

Edinburgh Research Explorer

On Querying Incomplete Information in Databases under Bag
Semantics

Citation for published version:
Console, M, Guagliardo, P & Libkin, L 2017, On Querying Incomplete Information in Databases under Bag
Semantics. in Proceedings of the 26th International Joint Conference on Artificial Intelligence. IJCAI Inc, pp.
993-999, 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19/08/17. DOI:
10.24963/ijcai.2017/138

Digital Object Identifier (DOI):
10.24963/ijcai.2017/138

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131073106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.24963/ijcai.2017/138
https://www.research.ed.ac.uk/portal/en/publications/on-querying-incomplete-information-in-databases-under-bag-semantics(e282a54e-1494-414c-af02-ed665d41ecdf).html

On Querying Incomplete Information in Databases under Bag Semantics

Abstract
Querying incomplete data is an important task both
in data management, and in many AI applications
that use query rewriting to take advantage of rela-
tional database technology. Usually one looks for
answers that are certain, i.e., true in every possible
world represented by an incomplete database. For
positive queries – expressed either in positive rela-
tional algebra or as unions of conjunctive queries –
finding such answers can be done efficiently when
databases and query answers are sets. Real-life da-
tabases however use bag, rather than set, semantics.
For bags, instead of saying that a tuple is certainly
in the answer, we have more detailed information in
terms of the range of the numbers of occurrences of
the tuple in query answers. We show that the behav-
ior of positive queries is different under bag seman-
tics: finding the minimum number of occurrences
can still be done efficiently, but for maximum it be-
comes intractable. We use these results to investi-
gate approximation schemes for computing certain
answers to arbitrary first-order queries that have
been proposed for set semantics. One of them can-
not be adapted to bags, as it relies on the intractable
maxima of occurrences, but another scheme only
deals with minima, and we show how to adapt it to
bag semantics without losing efficiency.

1 Introduction
In many problems lying at the intersection of AI and data
management, one tries to recast key tasks as evaluation of
database queries, in an attempt to leverage existing database
technology. Examples include data integration and data ex-
change, where finding answers over integrated and exchanged
data is often achieved by first rewriting a query and then run-
ning it against a constructed database or data source [Are-
nas et al., 2014; Calı̀ et al., 2003b; Lenzerini, 2002]. Another
example is ontology-based query answering, where one at-
tempts to rewrite a query in a standard query language and run
it on the original or modified database [Calvanese et al., 2007;
Gottlob et al., 2014; Kontchakov et al., 2011].

There are two features common to all these approaches.
First, they try to take advantage of decades of research into

efficient evaluation of SQL queries over relational databases.
Second, the databases on which queries are executed are typ-
ically incomplete: for example, they often have null values
added to them by applying a version of the chase procedure.
Thus, one ends up using techniques for answering queries on
databases with nulls. Such techniques usually produce cor-
rect answers for positive queries (i.e., unions of conjunctive
queries) and quickly descend into intractability outside this
class [Abiteboul et al., 1995; Imielinski and Lipski, 1984],
partly explaining the prevalence of positive queries in this line
of research.

Despite many visible successes of applying traditional da-
tabase technology in the above tasks, there is one notable mis-
match between theoretical work and what happens in real life.
Real SQL databases use bag, or multiset semantics. That is,
database relations and query results may contain duplicates;
query evaluation algorithms apply special rules that correctly
count occurrences of tuples in their results. However, the stan-
dard notions of query answering over incomplete databases,
such as certain answers, have been primarily worked out un-
der the set semantics.

It is well know that the set/bag mismatch can have a pro-
found effect on many results about query evaluation and rea-
soning about queries. For example, the standard problem of
conjunctive query containment – which is essentially test-
ing for the existence of a homomorphism, or a solution to a
non-uniform CSP instance; cf. [Chandra and Merlin, 1977;
Kolaitis, 2003] – is NP-complete under set semantics, but
its exact complexity under bag semantics remains a ma-
jor open problem [Chaudhuri and Vardi, 1993; Jayram et
al., 2006]. The complexity of basic query languages such
as relational algebra remains tractable but moves up to a
different complexity class, which requires new techniques
for analyzing its expressiveness [Grumbach and Milo, 1996;
Libkin and Wong, 1997]. And, when it comes to answering
queries over bag-based databases with nulls, there is still no
understanding of how the problem behaves even for positive
queries.

Thus, our primary goal is to initiate the study of answer-
ing queries on incomplete databases under bag semantics, to
move it closer to real-life applications that use SQL queries
in relational DBMSs. At first it might seem that at least for
positive queries there should be no problem in lifting results
from sets to bags. We show that this is not so.

An incomplete database defines a set of possible worlds.
When we evaluate a query over an incomplete database, for
each candidate answer tuple we want to know how it occurs
in query answers over possible worlds: for example, in all
of them (certainty) or in some of them (possibility). When
we deal with bags, we need to look at the number of occur-
rences. This gives us an interval between the minimum and
the maximum numbers of occurrences. For sets, these num-
bers could be only zero or one, but for bags these could be
arbitrary natural numbers. What we show is that, for posi-
tive queries, the minimum can be computed efficiently, by
modifying set-based techniques appropriately, but finding the
maximum becomes intractable. In fact it is intractable in very
simple settings that have the smallest difference with the set
case.

In essence, our results say that for unions of conjunctive
queries, which dominate many applications that require deal-
ing with incomplete information, one can rely on query eval-
uation provided by commercial DBMSs and be certain about
the minimum number of occurrences of tuples in the result.
But getting additional information about such numbers is
computationally intractable.

These results also shed some light on handling queries that
go beyond unions of conjunctive queries. Finding answers to
such queries that come with correctness guarantees is known
to be coNP-hard [Abiteboul et al., 1991], so it is natural to
look at approximations. The idea was already pursued in [Re-
iter, 1986; Vardi, 1986] in the context of databases repre-
sented as logical theories, but recently it was shown that it can
be made to work in the context of standard relational DBMSs
[Libkin, 2016; Guagliardo and Libkin, 2016]. The key idea
was to devise approximation schemes that, unlike the native
evaluation of SQL queries, come with correctness guarantees.
Two such schemes were developed under set semantics; one
of their features is that for positive queries, they can rely on
the standard query evaluation. Here we look at these schemes
under bags and show that one of them requires computing
an intractable query, while the other remains tractable. This
observation provides a theoretical justification for results em-
pirically observed in [Guagliardo and Libkin, 2016].
Organization. Section 2 introduces basic notations. In Sec-
tion 3 we give the semantics of bag relational algebra. Section
4 proves that minimal numbers of occurrences can be found
efficiently for positive queries under bag semantics, and Sec-
tion 5 shows that for maximal numbers the problem is in-
tractable. In Section 6 we discuss implications for approxi-
mating certain answers; Section 7 gives concluding remarks.
Complete proofs are available at the following anonymous
url: https://gofile.io/?c=BJoR2L

2 Preliminaries
Incomplete databases. An incomplete database D is a way
to represent many complete databases (i.e., possible worlds);
the set of those is referred to as the semantics of D, denoted
by JDK. The model of incompleteness that we use here is
the very common model of marked or labeled nulls. It is not
only common in databases [Abiteboul et al., 1995; Imielin-
ski and Lipski, 1984] but naturally occurs in the applications

we mentioned before. For instance, the chase procedure –
which is heavily used in data integration, exchange, as well
as ontology-based querying – populates databases with both
known constants and marked nulls, cf. [Arenas et al., 2014;
Lenzerini, 2002].

In this model databases are populated by constants and
nulls, coming from two disjoint countably infinite sets de-
noted by Const and Null, respectively. Nulls are denoted by
⊥, sometimes with sub- or superscripts. A database D is then
a set of relations over Const∪Null; a k-ary relation is a finite
subset of (Const∪Null)k. We write Const(D) and Null(D)
for the set of constants and nulls that occur in D. A database
is complete if Null(D) = ∅.

The semantics JDK is defined via valuations v which are
mappings v : Null(D)→ Const. Then

JDK = {v(D) | v is a valuation} ,
where v(D) is the complete database obtained by replacing
each null ⊥ with v(⊥). This is usually referred to as the
closed-world semantics of incompleteness [Reiter, 1977].

In the applications we mentioned, both closed and open
world semantics are used [Arenas et al., 2014; Lenzerini,
2002; Lutz et al., 2015]. In the study of incompleteness in
databases, closed world semantics is more common, as it
leads to more manageable complexity for more expressive
queries, and often coincides with open world for positive
queries [Abiteboul et al., 1991; Imielinski and Lipski, 1984];
thus we use it in this study.

Query answering. A relational query Q of arity k takes
a complete database D and returns a set of k-tuples over
Const(D). If such a query Q is asked on an incomplete data-
base D, to answer it one has to analyze the behavior of Q on
elements of D′ ∈ JDK. Using the characteristic function of a
tuple c̄ in a relation R

#(c̄, R) =

{
1 if c̄ ∈ R
0 if c̄ 6∈ R

we define
minQ(D, c̄) = min

D′∈JDK
#(c̄, Q(D′)) ,

maxQ(D, c̄) = max
D′∈JDK

#(c̄, Q(D′)) .
(1)

The cases of interest to us are:
• minQ(D, c̄) = 1. Then we know that c̄ is always in Q(D′)

for D′ ∈ JDK and thus it is a certain answer.
• maxQ(D, c̄) = 1. Then we know that c̄ is in Q(D′) for

some D′ ∈ JDK and thus it is a possible answer.
For a large class of queries, namely positive queries (or,

equivalently, unions of conjunctive queries) calculating minQ
and maxQ can be done efficiently. We define this class of
queries using the positive operations of relational algebra:
• Selection σi=j , when applied to a k-ary relation R with
k ≥ i, j, returns the set of tuples (a1, . . . , ak) ∈ R such
that ai = aj .

• Projection πı̄ (omitting the ith component), when applied
to a k-ary relation R with k ≥ i, returns the set of tuples
(a1, . . . , ai−1, ai+1, . . . , ak) for (a1, . . . , ak) ∈ R.

• Cartesian product ×, when applied to a k-ary relation R
and an m-ary relation S produces a k + m-ary relation
with tuples (a1, . . . , ak, b1, . . . , bm) where (a1, . . . , ak) ∈
R and (b1, . . . , bm) ∈ S.

• Union R ∪ S can be applied to two relations of the same
arity.

Queries of positive relational algebra (RA+) are built from
relations and these operation, e.g., (σ2=3(R) × π3̄(S)) ∪ T .
Note that often RA+ expressions are presented by allowing
selections with a conjunction of equalities or projections on a
group of attributes, but these are easily expressed in the ver-
sion we have.

Full relational algebra (RA) adds the difference operation:
R − S contains tuples in R but not in S. In terms of expres-
siveness, RA has precisely the power of first-order logic (FO),
while RA+ corresponds to existential positive FO, i.e., for-
mulae built from atoms using ∃,∧,∨. These have the same
power as unions of conjunctive queries (which are the ∃,∧-
fragment of FO).

The following is well known [Abiteboul et al., 1991;
Imielinski and Lipski, 1984].

Fact 1. For every RA+ query Q, checking each of the condi-
tions minQ(D, c̄) = 1 and maxQ(D, c̄) = 1 can be done in
polynomial time in the size of D.

For full RA, these problems are in coNP and NP respec-
tively, and there are RA queries for which they are coNP-
complete and NP-complete (in terms of data complexity,
when Q is fixed, and D, c̄ are given as the input).

3 Bag semantics
Real-life databases are not based on sets but rather on bags
(multisets): each tuple can occur multiple times in a database
relation and consequently in query results [Date and Darwen,
1996]. We extend the notion of #(ā, R) from sets to bags:
now for a tuple ā and a relation R, the expression #(ā, R)
denotes the number of occurrences of ā in R; if ā does not
occur in R, we set #(ā, R) = 0.

For RA queries, the syntax of basic operations does not
change, but they are given bag semantics, and some opera-
tions that were derivable under set semantics are added. The
interpretations of selection, projection, product, and union are
changed as follows:

• Selection σi=j : for each tuple ā,

#(ā, σi=j(R)) =

{
#(ā, R) if ai = aj
0 otherwise

• Projection πı̄:

#((a1, . . . , ai−1, ai+1, . . . , ak), πı̄(R))

=
∑

#((a1, . . . , ai−1, a, ai+1, . . . , ak), R)

with summation over all elements a that occur in R.
• Cartesian product: #((ā, b̄), R× S) = #(ā, R) ·#(b̄, S).
• Union: #(ā, R ∪ S) = #(ā, R) + #(ā, S)

For relational algebra on sets, intersection is easily express-
ible with σ, π, and×. This is not the case for bags [Libkin and
Wong, 1997] so we shall add this operation explicitly, under
the standard semantics:

• Intersection: #(ā, R ∩ S) = min(#(ā, R), #(ā, S)).

We further add the operation ε of duplicate elimination
(which in the case of sets is simply the identity):

• Duplicate elimination: #(ā, ε(R)) = min(#(ā, R), 1).

These operations, σ, π,×,∪,∩, and ε, constitute RA+ for
bags. Full RA adds the operation − (difference) with the se-
mantics #(ā, R− S) = max(#(ā, R)−#(ā, S), 0).

When it comes to query answering, the definition (1) still
applies: minQ(c̄, D) is the minimum number of occurrences
of c̄ in Q(D′) for D′ ∈ JDK, and maxQ(c̄, D) is the maxi-
mum such number. That is, we know with certainty that every
query answer must contain at least minQ(c̄, D) occurrences
of c̄, and no answer will contain more than maxQ(c̄, D).

In what follows, we look at data complexity of query an-
swering: that is, for a fixed query Q, we want to compute
minQ(D, c̄) or maxQ(D, c̄) on the input that consists of a
database D and a tuple c̄. When we talk about complexity in
terms of complexity classes, especially hardness results, we
view these as decision problems, i.e., comparing minQ(D, c̄)
and maxQ(D, c̄) with a given number m.

Firstly, we note that these problems are in the first level of
the polynomial hierarchy.

Proposition 1. For every RA query Q interpreted under
bag semantics, and for every m ∈ N, checking whether
minQ(D, c̄) > m or whether maxQ(D, c̄) < m can be done
in coNP on input (D, c̄).

Furthermore, there are queries Q and numbers m ∈ N
such that the above problems are coNP-complete.

Of course this means that complements, minQ(D, c̄) ≤ m
and maxQ(D, c̄) ≥ m, are in NP and can be NP-complete for
someQ andm. These bounds follow from the fact that, like in
the set case, it suffices to consider valuations v on D whose
range consists of Const(D) and a new distinct constant for
each null in Null(D), and that relational algebra, under bag
semantics, can be evaluated in DLOGSPACE in data com-
plexity. For hardness, the same proofs as in [Abiteboul et al.,
1991] apply, since RA under set semantics can be simulated.

4 Bag semantics: positive results
While Proposition 1 tells us that computing minQ(D, c̄) and
maxQ(D, c̄) may require superpolynomial time (assuming
that NP 6= PTIME), under set semantics these are computable
efficiently for positive queries Q in RA+. We now see what
happens under bag semantics. In this section we show the
positive result: minQ(D, c̄) can be computed efficiently.

Theorem 1. Under bag semantics, for each fixed RA+ query
Q, computing minQ(D, c̄) can be done in DLOGSPACE on
the input (D, c̄).

Proof sketch. The proof is based on the following observa-
tion. Let Q(D) mean the naive evaluation of Q on D (under

bag semantics). That is, selection conditions evaluate as fol-
lows: if Null(D) = {⊥1, . . . ,⊥k}, then ⊥i = ⊥j is true iff
i = j, and ⊥i 6= c for every c ∈ Const.

We call a valuation v on D canonical if v(⊥i) = ci, for
1 ≤ i ≤ k, where c1, . . . , ck are distinct constants and none
of them belongs to Const(D). Then we prove the following
by induction on RA+ queries Q. For every tuple ā ∈ Q(D):

1. #(ā, Q(D)) ≤ #(v(ā), Q(v(D))) for every valuation v
on D;

2. #(ā, Q(D)) = #(v0(ā), Q(v0(D))) for every canoni-
cal valuation v0.

For a constant tuple c̄ this implies that minQ(c̄, D) =
#(c̄, Q(D)), and the latter can be computed in DLOGSPACE
due to known bounds on the complexity of RA under bag
semantics [Grumbach and Milo, 1996; Libkin and Wong,
1997].

Before proving 1 and 2 above, first observe that if v is a
canonical valuation on D, then for every two tuples ā and b̄
over Const(D)∪Null(D), the condition v(ā) = v(b̄) implies
ā = b̄. Now proceed with the proof by induction on expres-
sions. The base case is when Q is R, a database relation. If
ā ∈ R, then v(ā) ∈ v(R) and thus 1 holds. If v0 is canonical
and v0(ā) ∈ v0(R), then v0(ā) = v0(b̄) for some b̄ ∈ R,
which implies ā = b̄ and thus #(ā, R) = #(v0(ā), v0(R)),
proving the base case.

For the induction case we need to look at queries obtained
by applying operations σ, π,×,∪,∩, and ε. First consider
the case of Q′ = σi=j(Q). If 0 < #(ā, Q′(D)) = m,
then #(ā, Q(D)) = m and ai = aj . By the hypothesis,
#(v(ā), Q(v(D))) ≥ m for every v, and since v(ai) = v(aj)
we have #(v(ā), Q′(v(D))) ≥ m, proving 1. Next assume
that v is canonical and m = #(ā, Q′(D)). If ai 6= aj ,
then m = 0, but since v is canonical, v(ai) 6= v(aj) and
thus #(v(ā), Q′(v(D))) = 0 as well. So assume ai = aj .
Then m = #(ā, Q(D)) and by the induction hypothesis
m = #(v(ā), v(Q(D))) = #(v(ā), v(Q′(D))) since v(ā)
satisfies the selection condition. This proves 2.

Next consider the projection case. Without loss of gen-
erality we assume that projection omits the first column,
i.e., Q′ = π1̄(Q). Given a database D and a tuple ā of
the arity of Q′, let m = #(ā, Q′(D)). Let b1, . . . , bk be
all elements of the domain of D such that (bi, ā) appears
in Q(D). Then #(ā, Q′(D)) =

∑
i≤k #((bi, ā), Q(D)).

Take an arbitrary valuation v. Then, by the induc-
tion hypothesis, we have

∑
i≤k #((bi, ā), Q(D)) ≤∑

i≤k #((v(bi), v(ā)), Q(v(D))) and the last expression is
bounded above by #(v(ā), π1̄(Q(v(D)))), thus proving 1.
If v is canonical, then the induction hypothesis tells us that
#(ā, Q′(D)) =

∑
i≤k #((v(bi), v(ā)), Q(v(D))). Now as-

sume that v(ā) appears in Q(v(D)) together with an element
v(b0) where v(b0) 6= v(bi) for i = 1, . . . , k (and thus b0 6= bi
for all such i). Since a canonical v is an isomorphism of da-
tabases we then derive v−1(v(b0), v(ā)) ∈ Q(v−1(v(D)))
and thus (b0, ā) ∈ Q(D), a contradiction. Thus, v(ā)
only appears with v(bi), for i = 1, . . . , k in Q(v(D)),
which implies that

∑
i≤k #((v(bi), v(ā)), Q(v(D))) =

#(v(ā), π1̄(Q(v(D)))), thus proving 2 for the case of pro-

jection.
The remaining cases of ×,∪,∩, and ε are similarly ob-

tained by induction.

Theorem 1 also provides information about tuples contain-
ing nulls. It is often important to keep them in the answers, as
they provide valuable information. For instance, if we have a
relationR = {((1,⊥)} and a queryQ returningR itself, then
there are no constant tuples with minQ(R, c̄) > 0; this how-
ever loses certain information that R contains a tuple whose
first component is 1. An alternative to overcome this, known
as certain answers with nulls [Lipski, 1984], suggests, in the
set case, looking for tuples ā such that v(ā) ∈ Q(v(D)) for
every valuation v. For constant tuples this is the same as say-
ing minQ(D, ā) = 1.

For RA+ queries under set semantics, it is well known
[Lipski, 1984; Libkin, 2016] that ā ∈ Q(D) if and only if
#(v(ā), Q(v(D))) = 1 for every valuation v; or, equiva-
lently, #(ā, Q(D)) = minv #(v(ā), Q(v(D))). We now see
that the situation is identical for bag semantics.

Corollary 1. For every RA+ query Q interpreted under bag
semantics, every database D and an arbitrary tuple ā, we
have #(ā, Q(D)) = minv #(v(ā), Q(v(D))).

5 Bag semantics: negative results
We saw that under bag semantics, minQ(D, c̄) can be com-
puted efficiently. We now show that the situation is drastically
different for max: computing maxQ(D, c̄) is intractable even
for very simple queries that just return a relation from the da-
tabase (i.e., SQL queries of the form SELECT * FROM R).

To state the result, we need to cast this problem as a de-
cision problem. For this, we define the problem LEASTOC-
CUR that takes as input a k-ary relation R over Const∪Null,
a k-ary tuple c̄ over Const, and an integer m > 0, and asks
whether there exists a valuation v on Null(R) such that c̄ oc-
curs at least m times in v(R), i.e., #(c̄, v(R)) ≥ m. Clearly
the problem is in NP: it suffices to guess a valuation that only
uses elements of Const(R) and c̄. The problem is also NP-
hard.

Theorem 2. The problem LEASTOCCUR is NP-complete.

Corollary 2. There is a RA+ queryQ (in fact a query return-
ing a relation in the database) such that checking, for given
D, c̄, and m whether maxQ(D, c̄) < m is coNP-complete.

Proof sketch. To show that LEASTOCCUR is NP-hard we re-
duce to it from Maximum 2-Satisfiability (MAX2SAT), which
is NP-complete [Garey and Johnson, 1979]. Given a set Σ of
propositional clauses, each consisting of exactly two literals,
and a positive integer m ≤ |Σ|, MAX2SAT is the problem of
deciding whether there exists a truth assignment that satisfies
at least m clauses in Σ.

Let Σ be a set of clauses of two literals. With each proposi-
tional variable p occurring in Σ we associate a distinct null
value ⊥p and the following two pairs: ūt

p = (0,⊥p) and
ūf
p = (⊥p, 1). Observe that (0, 1) unifies with each of these

pairs, but there is no valuation v for which v(ūt
p) = v(ūf

p).

With each clause σ ∈ Σ we then associate a quaternary rela-
tion Rσ defined as follows:

Rσ =
{
ūt
pū

t
q , ū

t
pū

f
q , ū

f
pū

t
q

}
if σ = { p, q} ;

Rσ =
{
ūt
pū

f
q , ū

t
pū

t
q , ū

f
pū

f
q

}
if σ = { p,¬q} ;

Rσ =
{
ūf
pū

f
q , ū

f
pū

t
q , ū

t
pū

f
q

}
if σ = {¬p,¬q} ;

where p and q range over the propositional variables men-
tioned in Σ. Intuitively, the tuples in Rσ represent the truth
assignments that satisfy σ. Note that (0, 1, 0, 1) unifies with
each of the tuples in Rσ , but there is no valuation v for which
it would occur more than once in v(Rσ). This is an imme-
diate consequence of the fact that v(ūt

p) 6= v(ūf
p) for every

propositional variable p and every valuation v.
Now, letRΣ =

⋃
σ∈ΣRσ . By construction, there is a bijec-

tive correspondence between the nulls in RΣ and the propo-
sitional variables in Σ. Thus, for each truth assignment α we
can define a valuation vα with vα(⊥p) = 1 if α(p) = t, and
vα(⊥p) = 0 otherwise; and for each valuation v we can de-
fine a truth assignment αv with αv(p) = t if v(⊥p) = 1, and
αv(p) = f otherwise.

Claim 1. Let Σ be a set of clauses of two literals, let α be a
truth assignment to the propositional variables of Σ, and let
σ ∈ Σ. Then, α satisfies σ if and only if (0, 1, 0, 1) occurs
exactly once in vα(Rσ).

We illustrate one case. Let c̄ = (0, 1, 0, 1), and let p and q
be the propositional variables occurring in σ. Assume p oc-
curs positively and q occurs negatively. Then,

Rσ = {(0,⊥p,⊥q, 1), (0,⊥p, 0,⊥q), (⊥p, 1,⊥q, 1)}
α |= σ iff exactly one of the following holds:

α(p) = t and α(q) = f ;

α(p) = t and α(q) = t ;

α(p) = f and α(q) = f .

#
(
c̄, vα(Rσ)

)
= 1 iff exactly one of the following holds:

vα(⊥p) = 1 and vα(⊥q) = 0 ;

vα(⊥p) = 1 and vα(⊥q) = 1 ;

vα(⊥p) = 0 and vα(⊥q) = 0 .

The claim then follows by the definition of vα. The remain-
ing cases, when both variables occur positively, or both occur
negatively, are analogous.

Similarly, but using the definition of αv , we also obtain:

Claim 2. Let Σ be a set of clauses of two literals, let v be a
valuation of the nulls in RΣ, and let σ ∈ Σ. Then, (0, 1, 0, 1)
occurs exactly once in v(Rσ) if and only if αv satisfies σ.

The above claims now apply to show the following:

Claim 3. Let (Σ,m) be instance of MAX2SAT. There exists
a truth assignment α that satisfies at least m clauses in Σ
if and only if there exists a valuation v such that (0, 1, 0, 1)
occurs at least m times in v(RΣ).

Given Σ, the construction of RΣ is polytime and gives the
desired reduction from MAX2SAT to LEASTOCCUR.

In some restricted cases maxQ(D, c̄) can be calculated ef-
ficiently. Consider, for example, queries of the form ε(Q),
with duplicate elimination applied as the outermost opera-
tion. They correspond to SQL queries SELECT DISTINCT
. . ., where the remainder of the query is arbitrary and is inter-
preted under bag semantics.

Proposition 2. For RA+ queries of the form ε(Q), where Q
is interpreted under bag semantics, maxQ(D, c̄) can be com-
puted in polynomial time.

Proof sketch. For a query Q, let Qb(D) and Qs(D) denote
their outputs under bag and set semantics on complete data-
bases D; also ε(D) refers to D in which duplicate elimina-
tion was applied to every relation. We then show by induction
that for queries Q in RA+, we have ε(Qb(D)) = Qs(ε(D))
for every D (of course ε is the identity on set-based data-
bases). Then maxε(Qb)(D, c̄) = maxQs(ε(D), c̄) and the lat-
ter can be computed in polynomial time by [Abiteboul et al.,
1991].

6 Efficient Approximations under Bag
Semantics

Our results shed some light on approximating answers to
queries over incomplete databases: we can explain why some
approximation schemes work in real-life DBMSs while oth-
ers do not. As is well known (see Fact 1), computing cer-
tain and possible answers to relational algebra (and thus first-
order) queries over incomplete databases is an intractable
problem. It is thus natural to try to approximate such answers
by tractable queries. The idea is not new: first solutions were
proposed long ago [Reiter, 1986; Vardi, 1986] but in the con-
text of databases viewed as logical theories which made them
unimplementable in real DBMSs.

The first approximation scheme designed to work with the
standard relational database technology appeared in [Libkin,
2016]. It still used set semantics; its idea was to modify an
RA query Q into a query Qt that returns a subset of certain
answers. More precisely, for a tuple ā that can contain con-
stants and nulls, define

minQ(D, ā) = minv #(v(ā), Q(v(D)))
maxQ(D, ā) = maxv #(v(ā), Q(v(D)))

(4)

where v ranges over valuations. Note that if ā contains only
constants, this is the same as (1), and for arbitrary tuples,
minQ(D, ā) is efficiently computable for RA+ queries, by
Corollary 1.

The scheme showed how to transform Q into queries
Qt, Qf such that

Qt(D) ⊆ {ā | minQ(D, ā) = 1}
Qf(D) ⊆ {ā | minQ̄(D, ā) = 1} (5)

where Q̄ computes the complement of Q. These queries, giv-
ing us certainly true and certainly false answers, were defined
by mutual recursion (i.e., Qf was necessary to define Qt).

How does one extend such definitions to bags? To see this,
we restate (5) as follows. Let ⊕ be the addition in the two-
element field F2.

Proposition 3. Under set semantics of queries, conditions (5)
are equivalent to

#(ā, Qt(D)) ≤ minQ(D, ā)
#(ā, Qf(D)) ≤ 1⊕maxQ(D, ā)

(6)

for every tuple ā.

This suggests a natural extension of the translation scheme
(Qt, Qf) to bags: one uses (6) but replaces ⊕ with the usual
addition, as now occurrences can be arbitrary natural num-
bers. But this is suddenly very problematic, as maxQ(D, ā)
is hard computationally, for all queries, since we cannot even
compute it efficiently for base relations! Thus, implementing
this approximation scheme in a real-life RDBMS (which is
bag-based) is infeasible.

It was observed in [Guagliardo and Libkin, 2016] that the
translation Q 7→ (Qt, Qf), while enjoying good theoretical
complexity, is unlikely to work well in a real-world setting
because rewritten queries require very large joins even in the
set case. The results of the previous section show that even
good theoretical complexity is lost if one uses the bag seman-
tics.

Based on the size of the rewritten queries that the transla-
tion Q 7→ (Qt, Qf) produces, [Guagliardo and Libkin, 2016]
proposed a different translation, again for the set case. It
transforms a query Q into two queries Q+ and Q? such that

v(Q+(D)) ⊆ Q(v(D)) ⊆ v(Q?(D)) (7)

for all valuations v. This, over sets, implies that Q+(D) ⊆
{ā | minQ(D, ā) = 1} ⊆ Q?(D). In other words, we have
lower and upper approximations of certain answers.

Again, all the development of [Guagliardo and Libkin,
2016] was done under the set semantics of queries, but (7)
makes it easy to extend the framework to bags. We take (7)
to be the requirement for queries Q+ and Q?, where ⊆ now
has bag-theoretic meaning: for two bags B1, B2, we write
B1 ⊆ B2 iff #(b, B1) ≤ #(b, B2) for every element b.

Proposition 4. Assume that for a RA query Q, we have two
queries Q+ and Q? that satisfy (7), under bag semantics.
Then #(ā, Q+(D)) ≤ minQ(ā, D) ≤ #(ā, Q?(D)), for ev-
ery database D and every tuple ā of elements of D.

In fact Proposition 4 is true for any query that is invari-
ant under isomorphisms, which includes queries expressible
in logics such as first-order and its extensions. It recasts the
approximation approach of [Guagliardo and Libkin, 2016] in
a way that makes no reference to maxQ. This gives a strong
indication that it can be adapted to bag semantics.

This is indeed so. To show this, we use the translationQ 7→
(Q+, Q?) below:

R+= R R? = R

(Q1 ×Q2)+= Q+
1 ×Q

+
2 (Q1 ×Q2)?= Q?

1 ×Q?
2

(Q1 ∪Q2)+= Q+
1 ∪Q

+
2 (Q1 ∪Q2)?= Q?

1 ∪Q?
2

(Q1 ∩Q2)+= Q+
1 ∩Q

+
2 (Q1 ∩Q2)?= Q?

1 n⇑ Q?
2

(Q1 −Q2)+= Q+
1 −Q

+
1 n⇑ Q?

2 (Q1 −Q2)?= Q?
1 −Q+

2

(σi=j(Q))+= σi=j(Q
+) (σi=j(Q))?= σi∼j(Q

?)

(πı̄(Q))+= πı̄(Q
+) (πı̄(Q))?= πı̄(Q

?)

(ε(Q))+= ε(Q+) (ε(Q))?= ε(Q?)

The selection condition i ∼ j used in (σi=j(Q))? is a dis-
junction (i = j)∨null(i)∨null(j), checking that either the ith
and the jth component of a tuple are the same, or one of them
belongs to Null. Translations (Q1∩Q2)? and (Q1−Q2)+ use
the semijoin operation n⇑ defined as follows. We write ā ⇑ b̄
if there is a valuation v such that v(ā) = v(b̄). Then R n⇑ S,
for two relations of the same arity, contains tuples ā inR such
that ā ⇑ b̄ for some b̄ ∈ S, and #(ā, Rn⇑ S) = #(ā, R).

This is essentially the same translation of [Guagliardo and
Libkin, 2016] but now all operations, including semijoin, are
interpreted under bag semantics. It turns out that it provides
an approximation of certain answers in the following sense.
Theorem 3. The translation Q 7→ (Q+, Q?) satisfies (7)
when queries are interpreted under bag semantics. Further-
more, queries Q+ and Q? can be evaluated in DLOGSPACE
on an input database D.

It was previously empirically observed that the translation
Q 7→ (Q+, Q?) is efficient on real-life benchmark queries,
whileQ 7→ (Qt, Qf) is not. Now using our complexity results
for answering queries on incomplete databases under bag se-
mantics we provided a theoretical justification for this obser-
vation, based on the fact that one scheme can be expressed
in terms of minQ alone, while the other needs maxQ, which
cannot even be computed efficiently for base relations.

7 Conclusions
Much of the theoretical work on query answering in data-
bases, including handling incomplete information, assumes
set-based semantics [Abiteboul et al., 1995], leading to a mis-
match with what happens in real-life DBMSs [Date and Dar-
wen, 1996]. This also applies to many scenarios that reduce
problems combining reasoning and data to answering rela-
tional database queries.

In this paper we showed that even for the well-behaved
class of positive relational algebra queries (or unions of con-
junctive queries), bag semantics complicates query answer-
ing with incomplete information considerably, as some of
the problems easily solvable under set semantics become in-
tractable. This is not just bad news however: this observation
provided a theoretical justification for an approximation of
query answers on incomplete databases that was known to
behave well in practice.

Our results open up a new line of work on understand-
ing incompleteness in real-life databases, and on using it in
applications that combine data with knowledge and meta-
information such as ontologies or schema mappings. One
needs to devise and optimize approximation schemes, look
into interaction with constraints [Calı̀ et al., 2003a], extend
results to open-world assumption, and look into new appli-
cations such as querying inconsistent data, where reliance on
database technology [Bertossi, 2011] and the use of approxi-
mations [Bienvenu and Rosati, 2013] is common.

References
[Abiteboul et al., 1991] S. Abiteboul, P. Kanellakis, and

G. Grahne. On the representation and querying of
sets of possible worlds. Theoretical Computer Science,
78(1):158–187, 1991.

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and
Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Arenas et al., 2014] Marcelo Arenas, Pablo Barceló, Leonid
Libkin, and Filip Murlak. Foundations of Data Exchange.
Cambridge University Press, 2014.

[Bertossi, 2011] Leopoldo Bertossi. Database Repairing
and Consistent Query Answering. Morgan & Claypool
Publishers, 2011.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Ric-
cardo Rosati. Tractable approximations of consistent
query answering for robust ontology-based data access. In
IJCAI, pages 775–781, 2013.

[Calı̀ et al., 2003a] A. Calı̀, D. Lembo, and R. Rosati. On
the decidability and complexity of query answering over
inconsistent and incomplete databases. In PODS, pages
260–271, 2003.

[Calı̀ et al., 2003b] Andrea Calı̀, Domenico Lembo, and Ric-
cardo Rosati. Query rewriting and answering under con-
straints in data integration systems. In IJCAI, pages 16–21,
2003.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tom. Reasoning, 39(3):385–429, 2007.

[Chandra and Merlin, 1977] Ashok K. Chandra and
Philip M. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In STOC, pages
77–90, 1977.

[Chaudhuri and Vardi, 1993] Surajit Chaudhuri and
Moshe Y. Vardi. Optimization of real conjunctive
queries. In PODS, pages 59–70, 1993.

[Date and Darwen, 1996] C. J. Date and H. Darwen. A Guide
to the SQL Standard. Addison-Wesley, 1996.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability. W. H. Freeman,
1979.

[Gottlob et al., 2014] Georg Gottlob, Stanislav Kikot,
Roman Kontchakov, Vladimir V. Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of
query rewriting in ontology-based data access. Artificial
Intelligence, 213:42–59, 2014.

[Grumbach and Milo, 1996] Stéphane Grumbach and Tova
Milo. Towards tractable algebras for bags. JCSS,
52(3):570–588, 1996.

[Guagliardo and Libkin, 2016] Paolo Guagliardo and Leonid
Libkin. Making SQL queries correct on incomplete data-
bases: A feasibility study. In PODS, pages 211–223, 2016.

[Imielinski and Lipski, 1984] Tomasz Imielinski and Witold
Lipski. Incomplete information in relational databases.
Journal of the ACM, 31(4):761–791, 1984.

[Jayram et al., 2006] T. S. Jayram, Phokion G. Kolaitis, and
Erik Vee. The containment problem for real conjunctive
queries with inequalities. In PODS, pages 80–89, 2006.

[Kolaitis, 2003] Phokion G. Kolaitis. Constraint satisfaction,
databases, and logic. In IJCAI, pages 1587–1595, 2003.

[Kontchakov et al., 2011] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In
IJCAI, pages 2656–2661, 2011.

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: a
theoretical perspective. In PODS, pages 233–246, 2002.

[Libkin and Wong, 1997] Leonid Libkin and Limsoon
Wong. Query languages for bags and aggregate functions.
JCSS, 55(2):241–272, 1997.

[Libkin, 2016] Leonid Libkin. SQL’s three-valued logic and
certain answers. ACM Trans. Database Syst., 41(1):1:1–
1:28, 2016.

[Lipski, 1984] Witold Lipski. On relational algebra with
marked nulls. In PODS, pages 201–203, 1984.

[Lutz et al., 2015] Carsten Lutz, Inanç Seylan, and Frank
Wolter. Ontology-mediated queries with closed predicates.
In IJCAI, pages 3120–3126, 2015.

[Reiter, 1977] R. Reiter. On closed world data bases. In
Logic and Data Bases, pages 55–76, 1977.

[Reiter, 1986] R. Reiter. A sound and sometimes complete
query evaluation algorithm for relational databases with
null values. Journal of the ACM, 33(2):349–347, 1986.

[Vardi, 1986] Moshe Y. Vardi. Querying logical databases.
JCSS, 33(2):142–160, 1986.

