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ABSTRACT: To meet the requirement of high molar extinction coefficient, broaden absorption 

spectrum and photo/thermal stable for sensitizers of quasi-solid dye-sensitized solar cells (Qs-

DSSCs) with reduced film thickness, a novel D-A-π-A configuration organic sensitizer IQ22 was 

specifically designed, in which the conjugation bridge of cyclopentadithiophene (CPDT) unit was 

incorporated to widen the light response and enhance molar coefficients for increasing the short-

circuit current density (JSC), and the octane chain on CPDT was targeted for suppressing the charge 

recombination and improving the open-circuit voltage (VOC). As a result, the Qs-DSSC based on 



IQ22 exhibits very promising conversion efficiency as high as 8.76%, with a JSC of 18.19 mA cm-

2, a VOC of 715 mV, and a fill factor (FF) of 0.67 under AM 1.5 illumination (100 mW cm-2), 

standing out in the Qs-DSSCs utilizing metal-free organic sensitizers. 

Keywords： quinoxaline, auxiliary acceptors, sensitizer, quasi-solid state, dye-sensitized solar 

cells 

INTRODUCTION 

In the fields of dye-sensitized, perovskite and other emerging solar cell technologies, 1-6 

stability issue on cell devices is recognized as an urgent problem for a new generation of practical 

photovoltaic devices. Although perovskite solar cells can show efficiency of more than 20%, the 

superiority in environmental friendliness and stability of DSSCs can be more attractive for some 

applications.6 Accordingly, for low-cost, high-efficiency dye-sensitized solar cells (DSSCs), the 

development of acceptably stable quasi-solid-state or solid-state devices, without any volatile 

electrolyte solution, is critical at present. Due to facile diffusion in porous TiO2 and the large area 

contact with counter electrode, the quasi-solid state dye-sensitized solar cell (Qs-DSSC) is not only 

conducive to a high power conversion efficiency (PCE), 7-8 but also can significantly improve the 

device stability, thereby becoming a hot topic in the DSSCs field. Moreover, polymer gel 

electrolytes have led to efficient quasi-solid electrolytes for Qs-DSSCs. 9-10  

Currently, the main practical limitations for the evolution of Qs-DSSCs are lower power 

conversion efficiency (PCE) arising from low electrolyte ion diffusion rates and the resulting 

serious electronic recombination. 11-15 In this regard, Qs-DSSCs always need thin TiO2 electrode, 

and accordingly an ideal sensitizer should exhibit strong light-harvesting capability. Indeed, the 

desirable sensitizer with high molar extinction coefficient and broaden light response region is 

very critical to the thinner TiO2 electrode-based Qs-DSSCs, in which the electronic recombination 



can be distinctly repressed, and the intramolecular charge transfer (ICT) can be optimized. 16-20 

Recently, a new generation of D-A-π-A motif organic sensitizers came into existence with an 

auxiliary acceptor group introduced into the π-bridge of the D-π-A framework, leading to excellent 

photovoltaic performances. 21-26 As an exemplary D-A-π-A featured dye with quinoxaline as 

additional unit, IQ4 showed high PCE of 9.24% with volatile iodine electrolyte. 27 Herein we 

focused on how to increase molar extinction coefficients and broaden light-responsive region, 

thereby specifically developing targeted sensitizers for constructing high performance Qs-DSSCs.  

 

 

Scheme 1. a) The molecular structures of IQ22 and IQ4 and b) their calculated energy-level 

diagram and major electron-transfer absorption processes. 

Based on IQ4, we report a new D-A-π-A DSSC sensitizer IQ22 (shown in Scheme 1), in 

which the conjugation bridge of cyclopentadithiophene (CPDT) unit was incorporated to widen 

the light response and enhance molar coefficients for increasing the short-circuit current density 

(JSC), the octane chain on CPDT was targeted for suppressing the reverse current and improving 

the open-circuit voltage (VOC). As demonstrated, a commercial I-/I3
- polymer gel electrolyte OPV-



MPV-I was successfully exploited for fabricating Qs-DSSCs utilizing IQ22 and IQ4 as sensitizers, 

achieving high conversion efficiencies of 8.76% and 8.30% under 100 mW cm-2 illumination, 

respectively, which is an exhilarating PCE for Qs-DSSCs based on metal-free organic sensitizers. 

Furthermore, these devices showed excellent stability, almost maintaining the initial conversion 

efficiency even after 1000 h. 

RESULTS AND DISCUSSION 

Charge Transport Difference between Gel and Volatile Electrolytes. In order to quantify any 

bottleneck limiting the efficiency for Qs-DSSCs, we first performed conductivity (σ) 

measurements of gel and volatile electrolytes (See experimental section) with electrochemical 

impedance spectroscopy. 28 This offers key information about the mobility of the ions, their 

interaction with the solvent and any ion-pairing phenomena. As shown in Figure 1a, all plots of ln 

σ against 1000/T give straight lines, which is typical ion-conducting behavior follow an Arrhenius 

relationship. 29 In Figure 1a, the obvious difference between the gel and volatile electrolyte is the 

variation of the slope with measurement temperature. With increasing temperature, the 

conductivity of the gel electrolyte rises rapidly owing to the viscosity reduction, whereas the 

change for the volatile electrolyte shows a more gradual process. At room temperature, the 

conductivity of the gel and volatile electrolyte are 2.10 × 10-3 S cm-1 and 3.0 × 10-3 S cm-1, 

respectively. In addition, Tafel polarization measurements were implemented using dummy cells 

with each of the different electrolytes between two Pt electrodes (Figure 1b). 30-31 In the Tafel and 

diffusion zone, the exchange current density (J0) and limiting diffusion current density (Jlim) values 

lie in the order of volatile > gel for IQ22 and IQ4, respectively, indicating that the gel electrolyte 

has some limitations in the charge-transfer and diffusion likely due to the greater viscosity. 32 As 



shown in Table 1 however, the change of electrolyte did not cause a significant impact on the 

short-circuit current density (JSC) for IQ22 or IQ4. 

3.0 3.1 3.2 3.3 3.4 3.5

e
-7

e
-6

e
-5

e
-4

ln



S

 c
m

-1
)

1000/T (K
-1
)

 Volatile

 Gel

 

a)

 

 

-1.0 -0.5 0.0 0.5 1.0
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

L
o
g
(c

u
rr

e
n
t 
d
e
n
s
it
y
,A

 c
m

-2
)

Potential(V)

  Volatile

  Gel 

b)

 

 

 

Figure 1. Temperature dependence of ionic conductivity (a) and Tafel polarization curves of 

symmetric dummy cells with two platinum electrodes at room temperature (b) for volatile and 

gel electrolytes. 

Enhancement in Molar Extinction Coefficients and Light-Harvesting Capability. In DSSCs, 

the sensitizers with high extinction coefficients allow reduced thickness of TiO2 electrode, which 

results in increase of the average optical power density within the film and decrease of the charge 

recombination sites, as the film becomes thicker the charges have more chance of recombining 

before influencing the potential at the electrodes. 33 Recently, a D-A-π-A prototype has become 

attractive, especially for constructing high extinction coefficients, broaden light response, and 

photo/thermal stable organic sensitizing dyes. 34-35 As shown in Scheme 1, for the design of 

sensitizer IQ22, we employed indoline as the electron donor since it manifested superior electron-

donating capacity and led to excellent photovoltaic performance in a number of efficient D-A-π-

A sensitizers. 36-38 We also used the standard group cyanoacetic acid as the acceptor/anchor unit. 

For an ideal sensitizer, high molecular extinction coefficient and broad wavelength response are 

highly preferable for high-efficiency DSSCs. On the basis of the rational molecular design, the 



structure modification in this report was conducted by introducing the high conjugation building 

block of CPDT as π bridge (IQ22), instead of the thiophene unit (IQ4). In particular, dye IQ22 

exhibits appropriate photo-physical properties, such as a higher molecular extinction coefficient 

and broad light response region. The addition of two methoxy groups in the auxiliary (quinoxaline) 

unit can fine-tune and optimize the EOX (The first oxidation potential) and E*RED (The excited-

state reduction potential), through certain electron-donating character. In addition, octyl groups 

were grafted onto the CPDT unit to reduce aggregation and to address the serious electronic 

recombination in Qs-DSSCs. 11-15 The synthetic route is presented in Figure S1. 
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Figure 2. Absorption spectra of IQ22 and the reference dye IQ4. a) The experimental spectra (in 

CH2Cl2) are shown as continuous lines and the theoretical electronic transitions are shown as bars 

for both IQ22 (red) and IQ4 (black). Theoretical data were computed using TD-DFT (CH2Cl2) 

and b) The experimental spectra on 4 μm TiO2 thin film. 

Experimental and Calculated Absorption Properties. To preliminarily estimate the effect of 

structure modification on the light-harvesting capacity for IQ22, we tested the UV-Vis absorption 

spectra of the two dyes in CH2Cl2 (Figure 2a) and their corresponding data are summarized in 

Table 1. Both dyes show two distinct absorption bands at about 325 and 540 nm, corresponding to 

the π-π* and ICT bands, respectively. With respect to IQ4, IQ22 presents a notable bathochromic 



shift in the maximum visible absorption wavelength from 531 to 555 nm, which arises from the 

introduction of a large π-linker CPDT unit. As expected, replacing the thiophene unit (in IQ4) with 

CPDT (in IQ22) is beneficial for greatly enhancing the molar extinction coefficient (up to 63200 

M−1 cm−1, 2.47-fold greater than that of the reference dye IQ4) and light-harvesting with red shift 

in absorption band, which are the preconditions for obtaining a high photocurrent output. Upon 

loading on TiO2 films (Figure 2b), both dyes show hypsochromic shift from 531 to 497 nm for 

IQ4 and from 555 to 516 nm for IQ22, due to the deprotonation of the cyanoacetic acid group. 

Obviously, IQ22 shows a higher and broader spectrum in the visible region relative to IQ4. On 

the other hand, the broader peak width on the films indicate that aggregation inevitably occurs to 

some extent in these films for both dyes. The high molar extinction coefficient and wide absorption 

spectrum for IQ22 exactly cater to the reduced film thickness requirements of Qs-DSSCs since 

the charge recombination and diffusion problems in nano-porous membrane. 

Electronic structures of IQ4 and IQ22 were calculated and investigated with DFT 

calculations. The selected Kohn-Sham (KS) molecular orbital distributions and energies of IQ4 

and IQ22 are shown in Table S1 and Table S2, respectively. For both IQ4 and IQ22, the KS 

HOMO is mainly located on the strong electron-donating unit of indoline, while more centralized 

on indoline group for IQ22. The location of KS LUMO is on the electron-withdrawing unit of 

cyanoacetic acid, and was not affected by the alkane chains added. In Scheme 1, the energy level 

schemes of selected Kohn-Sham orbitals of IQ4 and IQ22 are shown, indicating good charge 

separation after excitation by photons. 

Time-dependent DFT (TDDFT) calculations allow comparison of absorption spectroscopy 

both experimentally and theoretically, and thus the electronic transitions were studied (Figure 2a). 

The TDDFT calculations for IQ4 and IQ22 show broadly good agreement with experimental 



absorption spectra, and the pathways for excitation and electron injection process can be learned 

by studying the computational results. For IQ22, the first electronic transition, which is calculated 

to be at 521 nm, is characterized by HOMO → LUMO contribution (52%) and HOMO-1 → 

LUMO contribution (39%), and the absorption at 413 nm is mainly composed of HOMO → 

LUMO +1 (47%) and HOMO-1 → LUMO (29%). For IQ4, the calculated low-energy electronic 

transition (at 483 nm) is composed of HOMO → LUMO (69%) and HOMO -1 → LUMO (21%), 

and the second electronic transition (at 384 nm) is composed of HOMO -1 → LUMO (51%) and 

HOMO → LUMO +1 (23%). The lowest energy transition for both dyes is dominated by exciting 

electrons from HOMO to LUMO orbitals, and the oscillator strength is nearly doubled through 

structural modification for IQ22. 

Experimental Energy Levels and Orbital Distributions. The electrochemical 

characterization combined with UV-Vis spectrum can be used to estimate the molecular energy 

level position and distribution. As shown in Figure S2 (cyclic voltammetry curves), the first 

redox potentials (EOX) for IQ22 and IQ4 are 0.82 and 0.61 V (vs NHE) (shown in Table 1), 

respectively. The introduction of methoxy units into IQ22 shifts EOX 0.21 V negative due to its 

electronic donor property. Correspondingly, estimated from the optical gap E0-0 (from the 

absorption thresholds of the UV-Vis spectra) and EOX, the excited state reduction potentials 

(E*RED) of dyes IQ22 and IQ4 are -1.10 and -1.32 V, respectively. Due to an almost unchanged 

E0-0, dye IQ22 shows a lower E*RED value due to its EOX level lying at lower energy compared 

with IQ4. The orbital distributions and the EOX and E*RED values are expected to ensure strong 

directionally efficient electron injection into the conduction band of TiO2. This did not influence 

the current of Qs-DSSCs based on IQ22 thanks to it located in essential energy level scope.38 

Moreover, the other difference of CV curves for IQ22 and IQ4 is two pairs of submits were 



observed for IQ22. In previous investigations, for the sensitizer based on quinoxaline group 

with alkoxy chains 39, a single oxidation peak appeared in its CV curve, but for that containing 

CPDT unit 40, 41, two obvious oxidation peaks were got. Therefore, two oxidation peaks in CV 

for IQ22 is owing to CPDT unit was involved in the redox process in addition to the electron 

donor indoline. 

Solar Cell Performances. To compare the photovoltaic performance of Qs-DSSCs with the 

traditional volatile-electrolyte iodine-based devices, we prepared a set of devices sensitizing 8 µm 

(4 µm transparent layer + 4 µm scattering layer) mesoporous TiO2 films with sensitizer IQ22 or 

IQ4. The current-voltage (J-V) curves of devices measured under Am 1.5G illumination (100 mW 

cm-2 at 298 K) are shown in Figure 3, with the corresponding photovoltaic parameters listed in 

Table 1. As a result, using volatile iodine electrolyte, we obtained a solar-to-electric conversion 

efficiency of 9.83 % (JSC = 18.36 mA cm-2, VOC = 748 mV, FF = 0.72) and 9.51% (JSC = 17.58 

mA cm-2, VOC = 743 mV, FF = 0.73) based on IQ22 and IQ4, respectively. In contrast, the PCEs 

are 8.76 % (JSC = 18.19 mA cm-2, VOC = 715 mV, FF = 0.67) and 8.30 % (JSC = 17.44 mA cm-2, 

Table 1. Photophysical and electrochemical properties of sensitizers and photovoltaic 

parameters of DSSCs based on IQ22 and IQ4 with volatile and gel electrolyte. 

Dyesa λmax
b    

nm 

εb          

M-1 cm-1 

λmax
c    

nm 

EOX
d 

V 

E0-0
e      

eV 

E*RED
f 

V 

JSC 

mA cm-2 

VOC     

mV 
FF ηg 

IQ22-V 
555 63200 516 0.82 1.92 -1.10 

18.36 748 0.72 9.83 

IQ22-G 18.19 715 0.67 8.76 

IQ4-V 
531 25700 497 0.61 1.93 -1.32 

17.58 743 0.73 9.51 

IQ4-G 17.44 707 0.67 8.30 

Note: a V: Volatile electrolyte; G: Gel electrolyte. bAbsorption parameters were obtained in CH2Cl2. 

cAbsorption parameters were obtained on 4 μm nanocrystalline TiO2 film. dThe EOX was obtained in CH2Cl2 

with ferrocene (0.63 V vs. NHE) as external reference. eE0-0 values were estimated from the wavelength at 

10% maximum absorption intensity for the dye-loaded 3 μm nanocrystalline TiO2 film. fThe E*RED was 

calculated according to E*RED = EOX – E0-0. 



VOC = 707 mV, FF = 0.68) for IQ22 and IQ4 with gel electrolyte, respectively. Due to poorer 

charge transport in viscous quasi-solid electrolyte, the electronic recombination probability 

increases, resulting in the open-circuit voltage reduction for IQ22-G and IQ4-G compared with 

IQ22-V and IQ4-V, respectively. Of great significant, no matter with volatile or gel electrolyte, 

we obtained almost the same photocurrent, which is of great importance to the development of 

stable DSSCs with high power conversion in the future. It also indicates the preferable electron 

injection and regeneration performance for the IQs sensitizer, especially for IQ22. Notably, JSC 

estimated from IPCE spectra are broadly comparable with those obtained from the J–V curves, and 

the integration of IPCE curve for IQ22-V, IQ22-G, IQ4-V and IQ4-G are 17.69, 17.33, 16.85 and 

16.69 mA cm-2, respectively. The slightly lower values may be interpreted in terms of more 

efficient charge transport and collection42 due to a thermal effect associated with the full sunlight 

irradiation.43 

The Impact of Molecular Structure on Short-Circuit Photocurrent. With the same 

assembling condition for devices, the contribution to the enhancement of photocurrent can be 

attributed to the improvement of the sensitzer’s photoresponse region, absorption intensity and 

energy levels. 
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Figure 3. The J-V curves for DSSCs based on IQ22 (a) and IQ4 (b) with volatile and gel 

electrolyte. 

As shown in Figure 4a, the light harvesting efficiency (LHE) spectra were calculated from the 

absorption spectra of the dye-loaded TiO2 films (LHE = 1-10-α, where α is the intensity of the light 

absorption). 44 For IQ22, the expanded conjugated system with CPDT improves the molar 

extinction coefficient and broadens the absorption spectrum, so its LHE showed significant 

enhancement in the visible range of 450-700 nm. To shed light on the contribution of absorption 

at different wavelengths to the JSC, we also measured the incident-photon-to-current conversion 

efficiency (IPCE) action spectra for the DSSCs based on the IQ22 and IQ4 with volatile or gel 

electrolyte (Figure 4b). As shown in Figure 4b, almost all the IPCE values between 300-800 nm 

slightly decrease for the gel electrolyte with IQ22 or IQ4, which is due to its higher viscosity 

hence lower conductivity. But for IQ22 compared with IQ4, the higher and broader IPCE 

spectrum with volatile or gel electrolyte can be attributed to its larger conjugated system and 

branched structure further improving the intramolecular charge separation and charge 

recombination inhibitory ability which is highly beneficial to the JSC of Qs-DSSC.  

The Determinants of Open-Circuit Voltage. Electrochemical impedance spectroscopy was used 

to investigate the origin of the VOC variation for DSSCs sensitized with IQ22 and IQ4. According 

to reference, 45 there are two main factors that result in the variation of DSSC VOC. The first is a 

conduction band shift and the second is recombination of injected electrons with the oxidized 

sensitizer or electrolyte.  
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Figure 4. a) LHE spectra calculated from the absorption spectra of dye-loaded TiO2 film; b) IPCE 

spectra of DSSCs sensitized by IQ22 and IQ4 with gel or volatile electrolyte. 

As a downward shift of the TiO2 conduction band would increase the density of occupied 

states (DOS) which are directly proportional to chemical capacitance (Cchem), 45 measurement of 

Cchem as a function of potential bias allows insight into the DOS in devices made with different 

dyes. As presented in Figure 5a and b, Cchem is lower for IQ22 with both electrolytes at a given 

voltage indicating an upward shift of the conduction band due to the increase of dipole. 46 It 

indicates the upward shift of the conduction band as one of the origins for the increase VOC in 

IQ22-sensitized DSSCs (as listed in Table 1). 

To obtain insight into the electron recombination occurring between excited electrons in the 

conduction band and sensitizers or electrolyte, the electron lifetimes were explored as a function 

of potential bias (Figure 5c and d). At a given potential, the electron lifetime in cell sensitized with 

IQ22 was obviously longer than that with IQ4 based on gel (Figure 5c) or volatile electrolyte 

(Figure 5d). It further demonstrates that the branched alkyl chains for IQ22 effectively suppress 

the electron recombination on the TiO2 surface improving the electron lifetime. Especially, the 

major difference in lifetime for gel electrolytes (Figure 5c) with the serious charge recombination 



reflects the superior suppressing effect of the branched structure in IQ22. Therefore, the longer 

electron lifetime is another origins for the higher VOC of IQ22. 
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Figure 5. Chemical capacitance and electron lifetime as a function of bias potential obtained 

through electrochemical impedance spectroscopy carried out on devices with gel electrolyte (a, c) 

and volatile electrolyte (b, d), respectively in the dark. 

The Stability of Photovoltaic Performance. To develop Qs-DSSCs, we mainly aimed at the 

improvement of their thermal and light-exposure stability. As presented in Figure 6, the 

photovoltaic performance of Qs-DSSCs exhibited excellent stability during a 1000 h accelerated 

aging for IQ22 and IQ4-based cells with gel electrolyte in a solar simulator under full intensity 

(100 mW cm -2) at 50 °C. 47 In the long term light and thermal environment, the enhancement of 

JSC from 0 to 100h especially for IQ4 indicated the system changes gradually stabilized due to the 

improvement of the interfacial contact between TiO2 and electrolyte. 48 The JSC increased 

significantly at this stage, resulting in an increase in efficiency, although VOC and FF changed 

slightly to lower values. Along with the increase in JSC, VOC decreased because more electron 

recombination can occur with passage of time. In the light-soaking from 100 to 1000 h, however, 



all four photovoltaic parameters remained almost constant, which shows not only the good stability 

of quasi-solid electrolyte, but also the excellent anti-decomposition property exposure to light and 

heat for IQs dyes. 

 

Figure 6. Stability test of photovoltaic parameters (VOC, PCE, FF and JSC) variation with aging 

time for the devices based on IQ22 (blue line) and IQ4 (red line) with quasi-solid-state electrolyte 

during 1 sun visible-light soaking at 50 °C. 

CONCLUSIONS 

In summary, we have demonstrated IQ22 as an effective sensitizer for Qs-DSSC devices, with a 

high power conversion efficiency. For the optimum Qs-DSSC based on IQ22, a metal-free organic 

sensitizer, the PCE reached 8.76 % with high JSC (18.19 mA cm-2). Due to the lower conductivity 

and higher charge recombination for the gel electrolyte, the superior performance can be attributed 

to the structural design with high conjugation unit (broadening the photoresponse spectrum) and 

branched alkyl chains (boosting the electronic recombination suppression). As a consequence, no 

matter which electrolyte we choose, the determining factors for the higher open-circuit voltage of 

IQ22 compared with IQ4 are its positive shift of conduction band and longer electronic lifetime. 

Overall, we obtain efficient and stable DSSCs, using low-cost organic sensitizers for Qs-DSSCs 

with excellent energy matching properties, advancing the practical application of DSSCs. 
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EXPERIMENTAL SECTION 

Cell Assembly: The working electrode was composed of an 8 µm thick TiO2 film, including a 4 

µm transparent layer with 18 NRT and 4 µm scattering layer with 18NR-AO. The dye solutions 

were 0.3 mM in chloroform/ethanol (3/7) and the photoanodes underwent dipping for 12 h to 

complete the loading with sensitizers. The dye-covered TiO2 electrode and Pt-counter electrode 

were assembled into a sandwich type cell and sealed with a hot-melt gasket of 45 μm thickness 

made of the ionomer Surlyn 1702 (DuPont) with a heat sealing machine. The size of TiO2 

electrodes used was 0.25 cm2 (i.e., 5 mm×5 mm). For the liquid state device, a drop of the 

electrolyte was put on the hole in the back of the counter electrode. It was introduced into the cell 

via vacuum backfilling. The hole in the counter electrode was sealed by an aluminum foil tape. 

For the Qs-DSSCs, the electrolyte was spreaded on the TiO2 film before packaging with Surlyn 

ring and Pt electrode and then hot-pressed. Both conductivity and Tafel polarization curves were 

recorded by assembling symmetric dummy cells consisting of Pt CE|electrolyte|Pt CE. The volatile 

iodine electrolyte contained: 0.5 M BMII (1-butyl-3-methylimidazolium iodide), 0.1 M DMPII (1, 

2-dimethyl-3-propylimidazolium iodide), 0.05 M I2, 0.1 M LiI, 0.1 M GuSCN (guanidinium 

thiocyanate) and 0.5 M 4-tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume 

ratio, 85 : 15). The polymer gel electrolyte (OPV-MPV-I) was a product of Yingkou OPV Tech 

New Energy Co, Ltd. (Liaoning, China), and it contains polymer, LiI, 3-methoxypropionitrile 

(MPN), I2, guanidine thiocyanate (GuSCN) and 4-tert-butylpyridine (TBP). 9-10 

SYNTHESIS AND CHARACTERIZATION OF COMPOUNDS: 

Synthesis of IQ22a. The unpurified indoline borate THF solution was reacted with 5,8-dibromo-

2,3-(4-methoxyphenyl) quinoxaline (1.0 g, 2.72 mmol) under Suzuki coupling reaction using 

Pd(PPh3)4 (40 mg) and K2CO3 aqueous solution (30 mL, 2 M) as catalysts in 80 mL THF for 12 



h. After cooling, water was added and the reaction mixture was extracted with CH2Cl2. The 

combined organic layer was washed with H2O and brine, dried over anhydrous Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by column chromatography 

(CH2Cl2/PE = 1/3) on silica gel and the product was obtained as a red solid, 22a (270 mg, 0.61 

mmol, 72%).1H NMR (400 MHz, DMSO-d6, δ): 7.88 (d, J = 8 Hz, 1H), 7.82 (d, J = 8 Hz, 1H), 

7.56-7.70 (m, 5H), 7.13 (d, J = 4.8 Hz, 1H), 6.84-6.92 (m, 3H), 6.82 (d, J = 8.0 Hz, 2H), 3.79 (s, 

3H), 3.77 (s, 3H), 1.75-1.89 (m, 4H), 1.02-1.15 (m, 20H), 0.88-1.00 (m, 4H), 0.74 (t, J=5.8 Hz, 

6H). 13C NMR (100 MHz, DMSO-d6, δ):159.62, 159.49, 157.50, 156.63, 151.52, 150.68, 140.12, 

137.52, 136.98, 136.37, 135.91, 132.24, 131.54, 130.88, 130.63, 130.04, 129.88, 124.83, 124.32, 

120.64, 120.32, 120.00, 112.79, 54.29, 52.42, 36.88, 30.78, 29.10, 28.34, 28.27, 23.61, 21.59, 

13.05. 

Synthesis of IQ22b. 5 mL of dry dimethylformamide (DMF) was dissolved in 10 mL CH2Cl2 and 

cooled in an ice bath to 0ºC. In a separate vessel, 3 mL of phosphorus oxychloride was dissolved 

in 5 mL CH2Cl2, and this solution was added to the solution of DMF dropwise with continuous 

stirring at 0 ºC for 1 hour. After the addition was complete, 22a dissolved in 20 mL of CH2Cl2 was 

added, dropwise with stirring. The solution was brought to room temperature overnight. The 

mixture was washed with water and extracted with CH2Cl2 until the color was removed. The 

combined organic extract was dried over sodium sulfate, Na2SO4, and evaporated to remove 

solvent under reduced pressure. The origin oil obtained was purified by column chromatography 

(CH2Cl2/PE = 2/3) and the product was obtained as an orange solid, 22b (220mg , 68%).1H NMR 

(400 MHz, CDCl3, δ): 9.84 (s, 1H, -COH), 7.99 (d, J=8.1 Hz, 1H, Ph-H), 7.91 (m, J=8.1 Hz, 1H, 

Ph-H), 7.74 (s, 1H, thienyl-H), 7.66~7.72 (m, 4H, Ph-H), 7.65 (s, 1H, thienyl-H), 6.87~6.98 (m, 

4H, Ph-H), 3.89 (s, 3H, -O-CH3), 3.86 (s, 3H, -O-CH3), 1.56 (s, 6H, -C-CH3). 



Synthesis of 22c. The indoline borate THF solution was prepared from 7-bromo-1,2,3,3a,4,8b-

hexahydro-4-(4-methylphenyl)-cyclopent[b]indole (160 g, 0.50 mmol). The unpurified indoline 

borate THF solution was reacted with 22b (200 mg, 0.25 mmol) under Suzuki coupling reaction 

using Pd(PPh3)4 (10 mg, 8 mmol) and K2CO3 aqueous solution (4 mL, 2 m) as catalysts in 15 mL 

THF for 12 h. After cooling, water was added and the reaction mixture was extracted with CH2Cl2. 

The combined organic layer was washed with H2O and brine, dried over anhydrous Na2SO4, and 

evaporated under reduced pressure. The crude product was purified by column chromatography 

(CH2Cl2/PE = 1/2) on silica gel and the product as obtained as a deep red solid, 21c (150 mg, 0.16 

mmol, 64%). 1H NMR (400 MHz, CDCl3, δ): 9.93 (s, 1H), 8.21 (d, J=8 Hz ,1H), 7.85-7.87 (m, 

4H), 7.82 (s, 1H), 7.73 (d, J=8.8 Hz, 2H), 7.67 (s, 1H), 7.61-7.63 (m, 1H), 7.31 (d, J=8.4 Hz, 2H), 

7.24 (d, J=8 Hz,2H), 7.13 (d, J=8.4 Hz, 1H), 7.05 (d, J=8.8 Hz, 2H), 6.91 (d, J=8.8 Hz, 2H), 4.88-

4.95 (m, 1H), 3.96-3.98 (m, 4H), 3.87 (s, 3H), 2.47-2.58 (m, 3H) , 2.10-2.25 (m, 2H) , 1.98-2.08 

(m, 5H) , 1.86-1.95 (m, 1H) , 1.72-1.82 (m, 2H) , 1.20-1.32 (m, 20H) , 1.10-1.19 (m, 4H) , 0.89-

1.38 (m, 6H). 13C NMR (100MHz, CDCl3, δ): 182.45, 161.94, 160.54, 160.34, 157.95, 150.88, 

150.68, 148.78, 147.84, 144.74, 143.10, 140.43, 139.40, 138.90, 138.48, 136.97, 134.54, 131.90, 

131.72, 131.61, 131.42, 131.29, 130.19, 130.08, 129.84, 128.37, 128.02, 127.81, 126.65, 120.02, 

113.91, 107.26, 69.22, 55.38, 55.31, 53.91, 45.62, 37.94, 35.16, 33.88, 31.89, 30.16, 29.45, 29.37, 

24.80, 24.65, 22.71, 20.89, 14.19. 

Synthesis of IQ22. A mixture of aldehyde 22c (150 mg, 0.16mmol) and cyanoacetic acid (17 mg, 

0.20 mmol) in acetonitrile (16mL) was refluxed in the presence of piperidine (0.5 mL) for 7 h 

under argon. After it cooled, the mixture was diluted with CH2Cl2, washed with water and brine, 

dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by 

column chromatography with 1% acetic acid in CH2Cl2 on silica gel to yield the product as a purple 



powder. 1H NMR (400 MHz, THF-d8, δ): 8.18(d, J=8 Hz, 1H), 7.87(s, 1H), 7.72(d, J=8 Hz, 1H), 

7.68(d, J=4 Hz, 2H), 7.66(d, J=4Hz, 2H), 7.53(d, J=12 Hz, 2H), 7.43(d, J=12Hz, 1H), 7.16(d, 

J=8Hz, 2H), 7.05(d, J=8 Hz, 2H), 6.90(d, J=8 Hz, 3H), 6.76(d, J=8 Hz, 2H), 4.80(t, J=8 Hz, 1H), 

3.83(t, J=8 Hz, 1H), 3.75(s, 1H), 3.68(s, 3H), 2.21(s, 3H), 1.90-1.96(m, 6H), 1.0-1.15(m, 

20H),0.95-0.99(m,4H), 0.71(t, J=5.8 Hz, 6H). 13C NMR (400 MHz, THF-d8, δ):160.28, 140.07, 

136.22, 131.17, 130.86, 130.52, 129.29, 129.10, 128.25, 128.19, 127.94, 127.15, 125.86, 119.26, 

112.86, 54.36, 54.26, 53.19, 45.04, 38.13, 33.18, 31.42, 31.32, 29.61, 29.14, 28.88, 25.11, 24.39, 

23.76, 22.04, 13.05. HRMS (ESI, m/z, [M + H]+). Calcd for C69H72N4O4S2: 1085.5073. Found: 

1085.5081. 

Computational methods. The molecular structures of IQ4 and IQ22 were firstly optimised under 

vacuum condition, with the starting geometries entered from software Avogadro. 49 Then from the 

optimised geometry from vacuum, further optimization was carried out with the presence of 

dichloromethane polarizable continuum model (PCM). All the calculations were performed using 

Gaussian 09 (R. A. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. Gaussian, Inc., 

Wallingford CT, 2009.) with hybrid B3LYP functional level of theory and standard 6-31G (d) 

basis set. Time-dependent DFT calculations (TD-DFT) 50-51 were carried out using Gaussian 09 

program with PCM in Dichloromethane. CAM-B3LYP functional 52 was used, and total of 70 

lowest singlet electronic transitions were calculated and further processed with GaussSum 

software package. 53 
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D-A-π-A Motif Quinoxaline-Based Sensitizers 
with High Molar Extinction Coefficient for 
Quasi-Solid State Dye-sensitized Solar Cells 

Yu Wang, Zhiwei Zheng, Tianyue Li, Neil Robertson, 
Huaide Xiang, Wenjun Wu*, Jianli Hua, Wei-Hong 
Zhu, and He Tian 

A novel D-A-π-A configuration organic sensitizer IQ22 was 
specifically designed with broad light response and high 
molar extinction coefficient for increasing the short-circuit 
current density (JSC), and improving the open-circuit voltage 
(VOC). And a promising conversion efficiency as high as 8.76% 
was got, standing out in the Qs-DSSCs utilizing metal-free 
organic sensitizers. 
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