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Abstract Due to its wide field of view, cone-beam computed tomo-
graphy (CBCT) is plagued by large amounts of scatter, where attenu-
ated photons hit the detector, and corrupt the linear models used for
reconstruction. Given that one can generate a good estimate of scatter
however, then image accuracy can be retained. In the context of adapt-
ive radiotherapy, one usually has a low-scatter planning CT image of the
same patient at an earlier time. Correcting for scatter in the subsequent
CBCT scan can either be self consistent with the new measurements or
exploit the prior image, and there are several recent methods that report
high accuracy with the latter. In this study, we will look at the accur-
acy of various scatter estimation methods, how they can be effectively
incorporated into a statistical reconstruction algorithm, along with intro-
ducing a method for matching off-line Monte-Carlo (MC) prior estimates
to the new measurements. Conclusions we draw from testing on a neck
cancer patient are: statistical reconstruction that incorporates the scatter
estimate significantly outperforms analytic and iterative methods with
pre-correction; and although the most accurate scatter estimates can be
made from the MC on planning image, they only offer a slight advant-
age over the measurement based scatter kernel superposition (SKS) in
reconstruction error.

Keywords: computed tomography, scatter estimation, prior informa-
tion, statistical reconstruction

1 Introduction

Cone-beam computed tomography (CBCT) is an imaging modality that is seeing
increased use for image guidance procedures, such as radiation therapy [1]. A key
challenge of this geometry is the vast quantities of scattered photons that reach
the detector [2], and contaminate other line-of-sight measurements. Usually in
this context however, one has a planning scan of the same patient from a more
accurate CT acquisition, such as a helical fan-beam, which has significantly lower
scatter due to better collimation and narrower field-of-view. Typical approaches
to CBCT scatter correction either form a self-consistent model based solely on
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the new measurements [3][4][5][6], or exploit the prior image as a basis for its
estimation [7][8][9].

In this study, we will adopt the perspective that various scatter models allow
one to make an estimate of its expectation, given a set of new CBCT projections,
and potential access to a low-scatter prior CT image. We will then investigate
two key aspects: how accurate can scatter be estimated in a moderate and low
dose setting; and how should these estimates be incorporated into reconstruction.

In the first case, the scatter estimation methods we will look at fall into two
distinct classes—methods that are blind to the planning image, and methods that
exploit it. In our ‘prior blind’ category are a view dependent uniform estimation
[5], the scatter kernel superposition (SKS) [4] and fast asymmetric SKS (fASKS)
[6], along with simulating the scatter through a Monte-Carlo (MC) engine on
a preliminary reconstruction with the fast Feldkamp–Davis–Kress (FDK) [10]
algorithm. Conversely, based upon a rigid registration of the planning image, we
will look at the effectiveness of taking scatter as a smooth projection difference
[7][11], and from using the MC engine on this registered plan. Here, we will
look at both calculating the planning MC estimate on-line, after registration
[9], along with the notion of matching an off-line pre-calculated estimate to the
measurements.

In the second case, in the subsequent reconstruction with each of the estim-
ation methods, we make a distinction between ‘scatter correction’, where meas-
urements are pre-processed to remove its effect, and ‘scatter-aware inference’,
where the imaging operates based on the raw uncorrected measurements and
knowledge of the scatter estimate. Most popular ‘analytic’ and ‘iterative’ tech-
niques, such as FDK and PWLS [12], fall into the former category. Taking the
second approach, although more challenging due to its non-linearity and noncon-
vexity, represents a more accurate data model that may mitigate reconstruction
artefacts and errors.

We begin this article with relevant background material, where we explain
the system model in Section 2.1, an overview of scatter estimation methods in
Section 2.2, and standard reconstruction based on pre-corrected measurements
in Section 2.3. Next, we give details of matching an off-line planning MC scatter
given a rigid translation of the specimen in Section 3.1, along with the model
for statistical scatter aware reconstruction in Section 3.2.

From a dataset derived from repeat CT images of a neck caner patient, we
then evaluate both the scatter estimation accuracy and reconstruction error with
the range the methods under test. The results are then presented in Section 4.3.

2 Background

2.1 System Description

The system we will directly study in this work is a circular scan CBCT. This
consists of a point source and flat panel detector, which rotate throughout 360◦

around the specimen where photons are emitted and measured after a fixed an-
gular increment. Assuming that recorded x-rays are drawn from independent
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Poisson distributions [13][14], then we can write the distribution using monoen-
ergetic Beer-Lambert law with additive scatter component as

yk ∼ Poisson {bk exp(− [Φµ]i) + sk} for k = 1, . . . , N, (1)

where ŷ ∈ RN is a column vector of measurements, b ∈ RN is a vector of
input source fluxes, µ ∈ RM is a vector of linear attenuation coefficients, and
Φ ∈ RN×M is a system matrix describing the path of each ray through the
specimen and onto the detector.

2.2 Estimating Scatter

In this section, we give brief overviews of the various scatter estimation tech-
niques that we evaluate in this study.

Uniform: A simple method that calculates a constant scatter at each projection
angle, we denote as ‘uniform’ [5][15]. Here, using the assumption that a scatter-
to-primary ratio (SPR) is known a-priori, along with a distinction between air
and object containing projections, we can write

s{i} =
SPR

Nair(i)

∑
k∈Cair(i)

y(k) for i = 1, . . . , P, (2)

where Cair(i) is the set of air containing measurements at the ith angle, where the
set satisfies y(k) ≥ tair ∀k ∈ Cair with some scalar threshold tair. This essentially
calculates the mean scatter given a constant ratio. In practice, this SPR can be
found by observing the magnitude of signal in the air region with and without a
specimen present, and assume the difference is scatter. To ensure the scatter is
less than the minimum value in a given projection, a non-negativity constraint
can be added [15].

SKS/fASKS: The scatter kernel superposition (SKS) [4] and fast asymmetric
SKS (fASKS) [6], perform estimation as a convolution of the scatter free incident
beam with an appropriate kernel. Since the incident beam is itself unknown, the
methods iteratively estimate this as the difference between raw measurements
and the updated scatter estimate from the previous iteration. Due to the abil-
ity calculate convolution rapidly through the FFT, both of these methods are
relatively fast, especially when the projections are sub-sampled. Although they
implicitly model the scatter media as homogeneous, the estimates are accurate
in practice [6].

Diff. filt.: A simple concept for predicting the scatter contribution based upon
a planning image is though the smooth difference—‘diff. filt.’—between CBCT
measurements and projections of a registered plan [7]. This model can be ex-
pressed as

s = F(y − b� exp(−Φµreg)), (3)
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where F is a projection-wise filter, or set of filters—sequential median and Gaus-
sian filters are used in [7]—and µreg is the registered planning CT onto a pre-
liminary reconstruction of the CBCT measurements.

Monte-Carlo (MC): Monte-Carlo scatter estimation techniques essentially
draw a number of samples from an accurate probabilistic model of physical
interactions. Given that the model is a faithful representation of reality, then
the true expectation of scatter can be found with infinite samples.

We denote this process as

s̃ ∼MC(b,Φ,µest., NMC),

where s̃ is the estimate after NMC photon simulations distributed throughout
several projection angles and µest. is the image onto which the estimation is
based. We will test the ability of estimating MC scatter onto both a prelimin-
ary FDK with appropriate prior blind estimation, such as SKS, and onto the
planning image.

If the MC simulation is made after the measurements are taken, then it may
be appropriate to sub-sample both the image s̃ and the number of photons, in
order to complete the calculation on-line [9]. In the off-line setting, there is no
immediate limitation on computational time, as it can be performed days or
weeks ahead of the follow-up CBCT. Eventual matching of this off-line estimate
is detailed in Section 3.1.

2.3 Reconstruction from Scatter Correction

In most cases, reconstruction is performed by inferring the attenuation coefficient
given the model in (1), which follows an effective ‘correction’ of scatter. In the
crudest form, this involves simply subtracting the scatter estimate from the
measurements. An advantage of pre-correcting for scatter in this manner, allows
a linear system to be exposed and solved, of the form

p = Φµ+ n, (4)

where n ∈ RN is noise, p ∈ RN is the linearised projection, calculated by

pi = log

(
bi

yi − si

)
for i = 1, ..., N, (5)

where it can be solved by analytic filtered back-projection methods, such as FDK
for CBCT [10], or with iterative methods, that approximate the noise model
in (1) and incorporate regularisation, such as penalised weighted-least-squares
(PWLS). Reconstruction through PWLS involves solving the problem

µ̂ = argmin
µ

(Φµ− p)
T
W (Φµ− p) + λR(µ), (6)

whereW ∈ RN×N is a diagonal weighting matrix with entries wii = (yi−si)2/yi,
R(µ) is a regularisation function to promote desirable structure in µ, and λ is
usually a scalar constant trade-off between data fit and regularisation.
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3 Method

3.1 Off-line Scatter Matching

We propose that the expectation of scatter may be calculated off-line to a high
accuracy based upon a prior image, then matched to the measurements during
replanning. Conceptually, this is very similar to the notion of SKS/fASKS [6],
where the scatter point spread function of a scanner are measured through blocks
of material, and combined with convolution. Instead here, the entire global scat-
ter profile is estimated, and simply shifted to fit the current pose of the patient.
Our framework for this off-line scheme is illustrated in Figure 1.
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Figure 1: Flow diagram for off-line prior MC scatter estimation and statistical
reconstruction.

For the match, we seek a transformation in the coordinates of detecting
elements at each projection angle, for which we adopt the notation

sM{i} = I (s{i}; (uM , vM )i) for i = 1, . . . , P, (7)

where P is the number of projections, I(·) is the 2D linear interpolation of the
image s{i} corresponding to the ith projection angle of scatter estimate, sM{i}
is the matched estimate, and (uM , vM )i are the transformed 2D coordinates
according to u′v′

1

 =

w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

0 0 1

uv
1

 , (8)

where u and v are the original vector of coordinates for the detector, and w are
parameters we wish to calculate through the matching process.

With reference to Figure 2, each scatter projection image with coordinates
u, v is updated based on a rigid translation of an object at the centre of rotation
by [tx, ty, tz]T onto a FDK reconstruction of the measurements. We define a new
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Figure 2: Geometry of scatter shifting.

set of coordinates [rx, ry, rz]T , due to rotation of the source around by the ith

angle ϕi by  rxry
rz

 =

cosϕi − sinϕi 0
sinϕi cosϕi 0

0 0 1

 txty
tz

 .
We note that due to the projection, a translation along rx leads to a change
in scaling, and translations in ry, rz lead to shifting. If we define the distances
lSO, lSD as the lengths from source to origin and the detector respectively, the
transformation to adjust the projection isuMvM

1

 =

 lSO
lSO+rx

0 lSD
lSO+rx

ry
0 lSO

lSO+rx
lSD

lSO+rx
rz

0 0 1

uv
1

 ,
3.2 Reconstruction with Scatter Estimate

Instead of using the approximate linearisation of the model in (1), one could
use it exactly. This is done for general additive Poisson noise in [16], and we
will repeat it here explicitly for the incorporation of a scatter expectation in
CBCT. In this case, reconstruction is taken as a maximum a posteriori (MAP)
estimate, given (1) and a regularisation function to impose desirable properties
in the image, as in PWLS (6).

As in [16], we pursue finding the maximum likelihood, by minimising the
negative log-likelihood of (1), which is denoted

NLL(µ;y, s) =

N∑
i=1

bi exp(− [Φµ]i) + si − yi log (bi exp(− [Φµ]i) + si) . (9)

It should be noted that for si > 0, (9) is nonconvex, so it may not be minimised
with the same ease of the PWLS. Nevertheless, it is continuously differentiable
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with respect to µ, and can therefore be treated with an appropriate first order
method. We note that reconstruction is then solution of

µ̂ = argmin
µ∈C

NLL(µ;y, s) + λR(µ), (10)

where C is a set of box constraints on µ so that 0 ≤ µi ≤ ζ for i = 1, ..., N ,
where ζ is the maximum allowable attenuation coefficient.

Although some may consider the difference between our notions of ‘correc-
tion’ with PWLS and ‘estimation’ to be trivial, there is a compelling distinction.
Whilst in the corrective case, one must carefully design the process to well ap-
proximate the model used, in estimation, the expectation of scatter can be used
directly, and reconstruction may be considered as the direct inference from the
raw measurements. How this translates into practical reconstruction accuracy
will be studied in the experimental section.

4 Experimentation

4.1 Data

The data set we are using is derived from repeat CT scans of a neck cancer
patient from the Cancer Image Archive [17][18]. With these, we will use the first
CT scan as the planning image, then synthesise CBCT measurements on the
follow up after 5 months—these are shown in Figures 3a and 3b respectively. A
strong advantage of using this approach is that one has access to a ground truth,
against which one can perform valid quantitative assessments.

(a) Oracle image (b) Planning image (c) Registered plan

Figure 3: Experimental data used: (a) is the oracle follow-up CT image; (b) is
an unregistered initial planning image; and (c) is the plan registered rigidly onto
an FDK (with SKS correction) reconstruction of the raw data—shown is the
moderate dose, but a separate registration was used in low dose.

To generate the CBCT data, we used the Monte-Carlo simulation tool Gate
[19] with a 60 keV monoenergetic source on the oracle image, where we did runs
with 5× 1010 and 1× 1010 photons over 160 projection angles to represent two
levels of dose.
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4.2 Methods Under Test

Scatter Method Implementation

– Oracle: this is using the true scatter signal from the measurement synthesis,
to represent the ultimate conceivable estimate, and ground-truth for assess-
ment.

– None: scatter signal is not estimated at all.
– Uniform: calculated using (2) [5] with SPR = 0.04 and tair = 4000, 800 for

moderate and low doses.
– SKS/fASKS: implemented with same parameters as [6] for ‘full-fan’ acquis-

ition and 20 iterations each.
– Diff. filt.: using (3) based upon the registered plan in Figure 3c.
– FDK-MC: a sub-sampled MC estimate based upon preliminary FDK (with

SKS correction) reconstruction.
– Online-prior-MC: the work-flow in [9], with sub-sampled MC applied to the

registered planning image in Figure 3c.
– Offline-prior-MC: using a detailed MC of the unregistered planning image in

Figure 3b, and matching as in Section 3.1 from same registration parameters
as other planning methods.

For illustrative purposes, selected scatter estimates, along with the noisy ground-
truth are shown in Figure 4.

(a) Oracle low-dose scatter (b) Uniform estimate (c) SKS estimate

(d) fASKS estimate (e) online-prior-MC estimte (f) offline-prior-MC estimte

Figure 4: Examples of low-dose scatter estimates and ground-truth noisy signal
shown with grey scale [10,70]: (a) is the oracle noisy scatter from the meas-
urement synthesis; (b) is a uniform estimate; (c) and (d) are SKS and fASKS
estimates respectively; (e) and (f) are on-line and off-line planning MC estimates
respectively.
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Reconstruction Implementation The reconstruction methods under test
were FDK, PWLS according to (6), and NLL according to (10). All iterative
methods were run for 200 iterations, which was deemed ample for convergence,
and all λ in the case of PWLS and NLL was set to 2×105, which was numerically
tuned for good performance in both cases.

4.3 Results

Results are summarised in Tables 3 and 2, and selected reconstruction images
are shown in Table 1.

Experiment FDK NLL

oracle

none

SKS

offline-prior-MC

Table 1: Visual experimental results from low-dose measurements

The first observation that can be made from the scatter accuracy in both
moderate and low dose cases, is that the prior-MC methods are the best per-
forming on this data. This is interestingly opposed to the FDK-MC, especially
since it uses the FDK with SKS, over which it has a significantly worse scatter
estimate and only a slight decrease of analytic reconstruction accuracy. Another
significant result is the very poor performance of the diff. filt. method, giving the
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Table 2: Quantitative results for moderate dose (5× 105 photons). All errors are
given as root-mean-squared (RMS), and reconstruction errors are in Hounsfield
Units.

scheme scatter error FDK error PWLS error NLL error

oracle 0 51.8 19.8 19.3
none 218 74.35 78.3 76.3

measurement based online scatter calculation

uniform 77.7 53.9 44.1 36.4
SKS 38.7 60.3 24.2 21.7

fASKS 33.9 50.8 27.1 23.1
FDK-MC 102 56.0 46.0 40.1

prior based online scatter calculation

filt. diff. 135 63.3 66.7 62.5
online-prior-MC 18.5 54.1 22.5 21.2

prior based offline scatter calculation

offline-prior-MC 24.6 58.1 22.7 21.8

Table 3: Quantitative results for low dose (1× 105 photons). All errors are given
as root-mean-squared (RMS), and reconstruction errors are in Hounsfield Units

scheme scatter error FDK error PWLS error NLL error

oracle 0 51.6 23.7 22.5
none 43.9 74.1 78.5 77.4

measurement based online scatter calculation

uniform 27.3 71.9 65.0 60.6
SKS 9.69 56.9 29.3 24.2

fASKS 8.95 51.5 34.1 26.0
FDK-MC 21.2 55.7 49.1 41.4

prior based online scatter calculation

filt. diff. 27.8 63.5 44.7 43.2
online-prior-MC 6.90 53.0 29.6 24.1

prior based offline scatter calculation

offline-prior-MC 7.65 55.6 29.1 24.6

worst estimates of scatter, which is likely due to large errors from mismatches
between the registered plan. Perhaps this would decrease with a non-rigid regis-
tration as in [7], though this will inevitably be increasingly difficult and unstable
in the lower dose settings.

In general, the relationship between relative errors in SKS/fASKS and the
prior MC methods is enlightening. Although fASKS is the best performer in
FDK, this does not hold true for the iterative reconstructions. Apart from this
however, the relative performance of these methods is very similar within the
iterative results, all of which become rather close to the oracle scatter recon-
struction in NLL. Of these, SKS may be the most appealing due to its fast
computation and no reliance to planning registration.
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One global trend in both the moderate and low dose results in Tables 3 and
2 is that NLL is more accurate than PWLS on every count. This is unsurprising,
since PWLS may be considered an approximation to NLL, but is motivating for
avoiding pre-correction in the high scatter setting of CBCT.

5 Conclusions

In this study, we have provided evidence for the differences between various
scatter estimation strategies, and how these may best be incorporated into re-
construction. The most conclusive message is that opting for the NLL is more
accurate than pre-correcting for scatter and using the PWLS, and in a lower
dose setting this difference becomes significant. In terms of scatter estimation,
several of the methods aided rather accurate reconstruction—SKS, fASKS, and
both on-line/off-line planning MC estimating all performed similarly. At least in
the case of the head and neck we look at in this study, it is perhaps not worth
the extra computation of MC estimation from a planning scan, though this may
prove to differ as larger regions such as the pelvis are imaged with an offset
detector. As a second conclusion, we therefore offer that planning images can
help reduce scatter in follow-up CBCT, but one can do almost as well without
this information.
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