

Edinburgh Research Explorer

MCMix: Anonymous Messaging via Secure Multiparty
Computation

Citation for published version:
Alexopoulos, N, Kiayias, A, Zacharias, T & Talviste, R 2017, MCMix: Anonymous Messaging via Secure
Multiparty Computation. in Proceedings of the 26th USENIX Security Symposium 2017. USENIX
Association, pp. 1217-1234, USENIX Security Symposium, Vancouver, Canada, 16/08/17.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
 Proceedings of the 26th USENIX Security Symposium 2017

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131073215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/mcmix-anonymous-messaging-via-secure-multiparty-computation(dbb5a4eb-1e7f-495f-a354-338557d4cb4d).html

MCMix: Anonymous Messaging via Secure Multiparty Computation

Nikolaos Alexopoulos
Technische Universität Darmstadt, Germany

alexopoulos@tk.tu-darmstadt.de

Aggelos Kiayias
University of Edinburgh, UK

akiayias@inf.ed.ac.uk

Riivo Talviste
Cybernetica AS, Estonia

riivo@cyber.ee

Thomas Zacharias
University of Edinburgh, UK

tzachari@inf.ed.ac.uk

Abstract
We present MCMix, an anonymous messaging system
that completely hides communication metadata and can
scale in the order of hundreds of thousands of users. Our
approach is to isolate two suitable functionalities, called
dialing and conversation, that when used in succession,
realize anonymous messaging. With this as a starting
point, we apply secure multiparty computation (“MC”
or MPC) and proceed to realize them. We then present
an implementation using Sharemind, a prevalent MPC
system. Our implementation is competitive in terms of
latency with previous messaging systems that only offer
weaker privacy guarantees. Our solution can be instan-
tiated in a variety of different ways with different MPC
implementations, overall illustrating how MPC is a vi-
able and competitive alternative to mix-nets and DC-nets
for anonymous communication.

1 Introduction

In an era in which privacy in communications is becom-
ing increasingly important, it is often the case that two
parties want to communicate anonymously, that is to ex-
change messages while hiding the very fact that they are
in conversation. A major problem in this setting is hid-
ing the communication metadata: while existing crypto-
graphic techniques (e.g., secure point-to-point channels
implemented with TLS) are sufficiently well developed
to hide the communication content, they are not intended
for hiding the metadata of the communication such as its
length, its directionality, and the identities of the commu-
nicating end points. Metadata are particularly important,
arguably some times as important to protect as the com-
munication content. The importance of metadata is re-
flected in General Michael Hayden’s quote “We kill peo-
ple based on metadata”1 and in the persistence of secu-

1Complete quote: “We kill people based on metadata. But that’s
not what we do with this metadata.” General M. Hayden. The Johns

rity agencies with programs like PRISM (by the NSA)
and TEMPORA (by the GCHQ) in collecting metadata
for storage and mining.

Anonymous communication has been pioneered in the
work of Chaum, with mix-nets [16] and DC-nets [14]
providing the first solutions to the problem of sender-
anonymous communication. In particular, a mix-net en-
ables the delivery of a set of messages from n senders
to a recipient so that the recipient is incapable of map-
ping outgoing messages to their respective senders. A
DC-net on the other hand, allows n parties to imple-
ment an anonymous broadcast channel so that any one of
them can use it to broadcast a message to the set of par-
ties without any participant being able to distinguish the
source. While initially posed as theoretical constructs,
these works have evolved to actual systems that have
been implemented and tested, for instance in the case
of Mixminion [25], that applies the mix-net concept to
e-mail, in the case of Vuvuzela [49] that applies the mix-
nets concept to messaging and in the case of Dissent [51]
that implements DC-nets in a client-server model.

It is important to emphasize that the adversarial set-
ting we wish to protect against is a model where the
adversary has a global view of the network, akin say to
what a global eavesdropper would have if they were pas-
sively observing the Internet backbone, rather than a lo-
calized view that a specific server or sub-network may
have. Furthermore, the adversary may manipulate mes-
sages as they are transmitted and received from users as
well as block users adaptively. Note that in a more “lo-
calized” adversary setting one may apply concepts like
Onion routing [48], e.g., as implemented in the Tor sys-
tem [27], or Freenet [20] to obtain a reasonable level of
anonymity with very low latency. Unfortunately such
systems are susceptible to traffic analysis, see e.g., [34],
and, in principal, they cannot withstand a global adver-
sary.

Hopkins Foreign Affairs Symposium. 1/4/2014.

Given the complexity of the anonymous communica-
tion problem in general, we focus our application objec-
tive to the important special case of anonymous messag-
ing, i.e., bidirectional communication with both sender
and receiver anonymity that requires moderately low la-
tency and has relatively small payloads (akin to SMS text
messaging). The question we ask is whether it is possi-
ble to achieve it with simulation-based security2 while
scaling to hundreds of thousands of users. In particular,
we consider two types of entities in our problem spec-
ification, clients and servers, and we ask how is it pos-
sible that the servers assist the clients that are online to
communicate privately without leaking any type of meta-
data to a global adversary, apart from the fact that they
are using the system. Furthermore, we seek a decentral-
ized solution, specifically one where no single entity in
the system can break the privacy of the clients even if it
is compromised. We allow the adversary to completely
control the network as well as a subset of the servers and
adaptively drop clients’ messages or manipulate them as
it wishes.

Our Contributions. We present MCMix, the first anony-
mous messaging service that offers simulation-based se-
curity, under a well specified set of assumptions, and can
scale to hundreds of thousands of users. In our solution,
we adopt a different strategy compared to previous ap-
proaches to anonymous communication. Specifically, we
provide a way to cast the problem of anonymous mes-
saging natively in the setting of secure multiparty com-
putation (MPC). MPC, since its initial inception [31], is
known to be able to distribute and compute securely any
function, nevertheless, it is typically considered to be not
particularly efficient for a large number of parties and
thus inconsistent with problems like anonymous messag-
ing. However, the commodity-based approach for MPC
[7] (client-server model), and more recent implementa-
tion efforts such as Fairplay [10], VIFF [23], Sharemind
[11], PICCO [53], ObliVM [40], Araki et al. [5] and [30]
increasingly suggest otherwise.

We first propose two ideal functionalities that corre-
spond to the dialing operation and the conversation op-
eration. The MCMix system proceeds in rounds, where
in each round an invocation of either the dialing or the
conversation ideal functionality is performed. The dial-
ing functionality enables clients to either choose to dial
another client or check whether anyone is trying to dial
them (in practice in most dialing rounds the overwhelm-
ing majority of clients will be in dial-checking mode). If
a matching pair is determined by the ideal functionality,

2We use this term to refer to a level of metadata hiding that en-
sures, in a simulation based sense, that no information is leaked to an
adversary. This is distinguished from weaker levels of privacy, such as
e.g., a differential privacy setting where some controlled but non-trivial
amount of information is leaked to the adversary.

then the caller will be notified that the other client has
accepted their call and the callee will be notified about
the caller. Moreover, the ideal functionality will deliver
to both clients a random tag that can be thought of the
equivalent of a “dead drop” or “rendezvous” point. Sub-
sequently, the clients can access the conversation func-
tionality using the established random tag. When two
clients use the same random tag in the conversation func-
tionality, their messages are swapped and thus they can
send messages to each other (even concurrently).

The two ideal functionalities provide a useful abstrac-
tion of the anonymous messaging problem. We proceed
now to describe how they can be implemented by an
MPC system. It is easy to see that a straightforward
implementation of the functionality programs results in
a circuit of size Θ(n2), where n is the number of on-
line users accessing the functionalities. Such a solution
would be clearly not scalable. We provide more effi-
cient implementations that achieve O(n logn) complex-
ity in both cases with very efficient constants using state
of the art oblivious sorting algorithms [33, 13].

Given our high level functionality realizations, we pro-
ceed to an explicit implementation in the Sharemind sys-
tem [11] using its SecreC programming language [12].
We provide benchmarks for the Dialing and Conversa-
tion solutions. The Sharemind platform provides a 3-
server implementation of information theoretically se-
cure MPC. Our results showcase that our system can
handle hundreds of thousands of users in a reasonable
latency (little over a minute), that is consistent with mes-
saging.

In order to provide theoretical evidence of fur-
ther improving performance and scaling to even larger
anonymity sets, we provide a parallelized version of the
conversation functionality. Parallelization is a non-trivial
problem in our setting since we would like to maintain
anonymity across the whole user set; thus, a simplis-
tic approach that breaks users into chunks solving dial-
ing and conversation independently will isolate them to
smaller “communication islands”; if two users have to
be on the same island in order to communicate, this will
lead to privacy loss that is non-simulatable and we would
like to avoid. Our parallelized solution manages to make
the interaction between islands, in a way that maintains
strong privacy guarantees, at the cost of a correctness er-
ror that can become arbitrarily small. In this way, by
utilizing a large number of servers, we provide evidence
that the system can scale up to anonymity sets of up to
half a million of users. To sum up, our contributions can
be expressed by the following points:
- A model for simulation-based anonymous messaging.
- A realization of this model with a set of programs that
are provably secure and expressed in a way so that they
can be implemented in any MPC platform.

- An implementation of our programs in Sharemind that
can accomodate anonymity sets of hundreds of thou-
sands of users.
- A novel parallelization technique that allows our system
to scale, in theory, even beyond the order of hundreds of
thousands of users.

Organization. After shortly presenting some prelim-
inary topics in section 2, we formalize the concept of
anonymous messaging via an ideal MPC functionality
and introduce the Dialing and Conversation programs in
an abstract form that together solve the sender and re-
ceiver anonymous messaging problem (cf. Section 3). In
Section 4, we present the general architecture of MCMix
and in Sections 5 and 6, we propose a way to realize the
Dialing and Conversation programs, using MPC. Then,
in Section 7, we give more details regarding how the
MCMix system implements anonymous messaging in a
provably secure and privacy-preserving way. In Sec-
tion 8, we present the results of benchmarking our proto-
type and in Section 9, we account for the client-side load
of our system. In Section 10, we provide an overview
of noticeable anonymous communication systems and
when applicable, we compare their performance and se-
curity level to MCMix. Finally, in Section 11, we intro-
duce a novel way to parallelize our conversation protocol
in order to achieve even better scalability.

2 Background

Secure Multiparty Computation. Secure Multiparty
Computation (MPC), is an area of cryptography con-
cerned with methods and protocols that enable a set of
users U = u1, . . . ,un with private data d1, . . . ,dn from a
domain set D, to compute the result of a public function
f (d1, . . . ,dn) in a range set Y , without revealing their pri-
vate inputs. For clarity, we also assume that f accepts ⊥
as input, which denotes abstain behavior.

Sharemind. Sharemind [11] is an MPC framework that
offers a higher level representation of the circuit being
computed in the form of a program written in a C-like
language, namely the SecreC language [12]. It uses
three-server protocols that offer security in the presence
of an honest server majority. That is, we assume that
no two servers will collude in order to break the sys-
tems privacy. Our implementation is designed over the
Sharemind system, but the general approach that we in-
troduce for anonymous messaging can also be deployed
over other MPC protocols. The security of Sharemind
has been analyzed several settings including semi-honest
and active attacks (e.g., [11, 43]).

Oblivious Sorting. Sorting is used as a vital part of
many algorithms. In the context of MPC, sorting an
array of values without revealing their final position,

is called oblivious sorting. The first approach to sort-
ing obliviously is using a data-independent algorithm
and performing each compare and exchange execution
obliviously. This approach uses sorting networks to per-
form oblivious sorting. Sorting networks are circuits that
solve the sorting problem on any set with an order re-
lation. What sets sorting networks apart from general
comparison sorts is that their sequence of comparisons
is set in advance, regardless of the outcome of previous
comparisons. Various algorithms exist to construct sim-
ple and efficient networks of depth O(log2 n) and size
O(n log2 n). The three more used ones are Batcher’s odd-
even mergesort and bitonic sort [6] and Shellsort [46].
All three of these networks are simple in principle and
efficient. Sorting networks that achieve the theoretically
optimal O(logn) and O(n logn) complexity in depth and
total number of comparisons, such as the AKS-network
[1] exist, but the constants involved are so large that make
them impractical for use. Note that even for 1 billion val-
ues, i.e., n = 109, it holds that logn < 30 so, in practice,
the extra log factor is preferable to the large constants.
A major drawback of all sorting network approaches is
that sorting a matrix by one of its columns would require
oblivious exchange operations of complete matrix rows,
which would be very expensive.

In recent years, techniques have been proposed from
Hamada et. al [33] to use well known data-dependent
algorithms, such as quicksort, in an oblivious manner to
achieve very efficient implementations, especially when
considering a small number of MPC servers, which is
very often the case. This approach uses the “shuffling
before sorting” idea, which means that if a vector has
already been randomly permuted, information leaked
about the outcome of comparisons does not leak infor-
mation about the initial and final position of any element
of the vector. More specifically, the variant of quick-
sort proposed in [33], needs on average O(logn) rounds
and a total of O(n logn) oblivious comparisons. Com-
plete privacy is guaranteed when the input vector con-
tains no equal sorting keys, and in the case of equal keys,
their number leaks. Furthermore, performance of the al-
gorithm is data-dependent and generally depends on the
number of equal elements, with the optimal case being
that no equal pairs exist. Practical results have shown
[13] that this quicksort variant is the most efficient obliv-
ious sorting algorithm available, when the input keys are
constructed in a way that makes them unique.

In our algorithms, we utilize the Quicksort algorithm
together with a secret-shared index vector as described
in [13]. This way, each sortable element becomes a
unique value-index pair, providing us the optimal Quick-
sort performance and complete privacy. In addition, it
has the added benefit of making the sorting algorithm
stable.

Identity-Based Key Agreement Protocols. Like in [39],
we make use of identity-based cryptography [45] to cir-
cumvent the need for a Public Key Infrastructure (PKI),
here, for the computation of the dead drops3. In identity-
based cryptography, a Key Generation Center (KGC) us-
ing a master secret key, generates the users’ secret keys,
while the users’ public keys are a deterministic function
of their identity. In an identity-based key agreement (ID-
KA) protocol (e.g. [32, 44, 47, 18, 52, 29, 50]), any pair
of users can execute a GenerateKey algorithm to agree
on a shared key value, on input their obtained secret keys
and the other user’s identity.

In our setting, we will apply ID-KA for the compu-
tation of the dead drops, where now the users compute
their secret keys by combining partial secret keys issued
by the MPC servers. Therefore, we adjust ID-KA to a
multiple KGC setting where each MPC server plays the
role of a KGC. In general, we can manage distributed
key generation in a fault tolerant manner, using thresh-
old secret-sharing techniques. However, since our threat
model considers a passive (semi-honest adversary), we
consider an m-out-of-m instantiation, keeping protocol
description simple. In particular, we can naturally extend
a single KGC ID-KA protocol to a setting with m KGCs
denoted by KGC1, . . . ,KGCm. In the full version of our
paper, we present at length two multiple KGC ID-KA
constructions based on ID-KA protocols that use crypto-
graphic pairings.

In the first construction, we build upon the SOK
ID-KA protocol introduced in [44] and proven secure
in [42]. The key agreement in SOK is non-interactive
and the shared key between two fixed users is fixed and
can be computed only by knowing the other user’s iden-
tity.

In the second construction, we build upon the ID-
KA protocol introduced in [47] as modified in [18] that
achieves security and forward secrecy as proven in [17].
In this construction, the users must additionally exchange
some additional random values in every new session that
is necessary for forward secure key agreement.

Both constructions match the original single ID-KA
protocols, when m = 1. Therefore, it is straightforward
that the first construction (resp. the second construction)
preserves security (resp. security and forward secrecy)
against any polynomially bounded semi-honest adver-
sary that corrupts all-but-one of the m KGCs.

In the current version of MCMix, we do not focus
on forward security. Hence, our system’s description
(cf. Dialing protocol in Section 5) is based on the sim-
pler first ID-KA construction, where knowledge of the
users’ usernames is enough for shared key computation.

3If users’ public keys have been distributed in a PKI setting, then we
can turn to the easier solution of classic Diffie-Hellman key exchange
for dead drop computation.

Nonetheless, in Section 7 (cf. Remark 5), we briefly dis-
cuss on how the second construction could be adopted to
a forward-secure version of our system, leaving detailed
description for future work.

3 Ideal Anonymous Messaging

We formalize the concept of anonymous messaging in
line with standard MPC security modeling. In particu-
lar, we capture the notion of an ideal MPC functionality
F that in presence of an ideal adversary S receives inputs
from a number of n users and computes the desired result
w.r.t. some program f . An MPC protocol is said to be
secure w.r.t. a class of programs, if its execution running
in the presence of a real-world adversary results in in-
put/output transcripts that are indistinguishable from the
ideal setting that F specifies for program f .

Subsequently, inspired by Tor, Vuvuzela and other re-
lated systems, we make use of the “rendezvous points”
idea. Specifically, we instantiate F w.r.t. two distinct
“abstract” programs DLNabs and CNVabs that reflect the
Dialing and Conversation functionalities respectively;
the two programs are abstract in the sense that, in this
section, they will be described at a high level algorith-
mic way that we will make concrete in the coming sec-
tions. The use of a random rendezvous point in the es-
tablishment of a communication channel between two
users averts any denial of service attacks targeting spe-
cific users by other users at the conversation phase.

Notation. We write x $← X to denote that x is sam-
pled uniformly at random from set X . For a positive
integer n, the set {1, . . . ,n} is denoted by [n]. The j-
th component of n-length tuple a is denoted by a[j],
i.e. a := (a[1], . . . ,a[n]). We use

c≈ to express indis-
tinguishability between transcripts, seen as random vari-
ables. By negl(·) we denote that a function is negligible,
i.e. asymptotically smaller than the inverse of any poly-
nomial. We use λ as the security parameter.

Let x = 〈x1, . . . ,xn〉 be a vector of users’ inputs. We
denote by EXECF, f

S,x (λ) the transcript of input/outputs in
an ideal MPC execution of F interacting with the ideal
adversary S, and by EXECP, f

A,x(λ) the transcript of in-
puts/outputs in a real-world execution of MPC protocol
P w.r.t. f under the presence of adversary A. By PPT,
we mean that A runs in probabilistic polynomial time.

Entities and threat model. We consider a client-server
MPC setting. Namely, the entities involved in an MPC
protocol P are (i) a number of n users u1, . . . ,un that
provide their inputs 〈x1, . . . ,xn〉 and (ii) a number of m
servers Ser1, . . . ,Serm that collectively compute an eval-
uation on the users’ inputs w.r.t. a program f . The users
engaged in a specific MPC execution round form an ac-

tive set Uact. We consider an ad-hoc setting [8] of secure
computation, where the program f is known in advance,
but not the active user set Uact.

An adversary against P is allowed to have a global
view of the protocol network. In addition, it may cor-
rupt up to a fixed subset of θ servers and has limited
computational resources preventing it from breaking the
security of the underlying cryptographic primitives.

In standard MPC cryptographic modeling, the security
of P is argued w.r.t. the functionality F that specifies an
“ideal” evaluation of f , where the privacy leakage is the
minimum possible for the honest users. Thus, indistin-
guishability between the ideal and the real world setting
implies that an adversary against P obtains essentially
no more information than this minimum leakage. In our
description, F merely leaks whether an honest user is on-
line or not. This information is impossible to hide against
a network adversary and hence it is a minimum level of
leakage. On the other hand, information that can be typ-
ically inferred by traffic analysis, is totally protected by
F. This level of anonymity, sometimes referred to as un-
observability, requires the participation of all online par-
ties and the generation of “dummy traffic” independently
of whether or not they wish to send a message in a par-
ticular round. As a result, any protocol P that securely
realizes F where f represents a dialing or conversation
program, should incorporate such a methodology. As we
demonstrate, using MPC to realize P is a natural way
to determine the appropriate level and form of “dummy
traffic” needed to realize this level of anonymity.
An ideal MPC functionality for a family of programs.
In a messaging system, dialing and conversation among
users are operations where conflicts are likely to appear,
e.g. two users may dial the same person, or conversation
may be accidentally established on colluding communi-
cation channels (three equal rendezvous points are com-
puted). One can think several other examples of opera-
tions where conflicts are possible, such as election tally
where exactly one out of multiple ballots per voter must
be counted, or deciding on the valid sequence of transac-
tions on a blockchain ledger when forking occurs. Any
program implementing this type of an operation must be
able to resolve these conflicts. The way that conflict res-
olution is achieved, may depend on parameters like com-
putation efficiency, communication complexity or user
priority, yet in any case, a set of programs that imple-
ment the same operation are in some sense equivalent
and may be clustered under the same family. A plausible
requirement is that the choice of the family member that
will be utilized should not affect the security standards
of the operation implementation.

Consequently, in an MPC setting that supports the re-
alization of any program in the family, it is desirable that
security is preserved w.r.t. to the entire family, so that

one can choose the family member that suits their cus-
tom requirements. To express this formally, we introduce
a relaxation of the usual MPC functionality. Namely,
the relaxed ideal MPC functionality F is for a family of
programs { fz}z in the presence of an ideal adversary S

that chooses the index z (this is the relaxation), where z
can be parsed as the “code” that determines the family
member fz. The program fz accepts as input a vector
x = 〈x1, . . . ,xn〉 of (i) valid messages from some domain
D or (ii) ⊥, if the user is inactive, i.e. not in Uact. In our
description, computation takes place even when a subset
of users abstain from the specific execution by not pro-
viding inputs. To formalize the abstain behavior of user
ui, for every i ∈ [n] we define an ‘abstaini(·)’ predicate
over D∪{⊥} as follows:

abstaini(xi) :=
{

1, if xi =⊥
0, if xi ∈ D (1)

The ideal MPC functionality F is presented in Fig. 1.
Note that the relaxation suggests that the users will re-
ceive output from a program fz for z that will be the ideal
adversary’s choosing.

Ideal MPC functionality F for programs { fz}z

– Upon receiving ‘start’ from S, it sets the status to
‘input’ and initializes two lists Linput and Lcorr as empty.

– Upon receiving (corrupt,ui) from S, it adds ui to Lcorr.

– Upon receiving (send input,xi) from ui, if ui ∈ Lcorr,
then it sends (send input,ui,xi) to S. If ui /∈ Lcorr, then
it sends (i)

(
send input,ui,abstaini(xi)

)
to S, where

abstaini(·) is defined in Eq. (1).

– Upon receiving (receive input,ui, x̃i) from S, if (i) the
status is ‘input’ and (ii) (ui, ·) /∈ Linput, then if ui /∈ Lcorr,
it adds (ui,xi) to Linput, else it adds (ui, x̃i) to Linput.

– Upon receiving (compute,z) from S, if Linput contains
records for all users in Uact, it executes the following
steps: first, then it computes the value vector

y = 〈y1, . . . ,yn〉 ← fz(x1, . . . ,xn) .

Then, it sends yi to ui for i, . . . ,n, (hence, S obtains
{yi}ui∈Lcorr).

Figure 1: The ideal MPC functionality F for family of
programs { fz :

(
D∪{⊥}

)n −→ Y}z, interacting with the
ideal adversary S.

The security of a real-world MPC protocol P is defined
w.r.t. a class of programs F as well as a family selected
from F as follows:

Definition 1. Let P be an MPC protocol with n users and
m servers and let F be a class of programs. We say that

P is a (θ ,m)-secure MPC protocol w.r.t. { fz}z ⊆ F, if for
every active user set Uact ∈ U, every program fz, every
input vector x = 〈x, . . . ,xn〉 and every PPT adversary A

corrupting up to θ out of m servers, there is an ideal
adversary S s.t.

EXECF
S,x(λ)

c
≈ EXECP, fz

A,x(λ) .

The family of programs DLNabs and CNVabs. An anony-
mous messaging scheme comprises the following two
functionalities: (i) the Dialing functionality, which con-
sists of the computation of a rendezvous point for a given
pair of users who want to communicate, and (ii) the Con-
versation functionality, which represents the actual ex-
change of messages. For the families DLNabs and CNVabs,
the parameter z, enables the adversary to choose (i) how
to handle collisions between multiple dialers in the case
of DLNabs, and (ii) how to handle the presence of three
or more equal dead drops in the case CNVabs (which hap-
pens only in the case of malicious users). We note that
this minimum level of adversarial manipulation does not
affect the security features of the anonymity system, yet
it allows for substantial performance gains in terms of
the implementation.

We formally express the above functionalities by in-
stantiating the generic MPC functionality F w.r.t. the Di-
aling program family DLNabs and the Conversation pro-
gram family CNVabs (i.e. we set f as DLNabs and CNVabs).
We note that for both the dialing and conversation pro-
gram families, the verification that the parameter z has
the proper structure can be suitably restricted so that it is
tested efficiently by the program. For brevity, we omit
further details.
The Dialing program family DLNabs. In the Dialing func-
tionality, a rendezvous point for users ui and u j is
set when two requests of the form (DIAL,ui,u j) and
(DIALCHECK,u j) have been produced. Thus, the Di-
aling program family DLNabs receives inputs that are vec-
tors of (DIAL, ·, ·) or (DIALCHECK, ·) requests, as well
as ⊥ to denote user inactivity. That is, Uact is the set
of users that do not provide a ⊥ input. The program
DLNabs is parameterized by z, that specifies a determin-
istic program Rz

DLN(·, ·) over pairs of inputs to resolve the
case where more than one dial requests address the same
user/dial checker. The Dialing program family DLNabs is
presented formally in Figure 2.

By the definition of DLNabs, two active users ui,u j
that have submitted matching dialing and dial check re-
quests are going to be provided the same random integer
ti = t j ∈ {ti, j, t j,i}, which establishes a rendezvous point.
We will refer to these non-⊥ values in t1, . . . , tn as dead
drops. In addition, DLNabs returns to each dialchecker
ui a bit ci which is 1 iff ui has succesfully established a
rendezvous with some dialer. Such information is rea-
sonable to be provided to a dialchecker, as ti might be

a random value that is not an actual dead-drop. Hence,
the bit ci communicates to the dialchecker that she has an
incoming call (if nobody calls the dialchecker, then a ran-
dom dead drop value is returned that nobody else shares
with her). On the other hand, a dialer should not be able
to infer information about the dial traffic and availability
concerning some dialchecker, therefore DLNabs does not
provide this success check to the dialers.

The Conversation program family CNVabs. Given the es-
tablishment of the dead drops, as set by DLNabs, the Con-
versation program family CNVabs realizes the operation
of message exchange, where messages lie in some space
M. The program family CNVabs is presented in Figure 3.

Program family DLNabs parameterized by z

– Domain: (DDLNabs ∪{⊥})n, where

DDLNabs :=
{{

(DIAL,ui,u j)
}
,(DIALCHECK,ui)

}
ui 6=u j∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input xi
for user ui ∈ Uact consists of either (i) a (DIAL,ui,u j)
request for some user u j that ui wants to dial, or (ii) a
(DIALCHECK,ui) request.
For a vector of inputs x = 〈x1, . . . ,xn〉, if
xi = (DIALCHECK,ui) then Mi(x) = { j | x j =
(DIAL,u j,ui)}, else is /0. Parse z as a deterministic
program Rz

DLN, such that for any x if Mi(x) 6= /0, then
Rz
DLN(i,x) ∈Mi(x), else it is equal to ⊥.

– Range: YDLNabs := 〈{yi | yi ∈ [a,b]}〉ui∈Uact
, where

[a,b] is a predetermined integer interval.

– Function: On input a vector x = 〈x1, . . . ,xn〉 where
each non-⊥ value xi is either a (DIAL,ui,u j) request, or
a (DIALCHECK,ui) request, DLNabs computes a vector
y = 〈yi〉ui∈Uact

, as follows:

• Let Iact := {i | ui ∈Uact} be the set of indices that refer
to active users. For i, j ∈ Iact, DLNabs samples distinct
random integers ti, j from range [a,b].

• For every i ∈ Iact:

◦ If xi = (DIAL,ui,u j), then if there is a j ∈ Iact such
that x j = (DIALCHECK,u j) and i = Rz

DLN(j,x), then it
sets ti = ti, j. Otherwise (i.e., there is no such j), it sets
ti = ti,i. In both cases, it sets yi = ti.

◦ If xi = (DIALCHECK,u j), then if there is a j ∈ Iact
such that j = Rz

DLN(i,x) 6=⊥, then it sets ti = ti, j and a bit
ci = 1. Otherwise (i.e., there is no such j), it sets ti = ti,i
and a bit ci = 0. In both cases, it sets yi = (ti,ci).

• It returns the value vector y := 〈yi〉ui∈Uact
.

Figure 2: The Dialing program family DLNabs : (DDLNabs ∪
{⊥})n −→ YDLNabs with parameter z, where non-⊥ range
values are integers sampled from range [a,b].

By the definition of CNVabs, if every dead drop is not
shared among three or more users, then two users ui,u j
are going to exchange their messages mi,m j only if they
provide the same dead drop ti = t j. Recall that if the
dead drops are computed as outputs of the Dialing pro-
gram family DLNabs w.r.t. the same active set Uact, then
no more than two users share the same dead drop, which
implies the correctness of CNVabs. In the other cases, ei-
ther (i) there is no matching dead drop or (ii) more than
2 matching dead drops exist. In case (ii), the parame-
ter z specifies a deterministic program Rz

CNV among in-
puts which in turn determines the pair of matching dead
drops. In any case, when a message exchange fails for
some user, then CNVabs returns back this message to the
user for resubmission in an upcoming round.

Program family CNVabs parameterized by z

– Domain: (DCNVabs ∪{⊥})n, where

DCNVabs :=
{
(CONV, ti,mi)

}ti∈[a,b],mi∈M
ui∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input
for user ui consists of a (CONV, ti,mi) request for ren-
dezvous point tagged by ti for sending message mi.
For a vector of inputs x, define Ni(x) = { j | x j =
(CONV, ti,m j)}. Parse z as a deterministic program
Rz
CNV, such that for any x if Ni(x) 6= /0 then Rz

CNV(i,x) ∈
Ni(x), else it is equal to ⊥.

– Range: 〈{mi | mi ∈ Uact}〉ui∈Uact
.

– Function: On input a vector 〈x1, . . . ,xn〉 where each
non-⊥ value xi is a (CONV, ti,mi) request, CNVabs re-
turns a value y = 〈yi〉ui∈Uact

, as follows:

• Let Iact := {i | ui ∈Uact} be the set of indices that refer
to active users. For every i ∈ Iact: if j = Rz

CNV(i,x) 6=⊥,
then it sets yi = m j. Otherwise, it sets yi = mi.

• It returns the value vector y := 〈y1, . . . ,yn〉.

Figure 3: The Conversation program family CNVabs :
(DCNVabs ∪ {⊥})n −→ YCNVabs with parameter z, where
non-⊥ dead drop values are integers sampled from a pre-
determined interval [a,b] and messages are taken from
space M.

Anonymous Messaging Systems. An anonymous mes-
saging system is a pair of protocols that realize any two
members of the families DLNabs and CNVabs under the se-
curity guarantee provided in Definition 1. Given such
realization, anonymous communication can be achieved
as a continuous sequence of interleaved invocations of
dialing and conversation. In principle, dialing can be
more infrequent compared to conversation, e.g., perform
only a single dialing every certain number of conversa-

tion “rounds.” We note that the value of our relaxation
of MPC security is on the fact that we can realize any
member of the respective families.

Sharemind as a secure MPC platform. As already dis-
cussed, Sharemind will be the building platform for the
implementation of our anonymous messaging scheme.
As shown in [11], Sharemind is information theoreti-
cally secure against a passive (honest-but-curious) adver-
sary that corrupts 1-out-of-3 MPC servers. Subsequent
work [43] provides interesting directions regarding the
active security of Sharemind, even specifically for novel
oblivious sorting algorithms [38]. However, in our im-
plementation, we consider the case of passive security.

In more detail, let S be the class of programs that
can be written in Sharemind’s supporting language Se-
creC. In our analysis, we claim that Sharemind operates
as a (1,3)-secure MPC platform for any program family
member of the class S against passive adversaries, as in
Definition 1. Using the above claim, we provide two Se-
creC programs and prove that they realize two members
of the families DLNabs and CNVabs, (cf. Sections 5 and 6)
hence obtaining an anonymous messaging system.

Alternative MPC platforms. For the purpose of the pro-
posed anonymous messaging, Sharemind can be viewed
as a black box providing MPC functionality. Hence,
it is also possible to swap Sharemind for another MPC
implementation providing different deployment or secu-
rity properties. For example, recently, Furukawa et al.
proposed a highly-optimised protocol for computation
with an honest majority and security for malicious ad-
versaries [30], that was further improved by Araki et al.
[4]. Similarly, it is possible to support more than three
computation parties. SPDZ [24] is a practical MPC im-
plementation that provides statistical security against an
active adversary that corrupts up to m− 1 parties. Its
online computation and communication complexities are
both O(m |C|+m3), where |C| stands for the computable
arithmetic circuit size. In our setting, the lower bound for
this circuit size is the number of users, n. Both actively
secure MPC implementations mentioned here work in a
preprocessing (i.e. offline/online) model.

4 System Architecture

Our work is presented in a manner that makes it easy to
implement using any of the aforementioned MPC proto-
cols in Section 2 and with any number of servers. How-
ever, for the sake of presentation, we assume three MPC
servers, denoted by Ser1,Ser2,Ser3. As a general idea,
the protocol works in rounds, where in each round users
break their input into shares and forward the shares to the
servers, with each server receiving one share. Then, the
servers interactively compute the desired output shares,

which are in turn returned to the respective users. In
our description, for simplicity we choose additive secret
sharing, but other sharing schemes would not affect the
functionality of our architecture.

Besides the MPC servers, the complete architecture of
our system comprises an entry and an output server used
to handle user requests. The entry and output servers
may be located on the same or on different physical ma-
chines and are only trusted to relay messages.
Registration phase. At the beginning, the MPC servers
Ser1,Ser2,Ser3 run the Setup phase of the secure mul-
tiple KGC ID-KA protocol (cf. Section 2) playing the
role of three KGCs: KGC1,KGC1,KGC3 generating their
partial master secret keys msk1,msk2,msk3.

Before starting to use the system, each user ui registers
with a unique username UNi of 64 bits. Then, each MPC
server Ser`, ` ∈ {1,2,3} generates ui’s partial secret key
ski,` and sends it ui. Upon receiving ski,1,ski,2,ski,3, ui
combines the partial keys to obtain her ID-KA secret key
ski as output of the secret key derivation algorithm. In
addition, by performing standard key exchange opera-
tion, ui obtains a symmetric key ki,` for communication
with each of Ser`, ` ∈ {1,2,3}. From this point on, any
authentication and communication between ui and the
servers is performed using symmetric key cryptography.
In the client-side, ui can compute u j’s ID-KA public key
pk j as a function of her username UN j and agree on the
ID-KA key Ki,`. In the rest of this paper, we set the length
of the usernames UN1, . . . ,UNn ∈ UN, to be 64 bits.
Main phase. The main phase of the protocol for each
round r, consists of the following steps:

1. Encoding: Each user ui generates a request ai, as
input to the MPC that is to be executed.

2. Secret sharing: Each user ui creates three shares
of the request using additive secret sharing, so that
ai = ai,Ser1 + ai,Ser2 + ai,Ser3 holds. Note that the sub-
scripts denote the MPC server that will process the share.
Then each of the three shares intended for one of the
MPC servers is encrypted with the respective symmet-
ric key ki,` using authenticated encryption. The result
is a triple of the form a′i = (a′i,Ser1,a

′
i,Ser2,a

′
i,Ser3), where

a′i,Ser` := Enkki,`(ai,Serj), ` = {1,2,3}. Then each user
sends the encrypted shares along with her username UNi,
as a package to the entry server.

3. MPC input preparation: Before the start of round
r, the entry server groups the packages received already
and sends each share along with its associated username
to the respective MPC servers. It is important to note
that the use of an entry server is only to synchronize the
MPC servers and to provide the shares in the same or-
der to each of them. For notation simplicity and without
loss of generality, we assume that the entry server ar-
ranges ui as the user that submitted the i-th input. Then,

each MPC server Ser` receives a sequence of the form
a′Ser` = 〈a

′
1,Ser`

, · · · ,a′n,Ser`〉. We denote as n the num-
ber of users that provided an input in round r. In addi-
tion to a′Ser` , the MPC servers also receive a sequence of
the users’ usernames in corresponding order, that is a se-
quence of the form UN = 〈UN1, · · · ,UNn〉, where UNi is
the registered username of the user that provided input i.

4. Order check: Each MPC server computes a hash
of the usernames in the order they appear in its input
sequence, as H(UN1|| · · · ||UNn), and exchanges it with
the other MPC servers. In case the three hashes do not
match, it is implied that the order of the usernames pro-
vided to the three servers was different. Thus, a denial of
service attack has taken place by either the entry server
or one of the MPC servers (considering they reported a
false hash). This step is optional when considering only
privacy implications of a malicious entry server.
5. Decryption and authentication: At this point, au-

thentication is performed implicitly by each server via
decrypting the received share with the symmetric key
corresponding to the username that came with the share.
Thus shares aSer` = 〈aSer`,1, · · · ,aSer`,n〉, with aSer`,i :=
Decki,`(a

′
Ser`,i) are ready for the MPC.

6. MPC algorithm: The MPC servers execute the
MPC protocol.
7. Encryption and return: Each MPC server encrypts

each output share with the respective symmetric key and
forwards shares of the form b′Ser` = 〈b

′
1,Ser`

, · · · ,b′n,Ser`〉
to the output server. The output server collects the shares
corresponding to the same user and returns a package of
the form (b′i,Ser1 ,b

′
i,Ser2 ,b

′
i,Ser3) to each user ui.

8. Decryption and reconstruction: Each user decrypts
the received shares with the respective symmetric key
and adds them, resulting in bi = bi,Ser1 +bi,Ser2 +bi,Ser3 ,
where bi,Ser` = Decki,`(b

′
i,Ser`). The value bi is the final

output of the MPC protocol for each user ui for round r.
Remark 1. The entry and output servers are used for
practical reasons. The main function they perform is
grouping the received packages of shares and forwarding
them to/from the servers. As they have no information
about the symmetric keys exchanged between users and
servers at the registration phase, they schedule the traffic
consisting of encrypted shared data. Hence, if entry and
output servers are malicious, they can do no more than
an adversary controlling the network.

5 The Dialing Protocol

The dialing protocol enables a user ui to notify another
user u j that she wants to start a conversation, much like
how the telephone protocol works. The protocol runs in

rounds to deter possible timing attacks, where in each
round, every online active user will either send a DIAL
request or a DIALCHECK request. All requests are mu-
tually indiscriminate. For clarity, we first provide a de-
scription of the Dialing protocol steps. Then, we proceed
with the efficient program DLNsort implementing it.

Protocol description. The protocol runs in seven steps,
where steps 2-6 are executed by the MPC servers. Steps
1 and 7 are executed locally by each user.

1. Encoding: The inputs x1, . . . ,xn are of the form of
(DIAL,ui,u j) requests, (DIALCHECK,ui) requests, or
⊥, representing the action each user takes for this dialing
round. For simplicity, assume that the users are enumer-
ated as u1, . . . ,un consistently with the input sequence
x1, . . . ,xn, i.e. ui is the user that submitted the i-th in-
put. As a result, the active users that submitted non-⊥
values, are enumerated as u1, . . . ,uact, where act is the
size of the active set Uact. The inputs of the active users
are encoded as triples of the form ai := (ai[1],ai[2],ai[3])
where the third component is an input wire ID widi. The
wire IDs are initially set to zero, but in the following Step
2, each widi will be set unique for each ui.

In particular, if ui wants to dial u j, then the
(DIAL,ui,u j) request is encoded as (UNi,UN j,0) where
UNi and UN j are the usernames of the dialer and the
dialee respectively. If ui is a dial checker, then the
(DIALCHECK,ui) request is encoded as (C,UN j,0),
where (i) C is a special value designated to denote a dial
check and is different from any possible username value,
and (ii) UN j is the checker’s own username.
2. Assigning wire ID values: As a first step, the MPC

protocol assigns unique wire IDs for each user. This
is done by setting the third component ai[3] of the en-
coded triple ai to i. Therefore, for each ui, we have that
widi := i. These wire IDs are needed internally for the
MPC calculation and express the order in which the in-
puts were received so that the respective outputs will be
delivered in the same order.

3. Checking input validity: The protocol then checks
if any of the first two members of each triple, denoted by
ai[1] and ai[2], is equal to the submitter’s username. This
check ensures that inputs are encoded in a way that does
not compromise the security of the system. The threat
here is that a user ui might try to impersonate a user u j by
encoding a DIALCHECK input as ai = (C,UN j,widi).
That attack would allow user ui to receive a dial request
that was intended for user u j. A similar problem arises
when considering a user ui encoding a DIAL input as
ai = (UNl ,UN j,widi). In this case, user u j will think the
dial originated from user ul . To avert such impersonation
attacks, it is enough for the MPC protocol to check that
either the first or the second member of an input tuple is
equal to the username of the user that submitted that in-

put. This, along with the fact that the input is sent from
the user to each MPC server using authenticated encryp-
tion (cf. step 2 of the architecture in section 4) guarantees
that no impersonation attack can take place.

In more detail, if the input is a DIALCHECK request,
then this check ensures that the second member of the
tuple is the user’s own username. In the case of a DIAL
request, the check ensures that a user can only imperson-
ate another user when she dials herself, that is a request
of the form ai = (UN j,UNi,widi) is created by user ui.
In this case, this request does not affect the protocol. If
the check fails for the encoded input ai, then the input is
set to ai = (0,0,widi) and does not affect the protocol.

4. Sorting by usernames: The encoded input triples
are first sorted according to their second components
using the oblivious Quicksort algorithm of [33], im-
plemented according to [13]. Observe that every non-
zero second component is either (i) the username UN j
of dialee u j in a dial request from some user ui, or
(ii) the username UN j from dial checker u j. Thus,
when a triple (C,UN j,wid j) is adjacent to some triple
(UNi,UN j,widi) with a non-zero second component, this
determines a dial pair between ui, u j. We note that two
special conflict cases may appear:

I. (C,UN j,wid j) is adjacent to two dial triples as
. . . ,(UNi,UN j,widi),(C,UN j,wid j),(UNi′ ,UN j,widi′), . . .

II. Two or more adjacent dial triples correspond
to (C,UN j,wid j). The sorting would then appear as
. . . ,(UNi′ ,UN j,widi′),(UNi,UN j,widi),(C,UN j,wid j), . . .

5. Connecting neighbors: Next, requests are pro-
cessed individually by looking at both their neighbors’
triples to determine if there is a dial for any given dial
check request. Of course, requests at the first and last
place of the sorted vector need only look at one neigh-
bor. Thus, we can claim that any dial check request will
have a suitable dial request as its neighbor or not at all.

In more detail, for every user ui, the protocol produces
a pair b := (bi[1],bi[2]), where bi[2] is widi and bi[1] is
either (i) the username UN j of some user u j that dialed
ui, or (ii) 0, if no dial request has been made for ui, or ui
has made a dial request.

6. Sorting by wire IDs: As a final sorting step, the
protocol needs to sort the processed requests according
to their wire IDs in order for the correct requests to be
forwarded to each user. The latter sort, performed on
〈b1, . . . ,bact〉 according to the wire IDs can again be im-
plemented by the Quicksort algorithm of [33].

The result of the last sorting is a vector 〈b̂1, . . . , b̂act〉
where b̂i is a pair (b̂i[1], b̂i[2]) that corresponds to ui and
b̂1 is essentially either (i) a username UN j or (ii) a zero
value, in both cases indexed by b̂2 := widi.

The Dialing Program DLNsort

Input: a sequence 〈x1, . . . ,xn〉 where xi is either a
(DIAL,ui,u j) request, a (DIALCHECK,ui) request,
or ⊥. All ⊥ inputs are stacked last.

Output: a sequence 〈yi〉i:xi 6=⊥, where yi either is a κ-bit
integer ti, if xi = (DIAL,ui,u j), or a pair of a κ-bit
integer ti and a bit ci, if xi = (DIALCHECK,ui).

1. For each i← 1, . . . ,n
if xi =⊥ then

Set act := i−1 ;
Break loop ;

else if xi = (DIAL,ui,u j) then
Set ai := (ai[1],ai[2],ai[3])← (UNi,UN j,0) ;

else if xi = (DIALCHECK,ui) then
Set ai := (ai[1],ai[2],ai[3])← (C,UNi,0) ;

end if
2. For each i← 1, . . . ,act

Set widi as ai[3]← i ;

3. For each i← 1, . . . ,act
if ai[1] 6= UNi AND ai[2] 6= UNi then

Set ai[1] = ai[2] = 0 ;
end if
4. 〈ai〉i:xi 6=⊥ according to second coordinate using

Quicksort;
5. For each i← 1, . . . ,act

if ai[1] =C AND ai[2] = ai−1[2] then
Set bi := (bi[1],bi[2])← (ai−1[1],ai[3]) ;

else if ai[1] =C AND ai[2] = ai+1[2] then
Set bi := (bi[1],bi[2])← (ai+1[1],ai[3]) ;

else
Set bi := (bi[1],bi[2])← (0,ai[3]) ;

end if
6. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordi-

nate using Quicksort;
7. For each i← 1, . . . ,act

if ai[1] = UNi then
Set ti← H

(
GenerateKey(ai[1],ai[2]),r

)
;

Set yi← ti ;
else if ai[1] =C AND bi[1] ∈ UN then

Set ti← H
(
GenerateKey(ai[1],bi[1]),r

)
;

Set yi← (ti,1) ;
else if ai[1] =C AND bi[1] = 0 then

Pick ρi
$←{0,1}64 ;

Set ti← H
(
GenerateKey(ski,ρi),r

)
;

Set yi← (ti,0) ;
end if
return y := 〈yi〉i:xi 6=⊥ .

Figure 4: The Dialing program DLNsort realizing the
Dialing program DLNabs for dialing round r, and users
u1, . . . ,un with usernames UN1, . . . ,UNn ∈ {0,1}64. The
value C denotes a dial check request.

7. Computing the dead drops: After the Quicksort al-
gorithm is completed, the active users u1, . . . ,uact are de-
livered the values b̂1[1], . . . , b̂1[act] respectively. Having
received b̂i[1], dialer ui that knows UN j, and dial checker
u j that obtained UNi, can calculate their shared dead drop
value for dialing round r as follows:

ti := H
(
Ki, j,r

)
, if b̂i[1] = 0

t j := H
(
K j,i,r

)
, if b̂i[1] = UN j

Above, H is a standard cryptographic hash function,
r is the round number. The values Ki, j,K j,i are the ID-
KA keys that ui and u j compute by running the key
agreement algorithm GenerateKey on input (ski,UN j)
and (sk j,UNi) respectively (cf. Section 2), where ski,sk j
are the secret keys of ui and u j. Recall that the opera-
tions for ID-KA key generation are over a finite multi-
plicative group of prime order q. We stress that the dead
drop value is at least 64 bits long to make accidental col-
lisions unlikely, although our system can tolerate them.
By the correctness of the ID-KA protocol, it holds that
Ki, j = K j,i, hence we have that ti = t j.

On the other hand, if user ui dial checked but b̂i[1] =
0 (no one dialed ui), then for uniformity reasons, she
computes a random dead drop as above by inserting a
random value ρi in place of UN j, i.e. she sets ti :=
H
(
GenerateKey(ski,ρi),r

)
.

Note that if ui has dialchecked, then either (i) she es-
tablished a rendezvous point with u j, if b̂1 = UN j, or
(ii) no one dialed her, if b̂1 = 0. Thus, she can set a
“success” bit ci to 1 or 0 respectively, indicating her suc-
cessful engagement in the dialing round r. Besides, if
ui is a dialer that dialed u j, then she always computes
the value ti := H

(
GenerateKey(ski,UN j),r

)
, regardless

of the success of her dialing request. Hence, she can not
infer a success bit.

The Dialing program DLNsort . The program DLNsort
implementing the Dialing protocol is presented in Fig. 4.

Following Section 3, we show that DLNsort realizes
the member of the Dialing program family DLNabs that
corresponds to our sorting process. Namely, in Step
4 of DLNsort (Sorting by usernames), the inputs are ar-
ranged according to an ordering of their second coordi-
nate. Thus, we set the index z that parameterizes the fam-
ily DLNabs to be the string zqs2 as follows: zqs2 is parsed
as the deterministic program R

zqs2
DLN that takes as takes as

input an index i and array of triples x in encoded form,
and outputs the index j so that when the array is sorted
according to Quicksort ordering on the second coordi-
nate, xi is the left neighbor of the encoded x j. Formally,
we state the following theorem and provide the proof in
the full version of the paper.

Theorem 1. Let n be the number of users, κ ≥ 64 be
the dead drop string length and q be the prime order of
the underlying ID-KA group. Let H be the cryptographic
hash function modeled as a random oracle. Then, the
Dialing program DLNsort described in Fig. 4 implements
the member of the Dialing program family DLNabs de-
scribed in Fig. 2 for parameter zqs2 with correctness er-
ror n4

q + n
2κ .

Remark 2. The correctness error n4

q + n
2κ is typically a

negligible value in our setting. To provide intuition, con-
sider the case with a number of n = 100000 < 217 users,
dead drop size κ = 64 bits and group size q≥ 2128. The
error for this case is less than 217·4

2128 + 217

264 ≈ 2−47 .

6 The Conversation Protocol

The Conversation protocol facilitates the actual exchange
of messages associated with the same t dead drop value,
which represents a rendezvous point computed in the fi-
nal step of a Dialing protocol execution. It is expected
that no more than two messages will have the same t
value due to its large bit-size, although our system can
handle collisions as we will see later. As in the previ-
ous section, we first provide a description of the Con-
versation protocol and then the corresponding program
labeled CNVsort that implements it. At this point, we have
to highlight our assumption that a valid message mi at the
input has its least significant bit (LSB) equal to 0. This
flag which could also be a discrete fourth member of our
tuple, is useful at (i) conflict resolution when more than
two dead drops are identical and (ii) the parallelization
of our protocol discussed in section 11 and in the full
version of the paper.
Protocol description. The protocol is executed via the
following steps, where steps 2-6 are executed by the
MPC servers. Step 1 is executed locally by each user.
1. Encoding: The inputs are of the form of
(CONV, ti,mi) requests, or ⊥. Again, we assume that
the users are enumerated as u1, . . . ,un consistently with
the order they submitted their input sequence x1, . . . ,xn,
hence all ⊥ values are stacked last. Active users’ inputs
are encoded as triples of the form ai := (ai[1],ai[2],ai[3])
where the third component is an input wire ID widi that
will be uniquely assigned in the following step. In par-
ticular, if ui wants to engage in conversation, then the
(CONV, ti,mi) request is encoded as (ti,mi,0). In case
ui is not engaging in conversation the request will use a
random dead drop value and a random message.

2. Assigning wire ID values: As a first step, the MPC
protocol assigns unique wire IDs for each user. This is
done by setting the third component ai[3] of the encoded
triple ai to i. Thus, for each ui, we have that widi := i.

3. Sorting by dead drops: The encoded input triples
are first sorted according to their first components using
the oblivious Quicksort algorithm of [33]. As a result,
the inputs of any two users that share the same dead drop
value will become adjacent.
4. Exchanging adjacent messages: By construction,

two inputs with the same dead drop value indicate a pair
of users ui and u j that wish to communicate. Thus, the
protocol generates a vector 〈b1, . . . ,bn〉, where each bi
is a pair (bi[1],bi[2]), of which the second component is
widi and the first component is either (i) the message of
some adjacent encoded input, or (ii) the original message
mi, if message exchange did not take place for ui because
there was no matching dead drop or due to conflict (three
or more equal dead drops). As already mentioned, the
LSB of two exchanged messages is set to 1. In the special
conflict case where three or more values share the same
dead drop t, an arrangement would be as follows:

. . . ,(t ′,mk,k),(t,m j, j),(t,mi, i),(t,mi′ , i
′), . . .

In this case, the messages of ui and u j will be exchanged
and ui′ will obtain back his message at the end of the
protocol, notifying him to resubmit.
5. Sorting by wire IDs: As in the Dialing protocol

(Step 5), the Conversation protocol performs a Quicksort
on the processed requests according to their mutually dis-
tinct wire IDs in order for the correct requests to be for-
warded to each user. The result is a vector 〈b̂1, . . . , b̂n〉
where b̂i is a pair (b̂i[1], b̂i[2]) that corresponds to ui and
is either (i) a message m j from some user u j or (ii) the
original message mi, in both cases indexed by widi.

6. Forwarding messages: At the end, the protocol dis-
cards the wire IDs and creates the output vector y =
〈y1, . . . ,yn〉 := 〈b̂1[1], . . . , b̂n[1]〉. Thus, each yi is either
(i) a message m j from some user u j or (ii) the self-
generated message mi. Finally, the users u1, . . . ,un are
delivered the values y1, . . . ,yn.

Remark 3. In reality, the dead drop value ti of some user
ui is not exactly the value she received from a dialing
protocol execution. For conversation round r it is com-
puted as ti := H(t(dialing)i,r), where t(dialing)i is the dead
drop for ui, generated by the dialing protocol and acts as
the seed for the creation of an ephemeral dead drop for
each conversation round.

Remark 4. Due to the size of dead drops values, the
probability that a collision on randomly generated dead
drop values will occur can be made very small. Even in
the case of a collision, the client of the user that was af-
fected would just resend that message in the next round,
as it would know that a collision occurred because it re-
ceived a message it could not decrypt.
The Conversation program CNVsort . The program

CNVsort implementing the Conversation protocol is pre-
sented in Fig. 5.

The Conversation Program CNVsort

Input: a sequence 〈x1, . . . ,xn〉 where xi is either a
(CONV, ti,mi) request, or⊥. All⊥ inputs are stacked
last.

Output: a sequence of messages 〈yi〉xi 6=⊥.

1. For each i← 1, . . . ,n
if xi =⊥ then

Set act := i−1 ;
Break loop ;

end if
if xi = (CONV, ti,mi) then

Set a := (ai[1],ai[2],ai[3])← (ti,mi,0) ;
end if
2. For each i← 1, . . . ,act

Set widi as ai[3]← i ;

3. Sort tuples 〈ai〉xi 6=⊥ according to first coordinate
ai[1] using Quicksort;

4. For each i← 1, . . . ,act−1
if ai[1] = ai+1[1] AND LSB(ai[2]) = LSB(ai+1[2]) = 0
then

Set the LSB of ai[2] and ai+1[2] to 1 ;
Set bi← (ai+1[2],ai[3]) ;
Set bi+1← (ai[2],ai+1[3]) ;

end if
5. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordi-

nate (which is the wire id) using Quicksort;

6. For each i← 1, . . . ,act
Set yi← bi[1] ;

return y := 〈yi〉i:xi 6=⊥ .

Figure 5: The Conversation program CNVsort realizing the
Conversation program CNVabs for conversation round r,
dead drop size κ ≥ 64 and users u1, . . . ,un with messages
taken from space M.

Following Section 3, we show that CNVsort realizes the
member of the Conversation program family CNVabs that
corresponds to our sorting process. Namely, in Step 3 of
CNVsort (Sorting by dead drops), the inputs are arranged
according to an ordering of their first coordinate. Thus,
we set the index z that parameterizes the family CNVabs to
be the string zqs1 as follows: zqs1 is parsed as the deter-
ministic program R

zqs1
CNV that takes as input an index i and

array of triples x in encoded form, and outputs the index
j so that when the array is sorted according to Quicksort
ordering on the first coordinate, the encoded triple of ui
(or resp. u j) has no neighbors on the left of the sorted

array and the encoded triple of u j (or resp. ui) is the right
neighbor of the encoded triple of ui (or resp. u j). For-
mally, we state the following theorem and provide the
proof in the full version of the paper.

Theorem 2. Let n be the number of users and κ ≥ 64 be
the dead drop string length. The Conversation program
CNVsort described in Fig. 5 implements the member of the
Conversation program family CNVabs described in Fig. 3
for parameter zqs1.

7 The MCMix Anonymous Messaging Sys-
tem

Having presented the general architecture of our system
in Section 4 and the Dialing and Conversation protocols
and programs in Sections 5 and 6 respectively, we now
show how these programs are implemented in our archi-
tecture. Our system consists of two MPC instances of the
general architecture in Section 4, executing one after the
other or independently in parallel. One implements the
Dialing protocol and the other the Conversation protocol.
Below, we specify the operations of general architecture
for each of our two protocols. We note with the prime
symbol, e.g. 1’. , the specification of the respective step,
e.g. 1. , of the general architecture.

Dialing. The execution of the Dialing protocol for round
r follows the steps of section 4 with the following partic-
ularities:

1’. Encoding: The input of user ui is encoded as ai =
(UNi,UN j,0), in the case of a dial to user u j, or as ai =
(C,UNi,0) in the case of a dial request, as specified by
Step 1 of the Dialing program DLNsort in Fig. 4.

6’. MPC algorithm: The MPC server secure computa-
tion consists of Steps 2-6 of DLNsort.

8’. Decryption and reconstruction: The recon-
structed value bi received by user ui is the output bi of
Step 6 of DLNsort.

9’. Dead drop calculation: As an extra step, the dead
drop value ti is calculated by each user by performing
Step 7 of DLNsort.

Conversation. The execution of the conversation pro-
tocol for round r follows the steps of Section 4 with the
following particularities:

1’. Encoding: Input is encoded as ai = (ti,mi,0), with
ti being a dead drop calculated by the final step of a pre-
vious dialing round in the case of a real conversation re-
quest (also taking into account Remark 3), or a random
value in the case the user does not want to send a mes-
sage (but still wants to protect her privacy), according to
the Conversation program CNVsort in Fig. 5.

6’. MPC algorithm: The MPC server secure computa-
tion consists of Steps 2-6 of CNVsort.

8’. Decryption and reconstruction: The recon-
structed value bi received by the user that provided input
i is the output yi of Step 6 of CNVsort and is the message
intended for this user.

Security of MCMix. We prove our security theorem
for the general θ -out-of-m case, as in Definition 1, using
the parameters zqs2 and zqs1 defined in Sections 5 and 6
respectively. We provide the proof in the full version.

Theorem 3. Let κ be the dead drop size, n be the num-
ber of users, m be the number of servers and q the size
of the underlying Diffie-Hellman group, where n,m are
polynomial in λ , κ = Θ(λ) and q = Ω(2λ). Let P be a
(θ ,m)-secure MPC protocol with n users w.r.t. (i) the
Server Computation Steps 2-6 of the Dialing program
DLNsort described in Fig. 2 and (ii) the Server Compu-
tation Steps 2-6 of the Conversation program CNVsort de-
scribed in Fig. 3. Then, MCMix implemented over P is
an anonymous messaging system by securely realizing
the program families DLNabs and CNVabs for parameters
zqs2 and zqs1 respectively.

Remark 5 (On forward security of MCMix). MCMix
in its current form does not offer forward security. Nev-
ertheless it is possible to provide forward security as fol-
lows. First, clients could refresh their exchanged keys
with the servers in regular time intervals, e.g., once a
day. Alternatively to avoid interaction, forward secure
encryption can be used, e.g., see [9]. With respect to the
dead drop calculation we can obtain forward security by
applying our second ID-KA construction with forward
secrecy (cf. Section 2 and the full version). The addi-
tional communication cost to the Dialing protocol would
be one extra random group element per user as now the
active inputs x1, . . . ,xn for dialing need to be used for
the first round of the exchange; they are of the form of
(DIAL,ui,u j,ri) and (DIALCHECK,ui,r j), where ri,r j
are random elements from the ID-KA cyclic group. Sort-
ing would still be executed on the users’ usernames and
the wire IDs as before thus incurring no additional over-
head. We omit further details.

8 Implementation and Benchmarking

We implemented a prototype of our system using the
Sharemind platform and performed extensive evaluation.
Experiment setting. Benchmarks were run on a cluster
of three machines with point-to-point 1 Gbps network
connections using various profiles for network latency
aiming to simulate WAN behavior. Each machine has
a 12-core 3 GHz Hyper-Threading CPU and 48 GB of

RAM. However, even though the hardware supports it,
Sharemind MPC protocols are not optimized to use mul-
tiple CPU cores or network layer in a parallel manner.
The servers running Sharemind employ only 2 cores, one
for executing the computations and another for pseudo-
random number generation. To simulate real-world envi-
ronment, we use the tc tool to manipulate operating sys-
tem’s network traffic control settings. This tool is used
to both cap the available network bandwidth, as well as
introduce communication latency by adding round-trip
delay (ping).

102 103 104 105

100

101

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

L = 0ms
L = 2ms

L = 10ms
L = 20ms

Figure 6: Running time in secs of the Dialing protocol
implementation for a number of n = 100, 500, 1K, 5K,
10K, 50K, 100K, 500K users and latency L = 0, 2, 10,
20 ms. The benchmarks were run with message size 8
Bytes and 1 Gbps network bandwidth.

Dialing protocol. We benchmarked our dialing protocol
for various numbers of users and various latency values.
The results are presented in Fig. 6. As we can see, the
dialing protocol has a runtime for each round of around
one minute for 100,000 users and around 300 seconds
for 500,000 users, considering the worst case of 20 ms of
latency. The latter value might still be considered accept-
able for some settings, as dialing rounds need not be exe-
cuted very often. Another interesting observation is that
the effect of latency diminishes as the number of users
increases, due to the fact that the number of communica-
tion rounds of our algorithm scales logarithmically to the
number of inputs. This in turn happens because Quick-
sort needs O(log(n)) steps to sort n inputs when executed
in parallel. The vectorized nature of our implementation
succeeds in taking advantage of the parallelizable nature
of the algorithm. The time a user needs to encode her
request and send it, as well as the time required by each
MPC server to decrypt the requests it received have no
effect on the per round runtime of our system. This is be-

cause these operations are performed in a pipelined fash-
ion. This means that the encoding, encryption and de-
cryption of the requests for round r+1 takes place while
the MPC servers perform the computations for round r.
In the dialing protocol this is acceptable as a user’s in-
tent on whether to dial or perform a dial check might not
depend on the output of the previous dialing round.
Conversation protocol. For the conversation protocol we
made extensive benchmarks considering the number of
users, the latency of the network, as well as the message
size. In Fig. 7, we can see that the running time of the
conversation protocol with a very small message size of
8 Bytes (B) is similar to the running time of the dialing
protocol. That is, the system can serve 100,000 users
with in around one minute for maximum latency of 20
ms. Again, we see that latency is a minor performance
factor for a large number of users. This fact enables us
to claim that our system will have similar running times
even with greater latency values.

102 103 104 105

100

101

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

L = 0ms
L = 2ms

L = 10ms
L = 20ms

Figure 7: Running time in secs of the Conversation pro-
tocol implementation for a number of n = 100, 500, 1K,
5K, 10K, 50K, 100K, 500K users and latency L = 0, 2,
10, 20 ms. The benchmarks were run with message size
8 Bytes and 1 Gbps network bandwidth.

In Fig. 8, we consider how the message size affects
performance. We have benchmarked various message
sizes ranging from 8 B to 1 KB messages. No artifi-
cial latency has been injected for these experiments. We
see that message size affects performance in a significant
way as opposed to latency, but the system can still sup-
port anonymity sets of tens of thousands of users even
with 1KB messages and certainly SMS long messages
for hundreds of thousands.

Finally, in Fig. 9, we provide the peak network band-
width consumption during the Dialing and Conversation
protocols. We note that the total bandwidth is shown,

i.e. bytes sent and received and to both other computing
nodes. We observe that in both protocols the bandwidth
consumption remains at a low level of less than 100Mbps
for the Dialing protocol for (usernames of 64bits) as well
as the Conversation protocol for messages of up to SMS
size. For bigger message sizes and 100,000 users, we
get that the total consumption is roughly 150Mbps and
300Mbps for messages of 256B and 1KB respectively,
which can be realistic for a large scale setting.

102 103 104 105

100

101

102

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

|M|=8B
|M|=144B
|M|=256B
|M|=1KB

Figure 8: Running time in secs of the Conversation pro-
tocol implementation for a number of n = 100, 500, 1K,
5K, 10K, 50K, 100K users and message size |M| = 8,
144, 256, 1K Bytes. The benchmarks were run with no
latency and 1 Gbps network bandwidth.

102 103 104 105

101

102

No. of users

Pe
ak

ne
tw

or
k

ba
nd

w
id

th
[M

bp
s] |M|=8B

|M|=144B
|M|=256B
|M|=1KB
|UN|=64bit

Figure 9: The peak network bandwidth consumption in
Mbps during the Dialing protocol for usernames (UNs)
of 64bits and the Conversation protocol for message size
|M|= 8B, 144B, 256B, 1KB, given a number of n= 100,
500, 1K, 5K, 10K, 50K, 100K users. The benchmarks
were run with no latency and 1 Gbps network bandwidth.

9 Client Load and Adoption Incentives

Anonymous communication systems critically rely on
having adequately large anonymity sets to be effective.
In other words: “Anonymity Loves Company” [26],
and the usability aspects of anonymous communication
systems should be an important design consideration.
MCMix strives to offer strong adoption incentives by of-
fering strong security, while minimizing the computation
and communication load on the client side.
Computation load: For the Dialing protocol, each client
performs an ID-KA operation (cf. Section 2) to compute
the dead drop value, plus a few symmetric operations to
encrypt/decrypt the shares. The Key Exchange operation
consists of a few hashes and a single bilinear symmet-
ric pairing computation. In [2], symmetric pairing time
is estimated at 14.9 ms running on a commodity device,
or around three times the time needed for a modular ex-
ponentation in the corresponding cyclic group. For the
Conversation protocol, the load is low, consisting only of
symmetric encryption/decryption operations.
Communication load: In Table 1, we depict the total
monthly bandwidth costs of the clients in an example
setting with (i) SMS message size of 140 B, (ii) fixed
block size for AES of 128 bits, (iii) standard 20/20 B
TCP/IP headers, (iv) SHA-256 HMACs and (v) dialing
and conversation rounds assumed to be executed every
one minute (simultaneously). For a detailed discussion
on the communication load of our system, we refer to
the full version.

|M| (B) bandwidth per month (MB)
8 47

144 78
256 106
1K 296

Table 1: Communication costs of clients (Dialing and
Conversation combined) w.r.t. message size.

The theoretical analysis of the computational and
communication overhead of our system shows, that it is
lightweight on the client side and the bandwidth needs
of a device to be constantly connected are in the range
of tens of MB per month, which we consider easily man-
ageable. While we expect MCMix to be practical for
mobile users, further experiments may be needed to com-
pute actual battery consumption and bandwidth usage in
a real-world setting.

10 Related Work and Comparison

This section attempts to place our work in relation to
the state of the art in the expanding field of anonymity-

preserving communication systems.
First, regarding Onion-routing based approaches, like

POND [37] which uses the Tor network [27], we empha-
size that they do not fit the model of a global adversary
who can easily defeat them, see e.g., [34]. Systems that
attempt to defeat global adversaries operate in rounds
and expect each online user to send encrypted messages
in each round. Furthermore, our interpretation of anony-
mous messaging is one of unobservable bilateral com-
munication. Therefore, unilateral shuffling mechanisms
based on mixnets or recent MPC constructions [41] do
not satisfy our application scenario.

Our work is most closely related to the Vuvuzela sys-
tem [49] that uses mixnets in addition to dummy mes-
sages, to add noise and achieve a differentially private
(cf. [28]) solution to anonymous messaging. By defi-
nition, differential privacy protects users as individuals
and also allows for some (albeit small) leakage to an ob-
server and thus it is weaker than the simulation-based
privacy that we achieve. For example, when all users talk
to each other compared to when no user is talking to any-
one is completely distinguishable in Vuvuzela, but indis-
tinguishable for MCMix that does not leak any metadata
at all. Furthermore, Vuvuzela puts a burden on the client
side that requires to finish the dial protocol by download-
ing a substantial amount of user data (or losing substan-
tially in terms privacy); note that using Bloom filters as
described in [39] can help in making this a one time cost.
Another drawback of this system is that it cannot scale
down in a tight way, due to the burden imposed by the
added noise that needs to be always added to maintain
acceptable privacy guarantees. On the up side, the sys-
tem has good architecture and is extremely scalable to
millions of users under the assumption of a single hon-
est server, whereas (non-parallelized) MCMix can scale
to 100,000 users with similar latency and assuming an
honest server majority. However, our parallelized MPC
approach can reach that level of performance and in any
case, we anticipate that further advances in secure MPC
protocols can improve performance substantially even in
the non-parallelized version.

Riffle [36], uses hybrid mixnets and private informa-
tion retrieval (PIR, [19]) techniques to implement anony-
mous messaging. It offers good privacy guarantees, but
unlike MCMix and Vuvuzela, it can not handle network
churn. During the setup phase of the protocol, client keys
are verifiably shuffled by a mixnet. During each com-
munication phase, the same permutations as the ones es-
tablished in the setup phase are applied to the clients’
authenticated messages by the mix servers. As a result
of this setup, a single client momentarily leaving or en-
tering the system would require to re-run the expensive
setup phase of the protocol.

cMix [15] introduces a mixnet design that can shuf-

fle messages faster than previous work by avoiding pub-
lic key operations in the real-time phase. cMix provides
sender anonymity, yet it may leak the number of mes-
sages received by each user, exhibiting a similar security
performance as Vuvuzela’s dialing protocol.

Dissent [22, 51] is based on DC-nets and achieves
anonymity sets up to a few thousand users, in an anony-
mous broadcasting scenario. Riposte [21] uses PIR tech-
niques to implement a distributed database that users
can anonymously write and read from, assuming no two
servers collude (in the efficient scheme). Specifically,
the authors implement the write stage on the database as
a “reverse” PIR, where a client spreads suitable informa-
tion for writing in the database. Subsequently, when used
for messaging, users can read using PIR from the posi-
tion in the database that the sender wrote the message
(which can be a random position calculated from key in-
formation available to the users). Riposte can scale to
millions of users but it requires many hours to perform a
complete operation; a significant bottleneck is the write-
operation that requires O(

√
L) client communication for

an L-long database which is proportional to the number
of users. In contrast, in our system, client bandwidth is
minimal, i.e. a single message per server is sent by each
user. Additionally, the application scenario is more re-
lated to that of Dissent, rather than ours, i.e. anonymous
broadcasting, instead of private point to point message
exchange, as the authors specify that their approach is
suitable “for latency-tolerant workloads with many more
readers than writers”. Finally, our technical approach is
very different compared to Riposte, as Riposte uses MPC
techniques only to detect and exclude malformed client
requests, while MCMix offers a native MPC solution for
the complete messaging functionality.

BAR [35] uses a “broadcast to all” approach to achieve
perfect privacy. A central untrusted server receives all
messages in each round and then broadcasts them to all
participants. This approach induces a very large commu-
nication overhead and therefore anonymity sets are lim-
ited to hundreds of users. Pung [3] is a system that like
BAR operates on fully untrusted setting, while it uses
state-of-the-art PIR techniques and smart database orga-
nization to scale to a much larger number of users. How-
ever, Pung can only implement the equivalent of our con-
versation functionality and not the dialing functionality,
and exhibits substantial client load.

11 Parallelizing the conversation protocol

As discussed in previous sections, our protocols are prov-
ably secure assuming a secure MPC framework and are
also scalable enough to support hundreds of thousands
of users. While these anonymity sets can accommodate
a lot of use cases, we recognize the need for anonymity

systems to offer as large an anonymity set as possible.
Therefore, we propose a technique that leads to an even
more scalable system, by describing a parallel realiza-
tion of the Conversation protocol, as this is the latency-
critical component of our system. Note that the Dialing
protocol can be executed independently of the Conver-
sation protocol and in much longer time intervals, e.g.
every five minutes. Therefore, the implementation on
a single MPC instance can cover very large anonymity
sets, e.g. 500,000 users as seen in Fig. 6.

In the following paragraph, we provide the general
idea behind our parallelization technique and refer the
reader to the full version for a detailed description of the
parallelized Conversation protocol.

General Idea. Our main challenge is to come up with
a protocol that can run in different MPC instances (is-
lands) in parallel with minimal communication between
those instances, while achieving strong privacy. Ad-
ditionally, the anonymity set should be the whole user
population. The problem of anonymous communication,
where two users may submit their messages to different
islands and still expect to communicate with perfect cor-
rectness, while leaking no information at all, is hard to
be parallelized. In our approach, we choose to maintain
the strongest possible privacy standards. As a result, in
our parallelized version of MCMix, we relax our qual-
ity of service (qos) guarantees. That is, in each round,
an adjustable small number of requests that would have
been served when using the algorithm of Fig. 5, will fail
to do so, and affected users will have to resend their mes-
sages. The probability of this phenomenon can be made
arbitrarily small in the expense of performance, which is
shown in the full version.

As evident by the algorithmic representation of our
two protocols, the integral part of their function is match-
ing equal values in pairs and performing a swap action on
these pairs. Our parallelizable technique for performing
this action benefits from the fact that the values in ques-
tion (dead drops) output by a hash function (modeled as
a random oracle) are uniformly distributed.

In our approach, requests are split obliviously between
MPC islands based on the fact that equal dead drop val-
ues are likely to be located at roughly the same indexes
of different arrays after sorting, considering these values
are uniformly distributed. In summary, and in the sim-
ple case of 2 islands, the procedure is as follows. As
a first step, requests in each island are sorted according
to their dead drop values. Then, one island collects the
lower half of both islands’ sorted requests, and the sec-
ond island the upper half. A swap operation, identical to
the one of the initial conversation protocol, is performed
as a next step, followed by a sort according to the wire
IDs of the requests. Assuming the first island assigns
strictly smaller wire ID values to the incoming requests,

exactly the bottom /upper half of the requests held by
each island belongs to the first/second one. These halves
are sent to their respective islands. Finally, each island
merges the array of requests it received, with the one it
kept, according to their wire IDs. The final order of re-
quests corresponds to the order in which they were ini-
tially received, and the requests with the same dead drop
that found themselves on the same island during the swap
phase, represent successful instances of the conversation
protocol.

Performance of the parallelized Conversation protocol.
Considering the fact that we did not have access to a great
number of physical machines, in order to run the par-
allelized Conversation protocol with a variety of island
numbers, we ran the parallel algorithm on a single island
for different user numbers and then extrapolated to give
predictions for a real multi-island implementation. Ex-
cept from the running time of the MPC that we measured,
we also added the communication time calculated by as-
suming commodity 100 Mbps connections between the
islands. In the parallelised setting, in both inter-island
communication rounds, each party sends and receives
in total n/m · (m− 1)/m elements to/from other parties,
where n is the number of messages and m is the number
of islands. In our benchmarks, we have not added any
overhead for symmetric encryption between the islands,
as even a commodity laptop can keep up with encrypt-
ing and decrypting data at a rate of 100 Mbps. Thus, we
expect that the results presented in Fig. 10 realistically
highlight the scalability of the system. From the results

105 106

102

103

No. of users

R
un

ni
ng

tim
e

[s
ec

s]

1 island
2 islands
4 islands
8 islands

Figure 10: Running time in secs of the Conversation pro-
tocol implemented in 1,2,4,8 island setting. The bench-
marks were run with no latency, 1 Gbps network band-
width (intra-island) and 64 bit message size. Bandwidth
between the islands was modeled at 100 Mbps.

of Fig. 10, we can see deploying our system over 2 is-

lands does not provide any performance gain. This is due
to a constant overhead, roughly of a factor of 2, that fol-
lows from the description of the parallelized algorithm
(cf. full version for details). However, when using 4 or
more islands, our parallelization technique gets very re-
warding. In the case of 8 islands, the system can support
an anonymity set of 500,000 users with a latency of 60
seconds. We expect this trend to continue for even more
than 8 islands, thus enabling even larger anonymity sets.

Acknowledgements

Alexopoulos, Kiayias and Zacharias were supported by
the Horizon 2020 PANORAMIX project (Grant Agree-
ment No. 653497). Alexopoulos was also supported
by the DFG as part of project S1 within the CRC 1119
CROSSING. Talviste was supported by the Estonian Re-
search Council (Grant No. IUT27-1). The authors would
like to thank Tim Grube and Chris Campbell for their
comments on a previous version of this paper.

References
[1] AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. An O(n log n)

sorting network. In ACM STOC (1983), pp. 1–9.

[2] AKINYELE, J. A., GARMAN, C., AND HOHENBERGER, S. Au-
tomating fast and secure translations from type-I to type-III pair-
ing schemes. In ACM CCS (2015), pp. 1370–1381.

[3] ANGEL, S., AND SETTY, S. Unobservable communication over
fully untrusted infrastructure. In OSDI (2016), pp. 551–569.

[4] ARAKI, T., BARAK, A., FURUKAWA, J., LICHTER, T., LIN-
DELL, Y., NOF, A., OHARA, K., WATZMAN, A., AND WEIN-
STEIN, O. Optimized Honest-Majority MPC for Malicious Ad-
versaries – Breaking the 1 Billion-Gate Per Second Barrier. In
IEEE Symposium on Security and Privacy (2017), pp. 843–862.

[5] ARAKI, T., FURUKAWA, J., LINDELL, Y., NOF, A., AND
OHARA, K. High-throughput semi-honest secure three-party
computation with an honest majority. In ACM CCS (2016),
pp. 805–817.

[6] BATCHER, K. E. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer
conference (1968), ACM, pp. 307–314.

[7] BEAVER, D. Commodity-based cryptography. In ACM STOC
(1997), pp. 446–455.

[8] BEIMEL, A., GABIZON, A., ISHAI, Y., AND KUSHILEVITZ, E.
Distribution design. In ITCS (2016), pp. 81–92.

[9] BELLARE, M., AND YEE, B. S. Forward-security in private-key
cryptography. In CT-RSA (2003), pp. 1–18.

[10] BEN-DAVID, A., NISAN, N., AND PINKAS, B. Fairplaymp: a
system for secure multi-party computation. In ACM CCS (2008),
pp. 257–266.

[11] BOGDANOV, D. Sharemind: programmable secure computa-
tions with practical applications. PhD thesis, University of Tartu,
2013.

[12] BOGDANOV, D., LAUD, P., AND RANDMETS, J. Domain-
polymorphic programming of privacy-preserving applications. In
PLAS (2014), pp. 53–65.

[13] BOGDANOV, D., LAUR, S., AND TALVISTE, R. A Practical
Analysis of Oblivious Sorting Algorithms for Secure Multi-party
Computation. In Proceedings of the 19th Nordic Conference on
Secure IT Systems, NordSec 2014, vol. 8788 of LNCS. Springer,
2014, pp. 59–74.

[14] CHAUM, D. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology 1, 1
(1988), 65–75.

[15] CHAUM, D., JAVANI, F., KATE, A., KRASNOVA, A.,
DE RUITER, J., AND SHERMAN, A. T. cMix: Anonymization
by high-performance scalable mixing. IACR Cryptology ePrint
Archive (2016).

[16] CHAUM, D. L. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM 24, 2
(1981), 84–90.

[17] CHEN, L., CHENG, Z., AND SMART, N. P. Identity-based key
agreement protocols from pairings. Int. J. Inf. Sec. 6, 4 (2007),
213–241.

[18] CHEN, L., AND KUDLA, C. Identity based authenticated key
agreement protocols from pairings. In CSFW-16 (2003), pp. 219–
233.

[19] CHOR, B., KUSHILEVITZ, E., GOLDREICH, O., AND SUDAN,
M. Private information retrieval. Journal of the ACM (JACM) 45,
6 (1998), 965–981.

[20] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and re-
trieval system. In Designing Privacy Enhancing Technologies
(2001), Springer, pp. 46–66.

[21] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D. Ri-
poste: An anonymous messaging system handling millions of
users. In IEEE Symposium on Security and Privacy (2015),
pp. 321–338.

[22] CORRIGAN-GIBBS, H., AND FORD, B. Dissent: accountable
anonymous group messaging. In ACM CCS (2010), pp. 340–350.

[23] DAMGÅRD, I., GEISLER, M., KRØIGAARD, M., AND
NIELSEN, J. B. Asynchronous multiparty computation: Theory
and implementation. In PKC (2009), pp. 160–179.

[24] DAMGÅRD, I., PASTRO, V., SMART, N., AND ZAKARIAS, S.
Multiparty computation from somewhat homomorphic encryp-
tion. In CRYPTO (2012), pp. 643–662.

[25] DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N.
Mixminion: Design of a type III anonymous remailer protocol.
In IEEE Symposium on Security and Privacy (2003), pp. 2–15.

[26] DINGLEDINE, R., AND MATHEWSON, N. Anonymity loves
company: Usability and the network effect. In WEIS (2006).

[27] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. Tech. rep., DTIC Document,
2004.

[28] DWORK, C. Differential privacy. In Automata, languages and
programming. Springer, 2006, pp. 1–12.

[29] FIORE, D., AND GENNARO, R. Identity-based key exchange
protocols without pairings. Trans. Computational Science 10
(2010), 42–77.

[30] FURUKAWA, J., LINDELL, Y., NOF, A., AND WEINSTEIN, O.
High-throughput secure three-party computation for malicious
adversaries and an honest majority. In EUROCRYPT (2017),
pp. 225–255.

[31] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to
play any mental game. In ACM STOC (1987), pp. 218–229.

[32] GÜNTHER, C. G. An identity-based key-exchange protocol. In
EUROCRYPT (1989), pp. 29–37.

[33] HAMADA, K., KIKUCHI, R., IKARASHI, D., CHIDA, K., AND
TAKAHASHI, K. Practically efficient multi-party sorting proto-
cols from comparison sort algorithms. In Information Security
and Cryptology–ICISC 2012. Springer, 2012, pp. 202–216.

[34] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users get routed: Traffic correlation on tor by
realistic adversaries. In ACM CCS (2013), pp. 337–348.

[35] KOTZANIKOLAOU, P., CHATZISOFRONIOU, G., AND
BURMESTER, M. Broadcast anonymous routing (BAR):
scalable real-time anonymous communication. Int. J. Inf. Sec.
16, 3 (2017), 313–326.

[36] KWON, A., LAZAR, D., DEVADAS, S., AND FORD, B. Rif-
fle: An efficient communication system with strong anonymity.
PoPETS 2016, 2 (2015), 115–134.

[37] LANGLEY, A. Pond (v0.1.1). https://github.com/agl/

pond, 2015.

[38] LAUD, P., AND PETTAI, M. Secure multiparty sorting protocols
with covert privacy. In NordSec (2016), pp. 216–231.

[39] LAZAR, D., AND ZELDOVICH, N. Alpenhorn: Bootstrap-
ping secure communication without leaking metadata. In OSDI
(2016), pp. 571–586.

[40] LIU, C., WANG, X. S., NAYAK, K., HUANG, Y., AND SHI, E.
Oblivm: A programming framework for secure computation. In
IEEE Symposium on Security and Privacy (2015), pp. 359–376.

[41] MOVAHEDI, M., SAIA, J., AND ZAMANI, M. Shuffle to baffle:
Towards scalable protocols for secure multi-party shuffling. In
ICDCS (2015), pp. 800–801.

[42] PATERSON, K. G., AND SRINIVASAN, S. On the relations be-
tween non-interactive key distribution, identity-based encryption
and trapdoor discrete log groups. Des. Codes Cryptography 52,
2 (2009), 219–241.

[43] PETTAI, M., AND LAUD, P. Automatic proofs of privacy of
secure multi-party computation protocols against active adver-
saries. In CSF (2015), pp. 75–89.

[44] SAKAI, R., KASAHARA, M., AND OGHISHI, K. Cryptosystems
based on pairing. SCIS, Okinawa, Japan, 2000.

[45] SHAMIR, A. Identity-based cryptosystems and signature
schemes. In CRYPTO (1984), pp. 47–53.

[46] SHELL, D. L. A high-speed sorting procedure. Communications
of the ACM 2, 7 (1959), 30–32.

[47] SMART, N. P. An identity based authenticated key agreement
protocol based on the weil pairing. IACR Cryptology ePrint
Archive (2001).

[48] SYVERSON, P. F., GOLDSCHLAG, D. M., AND REED, M. G.
Anonymous connections and onion routing. In IEEE Symposium
on Security and Privacy (1997), pp. 44–54.

[49] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Vuvuzela: Scalable private messaging resistant to
traffic analysis. In SOSP (2015), pp. 137–152.

[50] WANG, Y. Efficient identity-based and authenticated key agree-
ment protocol. Trans. Computational Science 17 (2013), 172–
197.

[51] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND
JOHNSON, A. Dissent in numbers: Making strong anonymity
scale. In OSDI (2012), pp. 179–182.

[52] YUAN, Q., AND LI, S. A new efficient id-based authenticated
key agreement protocol. IACR Cryptology ePrint Archive (2005).

[53] ZHANG, Y., STEELE, A., AND BLANTON, M. Picco: a general-
purpose compiler for private distributed computation. In ACM
CCS (2013), pp. 813–826.

