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Abstract. We address the task of detecting bacteria and estimating
bacterial load in the human distal lung with fibered confocal fluores-
cence microscopy (FCFM) and a targeted smartprobe. Bacteria appear
as bright dots in the image when exposed to a smartprobe, but they are
often difficult to detect due to the presence of background autofluores-
cence inherent to human lungs. In this study, we create a database of
annotated image frames where a clinician has labelled bacteria, and use
this database for supervised learning to build a suitable bacterial load
estimation software.

1 Introduction

Fibered confocal fluorescence microscopy (FCFM) is a popular method for in
vivo imaging of the distal lung, and has recently gained prominence in investi-
gating the presence of bacteria using targeted smartprobe [1]. Smartprobes are
specialized molecular agents introduced in the imaging area to make the bacteria
fluoresce. FCFM imaging works by recording the number of emitted photons at
each core of a optical fiber bundle. The photon counts are later translated into
pixel intensities to achieve a ‘smooth’ image. Since the diameter of a bacterium
is usually smaller than the width of the fibre core as well as the gap between
two consecutive fiber cores, it appears as a high intensity dot in the image frame
and, tends to ‘blink’ on and off in consecutive image frames due to movement of
the apparatus.

Figure 1 shows examples of FCFM image frames without (top) and with
(bottom) bacteria. In general, human lungs display a mesh-like structure due to
autofluorescence of connective tissues (elastin) with or without the presence of
smartprobe whereas bacteria appear as dots in the image frame when exposed
to smartprobe (Figure 1c). However, one can observe bacteria-like dots in the
absence of the smartprobe as well due to noise (Figure 1a). Additionally, if
bacteria are present, they are usually easy to detect when the elastin structure
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(a) pre-substance control (b) post-substance control

(c) post-substance cases

Fig. 1: FCFM image frames w/ or w/o smartprobe in control or case group.

is not prominent (Figure 1c-left), but it becomes more difficult to discriminate
them from the background in the presence of elastin structure (Figure 1c-right).

We address the task of estimating bacterial load in a FCFM image frame.
We consider a formal approach to the bacteria detection problem by explicitly
annotating bacteria in image frames with the help of a clinician, and use this
knowledge in a supervised learning set-up to learn a classifier that assigns a
probability value to each pixel of the image of a bacterium being present. Esti-
mating bacterial load can generally be framed as a learning-to-count [2] problem
where we need to count the bacteria. However, although the learning-to-count
framework usually bypasses the problem of detection before counting, we sug-
gest detecting the object to allow the clinicians to see where the bacteria are
appearing, ideally while performing the bronchoscopy. That said, our method
bears resemblance with the established learning-to-count approaches with the
major difference being that we learn a classifier to predict a probability value at
each pixel whereas the other approaches learn a regressor to predict the ‘count
density’ (intensity value) at each pixel (see Section 5).

Our final goal is to build a real time system to assist clinicians in estimat-
ing bacterial load while performing bronchoscopy. We suggest using a multi-
resolution spatio-temporal template matching scheme using radial basis func-
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Fig. 2: FCFM image frame with bacteria annotated by a clinician in circles.

tions. Spatio-temporal analysis allows better capturing the ‘blinking’ effect,
whereas multi-resolution analysis allows better discrimination between bacterial
dots and elastin structure which may appear as series of dots. We use normalized
intensity values around each pixel as features, which enables fast implementa-
tion of our method using 2D-convolution. We apply this method in estimating
bacterial load in FCFM videos with and without bacteria (case and control),
before and after applying the smartprobe, and show that we successfully infer
low bacterial load in the control or the pre-substance videos and high bacterial
load in the post-substance videos from the cases.

2 Dataset

2.1 Collection

In vivo imaging was performed in 6 patients (3 cases with gram-negative bacteria
where a bacterial signal was detected and 3 cases with gram-positive bacteria
(controls) where signal was not detected) where measurements were taken before
and after administration of a gram-specific bacterial specific smartprobe (pre-
and post-substance measurements respectively). Each measurement is a FCFM
video (12 frames per second [4]) that were manually cleaned to ensure alveolar
imaging by removing motion blur, air imaging, bronchi etc, and the remaining
clean frames (∼500 in each video) were used for this study.

2.2 Annotation

The learning-to-count problem can be addressed in a variety of different annota-
tion scenarios among which two widely used ones are the dot-annotation and the
count-annotation [5]. While dot-annotation provides the location of where an ob-
ject appear in the image, count-annotation only provides the number of objects
in an image without explicitly revealing the locations. We use dot-annotations
since they are more informative given the small size of the objects we are trying
to count.



t− 1 t t + 1

(a) Image patches around positive (red) and negative (green) annotations: the three
boxes are of sizes 9×9, 27×27 and 45×45 pixels respectively

t− 1 t t + 1
9 × 9

27 × 27

45 × 45

(c) Features for a negative sample

t− 1 t t + 1
9 × 9

27 × 27

45 × 45

(c) Features for a positive sample

Fig. 3: Illustration of spatio-temporal and multi-resolution feature extraction.

We chose 144 image frames from 12 videos such that 72 of them come from
videos without bacteria (8 frames from 9 videos that are either in the control
group or in the pre-substance group), and 72 of them come from videos with
bacteria (24 frames from 3 videos that are in the post-substance case group).
Along with the 144 image frames, the previous and next frames corresponding
to those frames were extracted as well, and the clinician was allowed to toggle
between the previous and next frame to annotate a bacterium in the current
frame. Thus, a bacterium was identified in a spatio-temporal context. Figure 2
shows an example of annotated frame along with respective previous and next
frames to demonstrate the blinking effect.

We observe that although we might encounter false positives, i.e., bacteria
are annotated in either control group or pre-substance group, the clinician suc-
cessfully annotates more bacteria in the frames where bacteria should exist, i.e.,
post-substance case group. For training purposes we only considered positive
annotations from the post-substance case group.



3 Method

3.1 Preprocessing

To reduce the effect of noise and spurious intensity values we adjust the lowest
and highest values of each image frame individually as follows: for each image
frame, first, we set any intensity values below 1% quantile to 0, and next, we set
any intensity values above 99% quantile to the respective 99% quantile values3.

To allow supervised learning, we associate a feature vector xp and label yp
to each pixel in the image and group the pixels in positive (yp = 1) and negative
samples (yp = 0). We use the intensity values over a patch around a pixel as
feature vector. However, we observe that image patches can vary significantly in
contrast and therefore, we normalize them by the total intensity of the patch as
follows: given an image patch {x̃pij}wi,j=1 of size w×w around pixel p, we normalize
the patch as xpij = x̃pij/

∑
ij(x̃

p
ij +ε) where ε = 1 is added to suppress noisy image

patch, i.e., x̃pij ≈ 0. Thus, our basic feature vector is xp = (xp11, . . . , x
p
ij , . . . , x

p
ww).

yp = 1 if p has been annotated by the clinician and 0 otherwise.
For positive labels (yp = 1), we pool all image patches around the pixels

annotated by the clinician. For negative labels (yp = 0), we extract equispaced
image patches over a grid (15 × 15 pixels apart). If any of the ‘negative’ image
patches have a bacterium, they were assigned to the positive samples. Along
with the original image patches, we performed data augmentation by rotating
each image patch by 90, 180 and 270 degrees and adding them to the pool
of samples. This results in about 18,000 positive samples and 540,000 negative
samples. Notice that our classes are severely imbalanced: we use undersampling
of the negative class to maintain a class balance while training a classifier.

For temporal analysis, we extract patches around the same pixel from the
previous and the next image frame, normalize them individually and concate-
nate them to the feature vector from the current frame. For multi-resolution
analysis, we extract larger image patches and ‘downsample’ them to the size of
the smallest patch. This is done to allow equal importance over each resolution.
These patches are normalized individually and concatenated to the feature vec-
tor. We ‘downsample’ the larger image patch, usually 3 or 5 times larger than
the smallest image patch, by averaging over a 3× 3 or 5× 5 window around the
pixel (in the patch) being downsampled. Figure 3 shows examples of positive and
negative image patches. We also observe that i) dot annotations can be noisy in
the sense that the pixel with a bacterium might not be centered, and ii) larger
patch captures the context whereas smaller patch captures the object.

3.2 Supervised learning

Our approach is to assign a probability at each pixel of a bacterium being present.
Therefore, we essentially solve a classification problem from xp to yp. For sim-
plicity and ease of implementation, we suggest logistic regression as a baseline

3 This also increases the dynamic range, and thus helps the clinicians in annotating.



method. However, we observe that it performs rather poorly. We then suggest
radial basis functions network as an alternative, and show that it improves the
performance significantly.

Logistic regression: We solve a L2 regularized logistic regression to learn a linear
classifier, i.e.,

min
w,b
− 1

|P|
∑
p∈P

(
yp log σ(w>xp + b) + (1− yp) log(1− σ(w>xp + b))

)
+

λ

2|P|
||w||2

where σ is the sigmoid function and P is the set of all pixels in either positive
or negative samples, and λ is the regularization parameter. We set λ = 0.01.
Since we have class imbalance, we resample the negative samples to maintain
class balance.

We test the performance of the baseline method with three different choices
of features, i) with 9 × 9 image patches extracted from the current frame, i.e.,
xp ∈ R81, ii) with 9 × 9 image patches extracted from the current as well as
previous and next frame, i.e., xp ∈ R81×3, and iii) with 9 × 9 and 45 × 45
image patches extracted from the previous, current and future frames, i.e., xp ∈
R81×6. We expect (ii) to perform better than (i) since it captures the blinking
effect, whereas (iii) to perform better than (ii) since it provides more contextual
information around a bacterial dot.

Radial basis function network: We learn a radial basis function network (RBF)
[6] as a nonlinear classifier where the input vector xp is first transformed through
a set of nonlinear transformations, or radial basis functions, φi(xp) before being
used as the input to the classifier, i.e., we solve the same problem as in logistic
regression but replace the original feature vector xp with the output of the radial
basis functions {φ(xp−ci)}64i=1 where ci are centers of the radial basis functions.
For φ we used Gaussian kernel with bandwidth set to median intersample dis-
tance. We chose the centers of the radial basis functions using k-means [4]. Since
we have many fewer positive samples than negative, we chose 16 centers from
the positive samples and 48 centers from the negative samples. Figure 4 shows
examples of centers chosen from positive and negative samples. After choosing
the centers, we perform logistic regression from 64 dimensional feature vector to
the class label to learn the weight vector of the network. Notice that for selecting
the centers we used the entire4 negative set rather than undersampled set that
we use for learning the weight vector.

We test the performance of the RBF network with two different choices of
features, i) with 9×9 image patches extracted from the current as well as previ-
ous and next frame, i.e., xp ∈ R81×3, and iii) with 9×9, 27×27 and 45×45 image
patches extracted from the previous, current and future frames, i.e., xp ∈ R81×9.
We expect (ii) to perform better than (i) since it captures more contextual infor-
mation around a bacterial dot. Additionally, we expect RBF network to perform
better than linear logistic regression since it effectively uses 64 ‘templates’ than
one (weight vector in the linear classifier).

4 after cross-validation split.



t− 1 t t + 1
9 × 9

27 × 27

45 × 45

(a) Positive center

t− 1 t t + 1
9 × 9

27 × 27

45 × 45

(b) Negative center

Fig. 4: Examples of centers of RBF network.

3.3 Postprocessing

The classifier returns a probability value at each pixel. These probability values
are then thresholded, and pixels that exceed this threshold value are counted
after non-maximum suppression [8] to estimate bacterial load.

3.4 Evaluation method

Performance metric: We compare different methods in terms of the precision-
recall curve for varying thresholding of the probability map before non-maximum
suppression. Given a contingency table of false positives, true positives, and false
negatives, precision P and recall R are defined as follows.

P =
TP

TP + FP
, R =

TP

TP + FN
.

Given the locations of pixels where a bacterium has been detected and the
annotations by the clinician, we draw a disk of radius r around the annotations,
and if a detection exists within the disk then it is declared to be a match as in
[7].

– If a detection does not match any ground truth annotation, then it is declared
to be a false positive.

– If a ground truth annotation does not match any detection then it is declared
to be a false negative.

– If a detection exclusively matches a ground truth annotation and vice versa,
then the detection is declared to be a true positive.

– If multiple detections exclusively match a ground truth annotation, then one
of them is declared to be a true positive while the rest are declared to be
false positives.
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Fig. 5: Illustration of true positives, false negatives and false positives. + are
ground truth annotations, • are detections and ◦ are disks of radius r around
ground truth annotations.

– If multiple ground truth annotations exclusively match a detection, then the
detection is declared to be a true positive while the rest of the ground truth
annotations are declared to be false negatives.

– If multiple detections and multiple ground truth match each other non-
exclusively then their assignments are resolved greedily. Notice that the as-
signment might not be optimal.

Figure 5 illustrates these different situations. We set r = 4 pixels.

Precision recall curves: We utilize cross-validation to test the performance of the
methods. To elaborate, we divide 144 image frames in 5 groups Ci, i = 1, 2, 3, 4, 5.
To learn the probability map for image frames in group Ci we train a classifier
with positive and negative samples extracted from the remaining four groups
Cj , j 6= i. After repeating this process for each group, these probability maps are
treated as the output of the classifiers, and the precision-recall curve is estimated
by adding the false positive, false negative and true positive values over all image
frames.

4 Result

4.1 Cross-validation

Figure 6 shows the precision-recall curves from all learning methods and feature
extraction strategies. We observe the following,

– RBF network performs better than linear logistic regression
– Using temporal information enhances performance. This can be seen from the

performance of logistic regression with and without temporal information.
– Using multiple resolution enhances performance. This can be seen from the

performance of RBF with and without multiple resolutions.

This follows the intuition behind the use of spatio-temporal multi-resolution
analysis. Figure 7 compares annotations by the clinician and detections made by
the learning algorithms on one of the validation image frame. We observe more
true positives for RBF with multi-resolution spatio-temporal analysis.



Fig. 6: Precision recall curves for different methods in detecting bacteria.

4.2 Case vs. control study

We use the RBF network learned using spatio-temporal multi-resolution analysis
from one of the cross-validation set to estimate bacterial load in each image frame
of the entire dataset (12 videos). Figure 8 shows the estimated bacteria load. As
expected, we observe that the estimated bacterial load shows significant change
in the case group as opposed to control group. Notice that there might exist
image frames in post-substance case videos which do not image a region with
bacteria, thus resulting in low bacteria count.

5 Related work

Estimating bacterial load has previously been addressed in an unsupervised
learning set-up in our group where difference of Gaussians features were used
to enhance the dots in the image. We assessed the precision-recall curve for
the unsupervised approach in the context of the acquired ground truth annota-
tions. This is presented in Figure 6. We observed that the proposed supervised
approach outperforms the unsupervised approach significantly. We also demon-
strated the performance of the proposed method using fold change of bacterial
load in control and case groups before and after the application of the smart-
probe. In the control group, the estimated bacterial load did not change much
when exposed to the smartprobe whereas in the case group the estimated bac-
terial load showed a significant change. Although the results showed the desired
performance in case vs. control group in pre- vs. post-substance measurements,
the method tended to overestimate bacterial load in an image frame.



(a) single res, current frame, LR (b) single res, three frames, LR

(c) single res, three frames, RBF (d) multi res, three frames, RBF

Fig. 7: Ground truth annotations (red) and detected bacteria (blue)

Arteta et al. tackle the problem of object counting as density estimation,
known as density counting, where integrating the resulting density gives an es-
timate of the object count [2]. The authors extract image patch based feature
vector5 xp at each pixel p and construct a dictionary (512 elements) via k-means
with l2 distance. Each feature vector is then mapped to a binary vector zp via
one-hot encoding based on its smallest l2 distance to the dictionary elements.
The authors suggest learning a regression model from zp to yp. This, however,
may lead to overfitting due to matching the density value at each pixel. Instead
the authors suggest matching the densities such that they should match when
integrated over an extended region which leads to a smoothed objective function,
and is equivalent to a spatial Gaussian smoothing6 applied to each feature vector

5 Contrast-normalized intensity values at each pixel in the patch after rotating the
patch by the dominant gradient.

6 The authors suggest using the width of the kernel to be greater than half of the
typical object diameter.



Fig. 8: Change of bacterial load in 3 controls and 3 cases, pre- and post-substance
as assessed by RBF network with spatio-temporal and multi-resolution features.

and response vector before applying ridge regression. Essentially, the algorithm
constructs a set of templates, and each template is assigned a probability value
corresponding to the learned weight vector. Given a test image patch first the
closest dictionary element is found, and the related probability value is assigned
to the patch. Our approach is similar to [2] in the sense that we work with dot
annotations. However, we learn a classifier instead of a regressor, and explicitly
detect where each bacterium appears.

Following the work from [2], Arteta et al. address learning-to-count penguins
in natural images [3]. The authors have access to around 500 thousands im-
ages, and each image has been dot-annotated by a maximum of 20 annotators.
The authors use multi-task learning through convolutional neural network to,
1) separate foreground containing penguins from background, 2) estimate count
density within foreground region, and 3) estimate variability in annotations in
foreground region [3, Figure 2]. We do not use a convolutional neural network
due to lack of training images frames.

6 Discussion

We address the task of estimating bacterial load in FCFM images using targeted
smartprobe. We create a database of annotated image frames where a clinician
has dot-annotated bacteria, and use this database to train a radial basis function
network for estimating bacterial load. We show that spatio-temporal features
along with multi-resolution analysis can better predict the bacterial load since
they capture the ‘blinking’ effect of the bacteria, and provide better contex-
tual information about the bacterial dot. An attractive aspect of the suggested
method is that it can be implemented efficiently using convolution since it esti-
mates the inner product between image patches to compute the outcome of the
radial basis functions. We apply the suggested method in estimating bacterial
load at each image frame of FCFM videos from control and case group. We



observe significant fold change in the case videos before and after introducing
smartprobe, which is not observed in the control group.

While annotating ground truth, it is highly likely that the annotator makes
mistakes: (s)he can either falsely annotate a bacterium when it is noise, or simply
misses annotating a bacteria due to their overwhelming numbers in each frame.
These types of error are common in any annotation process, but it might have a
more severe impact on learning since our objects are ‘dots’: while mis-annotation
in other datasets such as penguin or crowd is mostly due to occlusion or objects
being far away from the camera (for both cases the features of the object pixels
are different from positively annotated objects), for bacteria datasets this is not
true. Therefore, wrongly annotated bacterium can assign different labels to same
feature vector.

We observe that even with more contextual information, elastin structure is
often misinterpreted as bacterial dots. The proposed method can be extended
further using hard negative mining, i.e., explicitly annotating dots which are
misclassified as bacteria but actually part of the elastin structure. This definitely
requires extra effort from the annotator, but should improve the performance
of the classifier. A potential problem with this approach is that it needs to be
revised when more diverse elastin structure becomes available, e.g., we do not
have patients with granular structure (which arises from smoking). We would
need case and control data for this situation in order to cover this scenario. We
plan to explore these extensions and limitations as more clinical data becomes
available, with the goal of building a robust clinical system.
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