA V. Yaneva et al.

3.3 Implementation
ParTeCL CodeGen is implemented in C++14, using the
Clang LibTooling library [4]. It uses LibTooling’s AST
Matchers to perform sequential compiler passes, which find
and transform the relevant portions of the original program.
ParTeCL Runtime is implemented in standard C, using
the OpenCL API to perform all the GPU related opera-
tions. The source code for the two systems, along with
instructions to build and execute them, can be found at
https://github.com/wyaneva/partecl-codegen and
https://github.com/wyaneva/partecl-runtime.

4 EVALUATION
We check whether ParTeCL meets its goals by evaluating its
performance, correctness and usability.

Performance and effectiveness. In our work in [10],
we evaluate the performance of GPU test acceleration using
ParTeCL on C programs from the embedded systems domain.
We use 9 benchmarks from the Embedded Microprocessor
Benchmark Consortium (EEMBC), which provides a diverse
suite of benchmarks organised into categories that span nu-
merous real-world applications, namely automotive, digital
media, networking, office automation and telecom, among
others [5].

Figure 4 shows the speedup achieved on the GPU using
ParTeCL when executing test suites of size 131K test cases
over each of the benchmarks. Our experiment in [10] shows
that this test suite size saturates the GPU threads, resulting
in highest speedup. To optimise speedup, ParTeCL Runtime
provides the option of transferring test cases between the
CPU and GPU memory in chunks, overlapping data transfer
and test case execution. Figure 4 shows the speedups achieved
on the GPU with and without data transfer overlap. We
compare GPU speedups to those achieved by a multi-core
CPU with 2, 4 and 8 cores (tests distributed using OpenMP).

We found that ParTeCL achieves significant speedup rang-
ing from 18× to 53×. We found the magnitude of speedup
is related to the computational intensity of the benchmark
being executed. Benchmarks that exhibit a high compute-
intensity tend to give high speedup when executing tests on
the GPU. Average GPU speedup over all benchmarks is 16×
as opposed to 6× for an 8-core CPU.

rspeed01

puwmod01
fft00

conven00
tblook01

autcor00
fbital00

viterb00
a2time01

Average

10

20

30

40

50

60

1

S
p

ee
du

p
co

m
pa

re
d

to
a

si
ng

le
C

P
U 2 CPUs

4 CPUs

8 CPUs

GPU (no data transfer overlap)

GPU (data transfer overlap)

Figure 4: Speedup of GPU and multi-core CPUs
over single CPU core. Test suite size 217

Correctness. For each subject program, we collected the
test case outputs from the CPU and GPU executions across all
test suites. We found that for all 9 subject programs, the test
case outputs between the CPU and GPU executions were an
exact match. We can safely conclude that our framework for

executing tests on the GPU preserves correctness of program
execution for all 9 embedded system benchmarks and test
suites in our experiment.

Usability and feasibility. A preliminary usability study
with six programmers, with no prior GPU programming
knowledge, was performed to assess ParTeCL’s ease of use.
All programmers were asked to write tests for a simple C ap-
plication, similar to the one in the use case in Section 3, and
execute them on the GPU using ParTeCL. They were also
asked to rate different aspects of using ParTeCL, shown in Ta-
ble 1. Overall, users found the testing process with ParTeCL
clear and easy to follow, demonstrating that ParTeCL suc-
cessfully abstracts away the GPU programming details.

Step in the testing process Rating
Writing test cases in the CSV format 4.00
Writing the configuration file 3.41
Running ParTeCL CodeGen 4.83
Building ParTeCL Runtime 4.85
Running the test cases 4.33
Overall process 3.91

Table 1: Ease of use ratings. The scale is from 1 to
5, where 1 is not at all easy and 5 is very easy.

5 CONCLUSION
ParTeCL provides the capability to leverage the computa-
tional power of GPUs for parallel execution of functional
tests over C programs, without any prior GPU program-
ming knowledge. The tool uses compilation techniques to
automatically (1) generate an OpenCL kernel for the tested
program, (2) provide transformations for C features which are
not readily supported on the GPU, and (3) launch the tests
in parallel on GPU threads. Performance evaluation on 9
embedded systems benchmarks shows that ParTeCL achieves
test execution speedups of up to 53× on the GPU when com-
pared to a single CPU. Usability evaluation demonstrates that
ParTeCL is easy to use and requires no GPU programming
knowledge. Future work will focus on extending ParTeCL
to support further program features in OpenCL, including
dynamic memory allocation, system calls and recursion.

REFERENCES
[1] E Andersen. 2004. uClibc website. (2004).
[2] Mary Jean Harrold. 2000. Testing: a roadmap. In Proceedings of

the Conference on the Future of Software Engineering. ACM.
[3] Ronan Keryell, Ruyman Reyes, and Lee Howes. 2015. Khronos

SYCL for OpenCL: a tutorial. In Proceedings of the 3rd Inter-
national Workshop on OpenCL. ACM, 24.

[4] Chris Lattner. 2008. LLVM and Clang: Next generation compiler
technology. In The BSD Conference. 1–2.

[5] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay
Gal-On. 2009. A Benchmark Characterization of the EEMBC
Benchmark Suite. IEEE Micro 29, 5 (2009), 18–29.

[6] Ajitha Rajan. 2009. Coverage metrics for requirements-based
testing. Ph.D. Dissertation. University of Minnesota.

[7] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel
Kroening. 2014. Accelerated test execution using GPUs. In
ACM/IEEE ASE’14. 97–102.

[8] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe
Dubach. 2016. Performance Portable GPU Code Generation for
Matrix Multiplication. In GPGPU. ACM Press, New York, 22–31.
https://doi.org/10.1145/2884045.2884046

[9] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating Performance Portable Code Using
Rewrite Rules: From High-level Functional Expressions to High-
performance OpenCL Code. In Proceedings of ICFP 2015. ACM,
New York, 205–217. https://doi.org/10.1145/2784731.2784754

[10] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. To Appear
2017. Compiler-Assisted Test Acceleration on GPUs for Embedded
Software. In Proceedings of ISSTA 2017.

https://github.com/wyaneva/partecl-codegen
https://github.com/wyaneva/partecl-runtime
https://doi.org/10.1145/2884045.2884046
https://doi.org/10.1145/2784731.2784754

	Abstract
	1 Introduction
	2 Related Work
	3 Design & Implementation
	3.1 Use Case
	3.2 Code Transformations
	3.3 Implementation

	4 Evaluation
	5 Conclusion
	References

