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Abstract—We study countably infinite MDPs with parity ob-
jectives, and special cases with a bounded number of colors in
the Mostowski hierarchy (including reachability, safety, Büchi
and co-Büchi).

In finite MDPs there always exist optimal memoryless deter-
ministic (MD) strategies for parity objectives, but this does not
generally hold for countably infinite MDPs. In particular, optimal
strategies need not exist.

For countable infinite MDPs, we provide a complete picture of
the memory requirements of optimal (resp., ε-optimal) strategies
for all objectives in the Mostowski hierarchy.

In particular, there is a strong dichotomy between two different
types of objectives. For the first type, optimal strategies, if they
exist, can be chosen MD, while for the second type optimal
strategies require infinite memory. (I.e., for all objectives in
the Mostowski hierarchy, if finite-memory randomized strategies
suffice then also MD-strategies suffice.) Similarly, some objectives
admit ε-optimal MD-strategies, while for others ε-optimal strate-
gies require infinite memory. Such a dichotomy also holds for the
subclass of countably infinite MDPs that are finitely branching,
though more objectives admit MD-strategies here.

Index Terms—countable MDPs, parity objectives, strategies,
memory requirement

I. INTRODUCTION

Markov decision processes (MDPs) are a standard model for
dynamic systems that exhibit both stochastic and controlled
behavior [23]. The system starts in the initial state and makes
a sequence of transitions between states. Depending on the
type of the current state, either the controller gets to choose
an enabled transition (or a distribution over transitions), or
the next transition is chosen randomly according to a defined
distribution. By fixing a strategy for the controller, one obtains
a probability space of plays of the MDP. The goal of the
controller is to optimize the expected value of some objective
function on the plays of the MDP. The fundamental ques-
tions are “what is the optimal value that the controller can
achieve?”, “does there exist an optimal strategy, or only ε-
optimal approximations?”, and “which types of strategies are
optimal or ε-optimal?”.

Such questions have been studied extensively for finite
MDPs (see e.g. [10] for a survey) and also for certain types
of countably infinite MDPs [23], [21]. However, the literature
on countable MDPs is mainly focused on objective functions
defined w.r.t. numeric costs (or rewards) that are assigned to
transitions, e.g. (discounted) expected total reward or limit-
average reward. In contrast, we study qualitative objectives
that are expressed by Parity conditions and which are motived
by formal verification questions.

There are works that studied particular classes of count-
ably infinite, but finitely branching, MDPs that arise from
models in automata theory [14], [2], [8], [6], [1]. In each
of these papers, a crucial part of the analysis is establishing
the existence of optimal strategies of particular structure and
memory requirements, but none of them looked at proving
such properties for general countable MDPs. Countable MDPs
also naturally occur in the analysis of queueing systems
[17], gambling [4], and branching processes [22], which have
multiple applications. They also show up in the analysis of
finite-state models, e.g. in two-player stochastic games [24],
[13] when reasoning about an optimal strategy against a fixed
(randomised and memory-full) strategy of the opponent.

Finite MDPs vs. Infinite MDPs: It should be noted that many
standard properties (and proof techniques) of finite MDPs do
not carry over to infinite MDPs.

E.g., given some objective, consider the set of all states in
an MDP that have nonzero value. If the MDP is finite then
this set is finite and thus there exists some minimal nonzero
value. This property does not carry over to infinite MDPs.
Here the set of states is infinite and the infimum over the
nonzero values can be zero. As a consequence, even for a
reachability objective, it is possible that all states have value
> 0, but still the value of some states is < 1. Such phenomena
appear already in infinite-state Markov chains like the classic
Gambler’s ruin problem with unfair coin tosses in the player’s
favor (0.6 win, 0.4 lose). The value, i.e., the probability of ruin,
is always > 0, but still < 1 in every state except the ruin state
itself; cf. [15] (Chapt. 14). Another difference is that optimal
strategies need not exist, even for qualitative objectives like
reachability or parity. Even if some state has value 1, there
might not be any single strategy that attains the value 1, but
only an infinite family of ε-optimal strategies for every ε > 0.

Parity objectives: We study general countably infinite MDPs
with parity objectives. Parity conditions are widely used in
temporal logic and formal verification, e.g., they can express
ω-regular languages and modal µ-calculus [16]. Every state
has a color, out of a finite set of colors encoded as natural
numbers. An infinite play is winning iff the highest color that
is seen infinitely often in the play is even. The controller wants
to maximize the probability of winning plays. Subclasses of
parity objectives are defined by restricting the set of used
colors; these are classified in the Mostowski hierarchy [20]
which includes, e.g., Büchi and co-Büchi objectives. Such
prefix-independent infinitary objectives cannot generally be
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Fig. 1: For countable MDPs, these diagrams show the memory requirements of optimal and ε-optimal strategies for objectives in
the Mostowski hierarchy. An objective in a level of the hierarchy subsumes all objectives in lower levels, e.g., {0, 1, 2}-Parity
subsumes {1, 2}-Parity. We have extended the Mostowski hierarchy to include reachability and safety. The magenta (resp.,
blue) regions enclose objectives where memoryless deterministic (MD) strategies are sufficient for optimal (resp., ε-optimal)
strategies; for objectives outside the regions, infinite-memory strategies are necessary. The left diagram is for infinitely branching
MDPs; e.g., ε-optimal strategies for all but reachability objectives require infinite memory, whereas MD-strategies are sufficient
for reachability. The right diagram is for finitely branching MDPs; e.g., optimal strategies (if they exist) can be chosen MD
for all objectives subsumed by {0, 1, 2}-Parity.

encoded by numeric transition rewards as in [23], though both
types subsume the simpler reachability and safety objectives.

There are different types of strategies, depending on whether
one can take the whole history of the play into account
(history-dependent; (H)), or whether one is limited to a finite
amount of memory (finite memory; (F)) or whether deci-
sions are based only on the current state (memoryless; (M)).
Moreover, the strategy type depends on whether the controller
can randomize (R) or is limited to deterministic choices (D).
The simplest type MD refers to memoryless deterministic
strategies.

The type of strategy needed for an optimal (resp. ε-optimal)
strategy for some objective is also called the strategy com-
plexity of the objective. For finite MDPs, MD-strategies are
sufficient for all types of qualitative and quantitative parity
objectives [9], [11], but the picture is more complex for
countably infinite MDPs.

Since optimal strategies need not exist in general, we
consider both the strategy complexity of ε-optimal strategies,
and the strategy complexity of optimal strategies under the
assumption that they exist. E.g., if an optimal strategy exists,
can it be chosen MD?

We provide a complete picture of the memory requirements
for objectives in the Mostowski hierarchy, which is summa-
rized in Figure 1.

In particular, our results show that there is a strong di-
chotomy between two different classes of objectives. For ob-
jectives of the first class, optimal strategies, where they exist,
can be chosen MD. For objectives of the second class, optimal
strategies require infinite memory in general, in the sense that
all FR-strategies achieve the objective only with probability

zero. A similar dichotomy applies to ε-optimal strategies. For
certain objectives, ε-optimal MD-strategies exist, while for
all others even ε-optimal strategies require infinite memory
in general. This is a strong dichotomy because there are no
objectives in the Mostowski hierarchy for which other types of
strategies (MR, FD, or FR) are both necessary and sufficient.
Put differently, for all objectives in the Mostowski hierarchy,
if FR-strategies suffice then MD-strategies suffice as well.

We also consider the subclass of countable MDPs that are
finitely branching. (Note that these generally still have an
infinite number of states.) The above mentioned dichotomies
apply here as well, though the classes of objectives where
optimal (resp. ε-optimal) strategies can be chosen MD are
larger than for general countable MDPs.

Outline of the results: In Section II we define countably
infinite MDPs, strategies and parity objectives. In Section III
we show examples that demonstrate that certain objectives
require infinite memory. For some of these we refer to previous
work. The main new result in this section is Theorem 1
that shows that even almost-sure {1, 2, 3}-Parity on finitely
branching MDPs requires infinite memory. These negative re-
sults highlight the questions which other objectives still allow
MD-strategies. Apart from the case of reachability objectives,
these questions were open. We provide complete answers in
several steps. First, in Section IV, we prove a general result
(Theorem 5) that relates the strategy complexity of almost-
sure winning strategies and optimal strategies. The complexity
of the proof is due to the fact that we consider infinite
MDPs (which do not satisfy basic properties of finite MDPs
in general; see above). We then use this theorem to estab-
lish MD-strategies for Büchi, co-Büchi and {0, 1, 2}-Parity
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objectives in the following sections. In Section V we show
that optimal strategies for Büchi objectives, where they exist,
can be chosen MD, even for infinitely branching MDPs. In
Section VI we consider finitely branching MDPs. We show
that optimal strategies for {0, 1, 2}-Parity, where they exist,
can be chosen MD (Theorem 16). This is a very general result.
E.g., this question had been open (and is non-trivial) even for
almost-sure co-Büchi objectives. Moreover, we show that ε-
optimal strategies for co-Büchi objectives can be chosen MD
(Theorem 19). We conclude the paper with a discussion of how
some results change when one considers uncountable MDPs.

II. PRELIMINARIES

A probability distribution over a countable (not necessarily
finite) set S is a function f : S → [0, 1] s.t.

∑
s∈S f(s) = 1.

We use supp(f) = {s ∈ S | f(s) > 0} to denote the support
of f . Let D(S) be the set of all probability distributions over S.

We consider countably infinite Markov decision processes
(MDPs) M = (S, S2, S©,−→, P ) where the countable set S
of states is partitioned into the set S2 of states of the player
and random states S©. The relation −→ ⊆ S × S is the
transition relation. We write s−→s′ if (s, s′) ∈ −→, and
we assume that each state s has a successor state s′ with
s−→s′. The probability function P : S© → D(S) assigns to
each random state s ∈ S© a probability distribution over its
successor states. A set T ⊆ S is a sink in M if for all s ∈ T
all successors of s are in T . The MDP M is called finitely
branching if each state has only finitely many successors;
otherwise, it is infinitely branching. A Markov chain is an
MDP where S2 = ∅, i.e., all states are random states.

We describe the behavior of an MDP as a one-player
stochastic game played for infinitely many rounds. The game
starts in a given initial state s0. In each round, if the game
is in state s ∈ S2 then the player (or controller) chooses
a successor state s′ with s−→s′; otherwise the game is in
a random state s ∈ S© and proceeds randomly to s′ with
probability P (s)(s′).

Strategies. A play w is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ≥ 0; let w(i) = si denote the
i-th state along w. A partial play is a finite prefix of a play.
We say that (partial) play w visits s if s = w(i) for some i,
and that w starts in s if s = w(0). A strategy is a function
σ : S∗S2 → D(S) that assigns to partial plays ws ∈ S∗S2

a distribution over the successors {s′ ∈ S | s−→s′}. The
set of all strategies in M is denoted by ΣM (we omit the
subscript and write Σ ifM is clear). A (partial) play s0s1 · · ·
is induced by strategy σ if si+1 ∈ supp(σ(s0s1 · · · si)) for
all i with si ∈ S2, and si+1 ∈ supp(P (si)) for all i with
si ∈ S©.

Since this paper focuses on the memory requirements of
strategies, we present an equivalent formulation of strategies,
emphasizing the amount of memory required to implement
a strategy. Strategies can be implemented by probabilistic
transducers T = (M,m0, πu, πs) where M is a countable
set (the memory of the strategy), m0 ∈ M is the initial

memory mode and S is the input and output alphabet. The
probabilistic transition function πu : M× S → D(M) updates
the memory mode of transducer. The probabilistic successor
function πs : M × S2 → D(S) outputs the next successor,
where s′ ∈ supp(πs(m, s)) implies s−→s′. We extend πu to
D(M) × S → D(M) and πs to D(M) × S2 → D(S), in the
natural way. Moreover, we extend πu to paths by πu(m, ε) =
m and πu(m, s0 · · · sn) = πu(πu(s0 · · · sn−1,m), sn). The
strategy σT : S∗S2 → D(S) induced by the transducer T is
given by σT(s0 · · · sn) := πs(sn, πu(s0 · · · sn−1,m0)). Note
that such strategies allow for randomized memory updates and
probabilistic successor functions.

Strategies are in general history dependent (H) and random-
ized (R). An H-strategy σ is finite memory (F) if there exists
some transducer T with memory M such that σT = σ and
|M| <∞; otherwise we say σ requires infinite memory. An F-
strategy is memoryless (M) (also called positional) if |M| = 1.
We may view M-strategies as functions σ : S2 → D(S).
An R-strategy σ is deterministic (D) if πu and πs map to
Dirac distributions; it implies that σ(w) is a Dirac distribution
for all partial plays w. All combinations of the properties
in {M,F,H} × {D,R} are possible, e.g., MD stands for
memoryless deterministic. HR strategies are the most general
type.

Probability Measures. An MDP M = (S, S2, S©,−→, P ),
an initial state s0, and a strategy σ induce a standard
probability measure on sets of infinite plays. We write
PM,s0,σ(R) for the probability of a measurable set R ⊆
s0S

ω of plays starting from s0. It is defined, as usual,
by first defining it on the cylinders s0s1 . . . snS

ω , where
s1, . . . , sn ∈ S: if s0s1 . . . sn is not a partial play induced
by σ then set PM,s0,σ(s0s1 . . . snS

ω) = 0; otherwise set
PM,s0,σ(s0s1 . . . snS

ω) =
∏n−1
i=0 σ̄(s0s1 . . . si)(si+1), where

σ̄ is the map that extends σ by σ̄(ws) = P (s) for any
ws ∈ S∗S©. Using Carathéodory’s extension theorem [5], this
defines a unique probability measure PM,s0,σ on measurable
subsets of s0S

ω .

Objectives. Let M = (S, S2, S©,−→, P ) be an MDP. The
objective of the player is determined by a predicate on infinite
plays. We assume familiarity with the syntax and semantics
of the temporal logic LTL [12]. Formulas are interpreted on
the structure (S,−→). We use JϕKs ⊆ sSω to denote the set
of plays starting from s that satisfy the LTL formula ϕ. This
set is measurable [25], and we just write PM,s,σ(ϕ) instead
of PM,s,σ(JϕKs). We also write JϕK for

⋃
s∈SJϕKs.

Given a target set T ⊆ S, the reachability objective is
defined by Reach(T ) = JFT K, i.e., s0s1 · · · ∈ Reach(T ) ⇔
∃i. si ∈ T . The safety objective is defined by Safety(T ) =
JG¬T K, i.e., s0s1 · · · ∈ Safety(T ) ⇔ ∀i. si 6∈ T . Given a
reachability or a safety objective, we can assume without loss
of generality that T is a sink in M.

Let C ⊆ N be a finite set of colors. A color function Col :
S → C assigns to each state s its color Col(s). For n ∈ N,
� ∈ {<,≤,=,≥, >} and Q ⊆ S, let [Q]Col�n := {s ∈ Q |
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Col(s) � n} be the set of states in Q with color �n. The
parity objective is defined by

Parity(Col) :=
r∨
i∈C

(
GF[S]Col=2·i ∧ FG[S]Col≤2·i)z

,

i.e., Parity(Col) is the set of infinite plays such that the
largest color that occurs infinitely often along the play is even.

The Mostowski hierarchy [20] classifies parity objectives by
restricting the range of the function Col to a set of colors C ⊆
N. We write C-Parity for such restricted parity objectives. In
particular, Büchi objectives correspond to {1, 2}-Parity, and
co-Büchi objectives correspond to {0, 1}-Parity. The objec-
tives {0, 1, 2}-Parity and {1, 2, 3}-Parity are incomparable,
but they both subsume (modulo renaming of colors) Büchi
and co-Büchi objectives. Moreover, both {0, 1}-Parity and
{1, 2}-Parity subsume the reachability objective Reach(T )
(for MDPs with a sink T ), by defining the color function so
that Col(s) = 1 ⇔ s 6∈ T . Similarly, both {0, 1}-Parity and
{1, 2}-Parity subsume Safety(T ), by defining Col(s) =
1 ⇔ s ∈ T .

Optimal and ε-Optimal Strategies. Given an objective ϕ,
the value of state s in an MDP M, denoted by valM(s), is
the supremum probability of achieving ϕ, i.e., valM(s) :=
supσ∈Σ PM,s,σ(ϕ). For ε ≥ 0 and s ∈ S, we say that a strat-
egy σ is ε-optimal iff PM,s,σ(ϕ) ≥ valM(s)−ε. A 0-optimal
strategy is called optimal. An optimal strategy is almost-surely
winning if valM(s) = 1. Unlike in finite-state MDPs, optimal
strategies need not exist in countable MDPs, not even for
reachability objectives in finitely branching MDPs. However,
by the definition of the value, for all ε > 0, an ε-optimal
strategy exists.

For an objective ϕ and � ∈ {≥, >} and c ∈ [0, 1], we define[
ϕ
]�c

as the set of states s for which there exists a strategy σ
with PM,s,σ(ϕ) � c. We call a state s almost-surely winning
if s ∈

[
ϕ
]≥1

, and we call s limit-surely winning if s ∈
[
ϕ
]≥c

for every constant c < 1 (which is iff valM(s) = 1). On
infinite arenas, limit-surely winning states are not necessarily
almost-surely winning.

III. OBJECTIVES THAT REQUIRE INFINITE MEMORY

In this section we consider those objectives in the
Mostowski hierarchy where optimal (resp., ε-optimal) strate-
gies require infinite memory. In each such case we construct
an MDP that witnesses this requirement. In these MDPs, all
FR-strategies achieve the objective only with probability 0,
while some HD-strategy achieves the objective almost-surely
(resp., with arbitrarily high probability).

Theorem 1. Let ϕ = {1, 2, 3}-Parity. There exists a finitely
branching MDP M with initial state s0 such that
• for all FR-strategies σ, we have PM,s0,σ(ϕ) = 0,
• there exists an HD-strategy σ such that PM,s0,σ(ϕ) = 1.

Hence, optimal (and even almost-surely winning)
and ε-optimal strategies require infinite memory
for {1, 2, 3}-Parity, even in finitely branching MDPs.

The MDP in Theorem 1 is depicted in Figure 2 (left),
where Col(si) = 1 and Col(ri) = 2 for all i ∈ N, and
Col(t) = 3. For every FR-strategy there is a uniform lower
bound on the probability of visiting t between consecutive
visits to s0. Hence, unless the strategy with positive probability
eventually always stays in states si (and thus also loses the
almost-sure parity objective), in the long-run, the probability
of visiting t (with color three) tends to 1, and the parity
condition is satisfied with probability 0. Although the player
cannot win by any FR-strategy, we construct an HD-strategy
σ such that PM,s0,σ(ϕ) = 1. This strategy is such that upon
the ith visit to s0, the ladder s0s1 · · · si is traversed and the
transition si−→ri is chosen. Moving further along the ladder
s0s1s2 · · · decreases the probability of visiting t between the
previous and successive visits to s0. Hence, the probability of
visiting color three infinitely often is 0.

Remark 1. A strict subclass of finitely branching MDPs are
1-counter MDPs, where a finite-state MDP is augmented with
an integer counter [6]. The MDP in Theorem 1 (plus some
auxiliary states) is implementable by a 1-counter MDP.

Remark 2. The classical Rabin and Streett conditions can
encode {1, 2, 3}-Parity. Thus, optimal and ε-optimal strate-
gies for Rabin/Streett require infinite memory, even in finitely
branching countable MDPs.

On finite MDPs, optimal strategies can be chosen MD for
parity and Rabin objectives, but not for Streett objectives.
Optimal strategies for Streett objectives can be chosen MR
or FD [9].

Proof. For an infinite play π∞, let Inf(π∞) be the set of states
that π∞ visits infinitely often. Let us recall the Rabin and
Streett conditions.

Given a Rabin condition {(E1, F1), (E2, F2), · · · , (En, Fn)}
with n pairs (or n disjunctions), an infinite play π∞ satisfies
the Rabin condition if there exists a pair (Ei, Fi) such that
Inf(π∞)∩Ei = ∅ and Inf(π∞)∩Fi 6= ∅. The Rabin condition

{([S]Col=3, [S]Col=2)}

encodes {1, 2, 3}-Parity, since all satisfying runs must visit
states with color 2 infinitely often and states with color 3 only
finitely often. Note that {1, 2, 3}-Parity is encoded in a Rabin
condition with only one disjunction.

Given a Streett condition {(E1, F1), (E2, F2), · · · , (En, Fn)}
with n pairs (or n conjunctions), an infinite play π∞

satisfies the Streett condition if Inf(π∞) ∩ Ei = ∅ implies
Inf(π∞)∩ Fi = ∅ for all pairs (Ei, Fi). The Streett condition

{([S]Col=2, S), (∅, [S]Col=3)}

encodes {1, 2, 3}-Parity, since all satisfying runs must visit
states with color 2 infinitely often and states with color 3 only
finitely often.

Note that a conjunction of two Streett pairs are needed
to encode {1, 2, 3}-Parity. A single Streett pair {(X,Y )}
means “infinitely often X or only finitely often Y ”, which
can be encoded as a {0, 1, 2}-Parity condition by assigning
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a) Almost-sure {1, 2, 3}-Parity

s0 s1 · · · si · · ·

r0 r1 · · · ri · · ·

b

1 1
2

1
2i

1
2

1− 1
2i

b) Limit-sure Büchi

Fig. 2: Two finitely branching MDPs where the states s ∈ S2 of the player are drawn as squares and random states s ∈ S©
as circles. The color Col(s) of s is indicated with the number of boundaries; for example, a double boundary for color 2.
State s0 in the MDP on the left is almost-surely winning for {1, 2, 3}-Parity, but all almost-surely winning strategies require
infinite memory. The MDP on the right is such that, for all c > 0, strategies that achieve Büchi with probability at least c
require infinite memory.

color 2 to X and color 1 to Y . Unlike for {1, 2, 3}-Parity,
optimal strategies for {0, 1, 2}-Parity (and thus also for a
single Streett pair) can be chosen MD in finitely branching
MDPs (Theorem 16).

It was known that quantitative Büchi objectives require infinite
memory [18], [2]. For the sake of completeness, we present
an example MDP for Proposition 2 in Figure 2 (right).

Proposition 2 ([18]). Let ϕ = {1, 2}-Parity be the Büchi
objective. There exists a finitely branching MDPM with initial
state s0 such that
• for all FR-strategies σ, we have PM,s0,σ(ϕ) = 0,
• for every c ∈ [0, 1), there exists an HD-strategy σ such

that PM,s0,σ(ϕ) ≥ c.
Hence, ε-optimal strategies for Büchi objectives require infinite
memory.

Theorem 3. Let ϕ = Safety(T ). There exists an infinitely
branching MDP M with initial state s such that
• for all FR-strategies σ, we have PM,s,σ(ϕ) = 0,
• for every c ∈ [0, 1), there exists an HD-strategy σ such

that PM,s,σ(ϕ) ≥ c.
Hence, ε-optimal strategies for safety require infinite memory.

The MDP in Theorem 3, depicted in Figure 3 (left), was
first introduced in [19]. Since our notion of finite-memory
strategies allows for randomized memory updates (in contrast
to [19]), our proof is somewhat more general. The target is
T = {t}. For every FR-strategy there is a uniform lower bound
on the probability of reaching t between consecutive visits
to s0. Since t is absorbing, it will be reached with proba-
bility 1. Thus every FR-strategy satisfies the safety objective
with probability 0. However, for all n ∈ N, we construct an
HD-strategy σn such that PM,s,σn(Safety({t})) ≥ 1 − 1

2n .
This strategy is such that upon the ith visit to s, the transi-
tion s−→ri+n is chosen. Hence, the probability of visiting t
between two successive visits to s decreases. A more detailed
analysis shows that the probability of ever visiting t is bounded
by 1

2n .

Theorem 4. Let ϕ = {0, 1}-Parity be the co-Büchi objective.
There exists an infinitely branching MDPM with initial state
s such that
• for all FR-strategies σ, we have PM,s,σ(ϕ) = 0,
• there exists an HD-strategy σ such that PM,s,σ(ϕ) = 1.

Hence, optimal (and even almost-surely winning) strategies
and ε-optimal strategies for co-Büchi require infinite memory.

The MDP in Theorem 4 is depicted in Figure 3 (right). By a
similar argument as in Theorem 3, every FR-strategy achieves
co-Büchi with probability 0. However, the HD-strategy σ that
chooses the transition s−→ri upon the ith visit to s is such
that PM,s,σ(ϕ) = 1.

IV. FROM ALMOST-SURE WINNING TO OPTIMAL
STRATEGIES

In this section we prove Theorem 5. It says that, for certain
objectives, if almost-surely winning strategies (where they
exist) can be chosen MD, then optimal strategies (where they
exist) can also be chosen MD.

We call a class C of MDPs downward-closed if every MDP
whose transition relation is a subset of the transition relation
of some MDP in C is also in C. The class of finitely branching
MDPs is downward-closed, and so is the class of MDPs with
a fixed sink T .

We call an objective ϕ prefix-independent in C (where C
is a class of MDPs) if for all w1, w2 ∈ S∗ and all w ∈ Sω
such that w1w and w2w are infinite plays in an MDP in C
we have w1w ∈ JϕK ⇐⇒ w2w ∈ JϕK. Parity objectives are
prefix-independent in the class of all MDPs. Both objectives
Reach(T ) and Safety(T ) are prefix-independent in the class
of MDPs with sink T .

The following theorem provides, under certain conditions,
an optimal MD-strategy for all states that have an optimal
strategy. In fact, a single MD-strategy is optimal for all states
that have an optimal strategy:

Theorem 5. Let ϕ be an objective that is prefix-independent
in a downward-closed class C of MDPs. Suppose that for
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b) Almost-sure co-Büchi

Fig. 3: In the infinitely branching MDP on the left, all ε-optimal strategies for Safety require infinite memory. In the infinitely
branching MDP on the right, all optimal (and thus almost-surely winning) strategies for co-Büchi require infinite memory.

any M = (S, S2, S©,−→, P ) ∈ C and any s ∈ S and any
strategy σ with PM,s,σ(ϕ) = 1 there exists an MD-strategy σ′

with PM,s,σ′(ϕ) = 1.
Under this condition, for each M ∈ C there is an MD-

strategy σ′ such that for all s ∈ S:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒
PM,s,σ′(ϕ) = valM(s)

The remainder of the section is devoted to the proof of
Theorem 5.

For prefix-independent winning conditions, whenever an
optimal strategy visits some state, it achieves the value of this
state; see Lemma 20 in the appendix. We use this to show that
the MDP constructed in the following lemma is well-defined.
This MDP, M∗, will be crucial for the proof of Theorem 5.
Loosely speaking, M∗ is the MDP M conditioned under ϕ.

Lemma 6. Let ϕ be an objective that is prefix-independent
in a class C of MDPs. Let M = (S, S2, S©,−→, P ) ∈ C.
Construct an MDPM∗ = (S∗, S∗2, S∗©,−→∗, P∗) by setting

S∗ = {s ∈ S | ∃σ. PM,s,σ(ϕ) = valM(s) > 0}

and S∗2 = S∗ ∩ S2 and S∗© = S∗ ∩ S© and

−→∗ = {(s, t) ∈ S∗ × S∗ | s−→t and if s ∈ S∗2
then valM(s) = valM(t)}

and P∗ : S∗© → D(S∗) so that

P∗(s)(t) = P (s)(t) · valM(t)

valM(s)

for all s ∈ S∗© and t ∈ S∗ with s−→∗ t. Then:
1) For all σ ∈ ΣM∗ and all n ≥ 0 and all s0, . . . , sn ∈ S∗

with s0−→∗ s1−→∗ · · · −→∗ sn:

PM∗,s0,σ(s0s1 · · · snSω) =

PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)

2) For all s0 ∈ S∗ and all σ ∈ ΣM with PM,s0,σ(ϕ) =
valM(s0) > 0 and all measurable R ⊆ s0S

ω we have
PM∗,s0,σ(R) = PM,s0,σ(R | JϕKs0).

The following lemma provides, under certain conditions,
a uniform almost-surely winning MD-strategy, i.e., one that
works for all initial states at the same time:

Lemma 7. Let M = (S, S2, S©,−→, P ) be an MDP. Let ϕ
be an objective that is prefix-independent in {M}. Suppose
that for any s ∈ S and any strategy σ with PM,s,σ(ϕ) = 1
there exists an MD-strategy σ′ with PM,s,σ′(ϕ) = 1. Then
there is an MD-strategy σ′ such that for all s ∈ S:(

∃σ ∈ Σ.PM,s,σ(ϕ) = 1
)

=⇒ PM,s,σ′(ϕ) = 1

Proof. We can assume that all states are almost-surely win-
ning, since in order to achieve an almost-sure winning objec-
tive, the player must forever remain in almost-surely winning
states. So we need to define an MD-strategy σ′ so that for all
s ∈ S we have PM,s,σ′(ϕ) = 1.

Fix an arbitrary state s1 ∈ S. By assumption there is an
MD-strategy σ1 with PM,s1,σ1

(ϕ) = 1. Let U1 ⊆ S be the
set of states that occur in plays that both start from s1 and are
induced by σ1. We have PM,s1,σ1(JϕKs1 ∩ Uω1 ) = 1. In fact,
for any s ∈ U1 and any strategy σ that agrees with σ1 on U1

we have PM,s,σ(JϕKs ∩ Uω1 ) = 1.
If U1 = S we are done. Otherwise, consider the MDP M1

obtained fromM by fixing σ1 on U1 (i.e., inM1 we can view
the states in U1 as random states). We argue that, in M1, for
any state s there is an MD-strategy σ′1 with PM1,s,σ′1

(ϕ) = 1.
Indeed, let s ∈ S be any state. Recall that there is an MD-
strategy σ with PM,s,σ(ϕ) = 1. Let σ′1 be the MD-strategy
obtained by restricting σ to the non-U1 states (recall that the
U1 states are random states in M1). This strategy σ′1 almost
surely generates a play that either satisfies ϕ without ever
entering U1 or at some point enters U1. In the latter case, ϕ is
satisfied almost surely: this follows from prefix-independence
and the fact that σ′1 agrees with σ1 on U1. We conclude that
PM1,s,σ′1

(ϕ) = 1.
Let s2 ∈ S\U1. We repeat the argument from above, with s2

instead of s1, and withM1 instead ofM. This yields an MD-
strategy σ2 and a set U2 3 s2 with PM1,s2,σ2

(JϕKs2∩Uω2 ) = 1.
In fact, for any s ∈ U2 and any strategy σ that agrees with σ2

on U2 and with σ1 on U1 we have PM,s,σ(JϕKs ∩ Uω2 ) = 1.
If U1 ∪U2 = S we are done. Otherwise we continue in the

same manner, and so forth. Since S is countable, we can pick
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s1, s2, . . . to have
⋃
i≥1 Ui = S. Define an MD-strategy σ′

such that for any s ∈ S2 we have σ′(s) = σi(s) for the
smallest i with s ∈ Ui. Thus, if s ∈ Ui, we have PM,s,σ′(ϕ) ≥
PM,s,σ′(JϕKs ∩ Uωi ) = 1.

The following measure-theoretic lemma will be used to
connect probability measures induced by the MDPs M and
M∗ from Lemma 6.

Lemma 8. Let S be countable and s ∈ S. Call a set of the
form swSω for w ∈ S∗ a cylinder. Let P,P ′ be probability
measures on sSω defined in the standard way, i.e., first on
cylinders and then extended to all measurable sets R ⊆ sSω .
Suppose there is x ≥ 0 such that x · P(C) ≤ P ′(C) for all
cylinders C. Then x ·P(R) ≤ P ′(R) holds for all measurable
R ⊆ sSω .

We are ready to prove Theorem 5.

Proof of Theorem 5. As in the statement of the theorem,
suppose that ϕ is an objective that is prefix-independent
in a downward-closed class C of MDPs so that for any
M = (S, S2, S©,−→, P ) ∈ C and any s ∈ S and any
strategy σ with PM,s,σ(ϕ) = 1 there exists an MD-strategy σ′

with PM,s,σ′(ϕ) = 1. Let M = (S, S2, S©,−→, P ) ∈ C.
Let M∗ = (S∗, S∗2, S∗©,−→∗, P∗) be the MDP defined in
Lemma 6. Since C is downward-closed, we have M∗ ∈ C. In
particular, ϕ is prefix-independent in {M∗}.

First we show that for any s ∈ S∗ there exists an MD-
strategy σ′ with PM∗,s,σ′(ϕ) = 1. Indeed, let s ∈ S∗. By
the definition of S∗, there is a strategy σ with PM,s,σ(ϕ) =
valM(s) > 0. By Lemma 6.2, we have PM∗,s,σ(ϕ) = 1.
By our assumption on C there exists an MD-strategy σ′ with
PM∗,s,σ′(ϕ) = 1.

By Lemma 7, it follows that there is an MD-strategy σ′ with
PM∗,s,σ′(ϕ) = 1 for all s ∈ S∗. We show that this strategy σ′

satisfies the property claimed in the statement of the theorem.
To this end, let n ≥ 0 and s0, s1, . . . , sn ∈ S. If s0s1 · · · sn

is a partial play in M∗ then, by Lemma 6.1,

PM∗,s0,σ′(s0s1 · · · snSω)

= PM,s0,σ′(s0s1 · · · snSω) · valM(sn)

valM(s0)
,

and thus, as valM(sn) ≤ 1,

valM(s0) · PM∗,s0,σ′(s0s1 · · · snSω)

≤ PM,s0,σ′(s0s1 · · · snSω) .

If s0s1 · · · sn is not a partial play in M∗ then
PM∗,s0,σ′(s0s1 · · · snSω) = 0 and the previous inequality
holds as well. Therefore, by Lemma 8, we get for all
measurable sets R ⊆ s0S

ω:

valM(s0) · PM∗,s0,σ′(R) ≤ PM,s0,σ′(R)

In particular, since PM∗,s0,σ′(ϕ) = 1, we obtain valM(s0) ≤
PM,s0,σ′(ϕ). The converse inequality PM,s0,σ′(ϕ) ≤
valM(s0) holds by the definition of valM(s0), hence we
conclude PM,s0,σ′(ϕ) = valM(s0).

V. WHEN MD-STRATEGIES SUFFICE IN GENERAL
COUNTABLE MDPS

Ornstein [21] shows that ε-optimal and optimal strategies
for reachability can be chosen MD:

Theorem 9 (from Theorem B in [21]). For every countable
MDP M there exist uniform ε-optimal MD-strategies for
reachability objectives ϕ = Reach(T ), i.e., for every ε > 0
there is an MD-strategy σε such that for all s ∈ S we have
PM,s,σε(ϕ) ≥ valM(s)− ε.

Theorem 10 (follows from Proposition B in [21]). Let M =
(S, S2, S©,−→, P ) be an MDP, and ϕ = Reach(T ). Let s0 ∈
S and σ be a strategy with PM,s0,σ(ϕ) = 1. Then there is an
MD-strategy σ̂ with PM,s0,σ̂(ϕ) = 1.

Both theorems are due to [21]; we give an alternative proof
of Theorem 10 in the appendix. We generalize Theorem 10
to Büchi objectives, using the principle that Büchi is repeated
reachability:

Proposition 11. Let M = (S, S2, S©,−→, P ) be an MDP,
and s0 ∈ S, and σ a strategy, and Col : S → {1, 2}, and
ϕ = Parity(Col). Suppose PM,s0,σ(ϕ) = 1. Then there is
an MD-strategy σ′ with PM,s0,σ′(ϕ) = 1.

By appealing to Theorem 5 it follows:

Theorem 12. Let M be an MDP, Col : S → {1, 2},
and ϕ = Parity(Col) be a Büchi-objective (subsuming
reachability and safety). Then there exists an MD-strategy σ′

that is optimal for all states that have an optimal strategy:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒
PM,s,σ′(ϕ) = valM(s)

VI. WHEN MD-STRATEGIES SUFFICE IN FINITELY
BRANCHING MDPS

In this section we prove that optimal strategies for
{0, 1, 2}-Parity, where they exist, can be chosen MD (The-
orem 16) and that ε-optimal strategies for co-Büchi objectives
can be chosen MD (Theorem 19). To prepare the ground for
these results, we first consider safety objectives.

A. Optimal MD-strategies for Safety

The following proposition asserts in particular that for safety
in finitely branching MDPs, there is no need for merely ε-
optimal strategies, as there always exists an optimal MD-
strategy.

Proposition 13 (from Theorem 7.3.6(a) in [23]). Let M =
(S, S2, S©,−→, P ) be a finitely branching MDP, and T ⊆
S, and ϕ = Safety(T ). Define an MD-strategy σopt-av (for
“optimal avoiding”) that, in each state s, picks a successor
state with the largest value valM(s) = supσ∈Σ PM,s,σ(ϕ).
Then for all states s ∈ S we have PM,s,σopt-av (ϕ) = valM(s),
i.e., σopt-av is uniformly optimal.

Note that, for infinitely branching MDPs, this definition
of σopt-av would be unsound, as “the largest value” might
not exist.
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Definition 1. Let M = (S, S2, S©,−→, P ) be a finitely
branching MDP, Col : S → N a color function, ϕ =
Safety([S]Col 6=0), σopt-av the strategy from Proposition 13
and τ ∈ [0, 1]. We define

SafeM(τ) := {s ∈ S | PM,s,σopt-av
(ϕ) ≥ τ} ,

i.e., SafeM(τ) is the set of states from which the player can
remain within color-0 states forever with probability ≥ τ . We
drop the subscript M when the MDP M is understood.

Loosely speaking, the following lemma gives a lower bound
on the probability that, starting from a “safe” state, “unsafe”
states are forever avoided by σopt-av :

Lemma 14. Let M = (S, S2, S©,−→, P ) be a finitely
branching MDP, Col : S → N a color function and σopt-av
the strategy from Proposition 13. Let 0 < τ1 ≤ τ2 ≤ 1, and
s ∈ Safe(τ2). Then PM,s,σopt-av (GSafe(τ1)) ≥ τ2−τ1

1−τ1 .

Proof. We compute probabilities conditioned under the
event GSafe(τ1). Since Safe(τ1) ⊆ [S]Col=0, we have
PM,s,σopt-av

(G[S]Col=0 | GSafe(τ1)) = 1. From the
definition of Safe(τ1) and the Markov property we get
PM,s,σopt-av

(G[S]Col=0 | ¬GSafe(τ1)) ≤ τ1. Applying the law
of total probability and writing x for PM,s,σopt-av (GSafe(τ1))
we obtain:

τ2 ≤ PM,s,σopt-av
(G[S]Col=0) Def. 1

= PM,s,σopt-av (G[S]Col=0 | GSafe(τ1)) · x
+ PM,s,σopt-av

(G[S]Col=0 | ¬GSafe(τ1)) · (1− x)

≤ x+ τ1 · (1− x)

It follows x ≥ τ2−τ1
1−τ1 .

The following lemma states for all τ < 1 that eventually
remaining in color-0 states but outside Safe(τ) has probability
zero.

Lemma 15. Let M = (S, S2, S©,−→, P ) be a finitely
branching MDP, and Col : S → N a color function.
Let s be a state, and σ a strategy, and τ < 1. Then
PM,s,σ(FG¬Safe(τ) ∧ FG[S]Col=0) = 0.

B. Optimal MD-strategies for {0, 1, 2}-Parity
Theorem 16. LetM be a finitely branching MDP, Col : S →
{0, 1, 2}, and ϕ = Parity(Col). Then there exists an MD-
strategy σ′ that is optimal for all states that have an optimal
strategy:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒
PM,s,σ′(ϕ) = valM(s)

By appealing to Theorem 5 it suffices to show:

Proposition 17. Let M = (S, S2, S©,−→, P ) be a finitely
branching MDP, and s0 ∈ S, and σ a strategy, and Col : S →
{0, 1, 2}, and ϕ = Parity(Col). Suppose PM,s0,σ(ϕ) = 1.
Then there is an MD-strategy σ′ with PM,s0,σ′(ϕ) = 1.

The following simple lemma provides a scheme for proving
almost-sure properties.

Lemma 18. Let P be a probability measure over the sample
space Ω. Let (Ri)i∈I be a countable partition of Ω in
measurable events. Let E ⊆ Ω be a measurable event. Suppose
P(Ri ∩ E) = P(Ri) holds for all i ∈ I . Then P(E) = 1.

We are ready to prove Proposition 17.

Proof of Proposition 17. To achieve an almost-sure winning
objective, the player must forever remain in states from which
the objective can be achieved almost surely. So we can
assume without loss of generality that all states are almost-
sure winning, i.e., for all s ∈ S we have PM,s,σ(ϕ) = 1 for
some σ.

We will define an MD-strategy σ′ with PM,s,σ′(ϕ) = 1 for
all s ∈ S. We first define the MD-strategy σ′ partially for the
states in SafeM( 1

3 ) and then extend the definition of σ′ to all
states. For the states in SafeM( 1

3 ) define σ′ := σopt-av as in
Proposition 13, see Figure 4. Let M′ be the MDP obtained
from M by restricting the transition relation as prescribed by
the partial MD-strategy σ′.

For any τ ∈ [0, 1], we have SafeM(τ) = SafeM′(τ).
Indeed, since M′ restricts the options of the player,
we have SafeM(τ) ⊇ SafeM′(τ). Conversely, let s ∈
SafeM(τ). The strategy σopt-av from Proposition 13 achieves
PM,s,σopt-av

(G[S]Col=0) ≥ τ . Since σopt-av can be applied
in M′, and results in the same Markov chain as applying it
in M, we conclude s ∈ SafeM′(τ). This justifies to write
Safe(τ) for SafeM(τ) = SafeM′(τ) in the remainder of the
proof.

Next we show that, also in M′, for all states s ∈ S there
exists a strategy σ1 with PM′,s,σ1(ϕ) = 1. This strategy σ1 is
defined as follows. First play according to a strategy σ from the
statement of the theorem. If and when the play visits Safe( 1

3 ),
switch to the MD-strategy σopt-av from Proposition 13. If and
when the play then visits [S]Col 6=0, switch back to a strategy σ
from the statement of the theorem, and so forth.

We show that σ1 achieves PM′,s,σ1(ϕ) = 1. To this end
we will use Lemma 18. We partition the runs of sSω in three
events R0,R1,R2 as follows:

• R0 contains the runs where σ1 switches between σopt-av
and σ infinitely often.

• R1 contains the runs where σ1 eventually only plays
according to σopt-av .

• R2 contains the runs where σ1 eventually only plays
according to σ.

Each time σ1 switches to σopt-av , there is, by Proposition 13,
a probability of at least 1

3 of never visiting a color-{1, 2}
state again and thus of never again switching to σ. It follows
that PM′,s,σ1

(R0) = 0. By the definition of σopt-av we
have R1 ⊆ JFG[S]Col=0K ⊆ JϕK, and hence PM′,s,σ1

(R1 ∩
JϕK) = PM′,s,σ1

(R1). Since PM,s,σ(ϕ) = 1 and ϕ is prefix-
independent, we have PM′,s,σ1

(R2 ∩ JϕK) = PM′,s,σ1
(R2).

Using Lemma 18, we obtain PM′,s,σ1(ϕ) = 1.
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Safe( 1
3 )

Safe( 2
3 )

[S]Col=2

σopt-av : avoid [S]Col=1

σ̂: almost-sure Reach(Safe( 2
3 ) ∪ [S]Col=2)

s

Fig. 4: The almost-surely winning MD-strategy σ′ for {0, 1, 2}-Parity is obtained by combining the MD-strategies σopt-av
and σ̂: play σopt-av inside Safe( 1

3 ) and σ̂ outside that set. A key point is that fixing σopt-av inside Safe( 1
3 ) does not prevent σ̂

from achieving its objective.

Next we show that for all s ∈ S the strategy σ1 defined
above achieves PM′,s,σ1

(FSafe( 2
3 )∨ F[S]Col=2) = 1. To this

end we will use Lemma 18 again. We partition the runs of
sSω into three events R′1,R

′
2,R

′
0 as follows:

• R′1 = JFG[S]Col=0Ks

• R′2 = JGF[S]Col=2Ks

• R′0 = sSω \ JϕKs

We have previously shown that PM′,s,σ1
(ϕ) = 1, hence

PM′,s,σ1
(R′0) = 0. By Lemma 15, almost all runs in R′1 sat-

isfy GFSafe( 2
3 ). Since JGFSafe( 2

3 )K ⊆ JFSafe( 2
3 )K, we have

PM′,s,σ1
(R′1 ∩ JFSafe( 2

3 ) ∨ F[S]Col=2K) = PM′,s,σ1
(R′1).

Since R′2 ⊆ JF[S]Col=2K, we also have PM′,s,σ1(R′2 ∩
JFSafe( 2

3 ) ∨ F[S]Col=2K) = PM′,s,σ1(R′2). Using Lemma 18
we obtain PM′,s,σ1

(FSafe( 2
3 ) ∨ F[S]Col=2) = 1.

Writing T = Safe( 2
3 ) ∪ [S]Col=2 we have just shown that

for all s ∈ S there is a strategy σ1 with PM′,s,σ1(FT ) =
1. By Lemma 7 there is an MD-strategy σ̂ for M′ with
PM′,s,σ̂(FT ) = 1 for all s ∈ S. We extend the (so far
partially defined) strategy σ′ by σ̂. Thus we obtain a (fully
defined) strategy σ′ for M such that for all s ∈ S we have
PM,s,σ′(FT ) = 1.

It remains to show that for all s ∈ S we have PM,s,σ′(ϕ) =
1. To this end we will use Lemma 18 again. We partition the
runs of sSω in two events R′′1 ,R

′′
2 :

• R′′1 = JGFSafe( 2
3 )Ks, i.e., R′′1 contains the runs that visit

Safe( 2
3 ) infinitely often.

• R′′2 = JFG¬Safe( 2
3 )Ks, i.e., R′′2 contains the runs that

from some point on never visit Safe( 2
3 ).

Every time a run enters Safe( 2
3 ), by Lemma 14, the probability

is at least 1
2 that the run remains in Safe( 1

3 ) forever. It follows
that almost all runs in R′′1 eventually remain in Safe( 1

3 )
forever, i.e., PM,s,σ′(R

′′
1 ∩ JFGSafe( 1

3 )K) = PM,s,σ′(R
′′
1).

Since Safe( 1
3 ) ⊆ [S]Col=0, we have JFGSafe( 1

3 )K ⊆
JFG[S]Col=0K ⊆ JϕK. Hence also PM,s,σ′(R

′′
1 ∩ JϕK) =

PM,s,σ′(R
′′
1).

We have previously shown that PM,s,σ′(FT ) = 1 holds
for all s ∈ S. Hence also PM,s,σ′(GFT ) = 1 holds for all

s ∈ S. In particular, almost all runs in R′′2 satisfy GFT . By
comparing the definitions of R′′2 and T we see that almost all
runs in R′′2 even satisfy GF[S]Col=2. Since JGF[S]Col=2K ⊆
JϕK, we obtain PM,s,σ′(R

′′
2 ∩ JϕK) = PM,s,σ′(R

′′
2).

A final application of Lemma 18 yields PM,s,σ′(ϕ) = 1 for
all s ∈ S.

C. ε-Optimal MD-strategies for Co-Büchi
Theorem 19. Let M = (S, S2, S©,−→, P ) be a finitely
branching MDP, Col : S → {0, 1}, and ϕ = Parity(Col)
be the co-Büchi objective. Then there exist uniform ε-optimal
MD-strategies. I.e., for every ε > 0 there is an MD-strategy
σε with PM,s0,σε(ϕ) ≥ valM(s0)− ε for every s0 ∈ S.

Proof. Let ε1 > 0 be a suitably small number (to be deter-
mined later), τ1 := 1− ε1 and SafeM(τ1) defined as in Defi-
nition 1. Let σopt-av be the MD-strategy from Proposition 13.
From M we obtain a modified MDP M′ by fixing all player
choices from states in SafeM(τ1) according to σopt-av .

We show that valM′(s0) ≥ valM(s0)− ε1. By definition
of the value valM(s0), for every δ > 0 there exists a strategy
σδ in M s.t. PM,s0,σδ(ϕ) ≥ valM(s0) − δ. We define a
strategy σ′δ in M′ from state s0 as follows. First play like
σδ . If and when a state in SafeM(τ1) is reached, play like
σopt-av . This is possible, since no moves from states outside
SafeM(τ1) have been fixed in M′, and all moves from states
inside SafeM(τ1) have been fixed according to σopt-av . Then
we have:
PM′,s0,σ′δ(ϕ)

= PM,s0,σδ(ϕ)

− PM,s0,σδ(FSafeM(τ1)) · PM,s0,σδ(ϕ|FSafeM(τ1))

+ PM,s0,σδ(FSafeM(τ1)) · PM,s0,σ′δ
(ϕ|FSafeM(τ1))

≥ PM,s0,σδ(ϕ)

− PM,s0,σδ(FSafeM(τ1)) · PM,s0,σδ(ϕ|FSafeM(τ1))

+ PM,s0,σδ(FSafeM(τ1)) · τ1
≥ valM(s0)− δ − PM,s0,σδ(FSafeM(τ1))(1− τ1)

≥ valM(s0)− δ − ε1
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Since this holds for every δ > 0 we obtain valM′(s0) ≥
valM(s0)− ε1.

Now let τ2 := 1 − ε1/k for a suitably large k ≥ 1
(to be determined later) and SafeM′(τ2) be defined as in
Definition 1. In particular, SafeM′(τ2) = SafeM(τ2) (by the
same argument as in the proof of Proposition 17).

By definition of the value, for every ε2 > 0 there
exists a strategy σε2 in M′ with PM′,s0,σε2 (ϕ) ≥
valM′(s0) − ε2. Moreover, by Lemma 15 and τ2 <
1, PM′,s0,σ(FSafeM′(τ2)) ≥ PM′,s0,σ(ϕ) for every
strategy σ and thus in particular for σε2 . Therefore,
PM′,s0,σε2 (FSafeM′(τ2)) ≥ valM′(s0)− ε2. By Theorem 9,
for every ε3 > 0 there exists an MD-strategy σ′ in M′ with
PM′,s0,σ′(FSafeM′(τ2)) ≥ valM′(s0)−ε2−ε3. In particular,
σ′ must coincide with σopt-av at all states in SafeM(τ1), since
in M′ these choices are already fixed.

We obtain the MD-strategy σε inM by combining the MD-
strategies σ′ and σopt-av . The strategy σε plays like σ′ at all
states outside SafeM(τ1) and like σopt-av at all states inside
SafeM(τ1).

In order to show that σε has the required property
PM,s0,σε(ϕ) ≥ valM(s0)−ε, we first estimate the probability
that a play according to σε will never leave the set SafeM(τ1)
after having visited a state in SafeM′(τ2).

Let s ∈ SafeM′(τ2). Then, by Lemma 14,

PM,s,σopt-av (GSafe(τ1)) ≥ τ2 − τ1
1− τ1

=
(1− ε1/k)− (1− ε1)

ε1

= 1− 1

k
.

In particular we also have PM,s,σε(GSafe(τ1)) ≥ 1− 1
k , since

σε coincides with σopt-av inside the set SafeM(τ1). Finally we
obtain:

PM,s0,σε(ϕ) ≥ PM,s0,σε(FSafeM′(τ2))

· PM,s0,σε(FGSafeM(τ1)|FSafeM′(τ2))

≥ PM′,s0,σ′(FSafeM′(τ2)) · (1− 1/k)

≥ (valM′(s0)− ε2 − ε3) · (1− 1/k)

≥ (valM(s0)− ε1 − ε2 − ε3) · (1− 1/k)

This holds for every ε1, ε2, ε3 > 0 and every k ≥ 1, and
moreover valM(s0) ≤ 1. Thus we can set ε1 = ε2 = ε3 :=
ε/6 and k := 2

ε and obtain PM,s0,σε(ϕ) ≥ valM(s0)− ε for
every s0 ∈ S as required.

VII. DISCUSSION

Our results on the memory requirements of (ε)-optimal
strategies (Figure 1) directly imply how much memory is
needed to win quantitative objectives of type

[
ϕ
]�c

(consid-
ered, e.g., in [7]). For c < 1 the assumed winning strategy
might have to be an ε-optimal one, since optimal strategies
do not always exist. Thus MD-strategies are only sufficient
for reachability objectives in countable MDPs (resp., for

{0, 1}-Parity, safety and reachability objectives in finitely
branching MDPs). In the special case of

[
ϕ
]≥1

objectives
(i.e., winning almost-surely), the winning strategy (assuming it
exists) must be optimal. Thus MD-strategies are only sufficient
for safety, reachability and {1, 2}-Parity in countable MDPs
(resp., for all objectives subsumed by {0, 1, 2}-Parity in
finitely branching MDPs).

In this paper we have studied countable MDPs. Not all our
results carry over to uncountable MDPs. The first issue is
measurability. The probabilities are only well-defined if the
strategies are measurable functions, which might not exist
without further conditions on the MDP; cf. Section 2.3 in
[23]. Another issue is that strategies cannot generally be
chosen uniform, i.e., independent of the initial state. E.g., in
countable MDPs ε-optimal strategies for reachability can be
chosen uniform MD (Theorem 9), but this does not carry over
to uncountable MDPs (Thm. A in [21]). However, optimal
strategies for reachability, if they exist, can be chosen uniform
MD (Proposition B in [21]).
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APPENDIX

A. Proofs of Section III

We recall two results that are used throughout the proofs in this section:
a) Strong fairness of probabilistic choices in Markov chains.: Given a Markov chain, let Pq(·) denotes the probability of

events starting in state q of the chain. Let p, q be two states and π a finite path starting in p with strictly positive probability.
Strong fairness of probabilistic choices states that Pq(GFπ) = Pq(GFp). Intuitively, it means that under the condition that
state p is visited infinitely often, any finite path starting in p will be taken infinitely often, almost surely [3, Theorem 10.25].

b) The Borel-Cantelli lemma.: Suppose that (En)n∈N is a sequence of events in a probability space. Denote by E∞ the
event ∞⋂

k=1

∞⋃
n=k

En,

that intuitively is the event “En occurs for infinitely many n”. The Borel-Cantelli lemma asserts that if
∑∞
n=1 P(En) <∞ then

P(E∞) = 0. Informally speaking, if the sum of probabilities of the events En is bounded then the probability that infinitely
many of them occur is zero [5].

Theorem 1. Let ϕ = {1, 2, 3}-Parity. There exists a finitely branching MDP M with initial state s0 such that
• for all FR-strategies σ, we have PM,s0,σ(ϕ) = 0,
• there exists an HD-strategy σ such that PM,s0,σ(ϕ) = 1.

Hence, optimal (and even almost-surely winning) and ε-optimal strategies require infinite memory for {1, 2, 3}-Parity, even
in finitely branching MDPs.

Proof. Consider the MDPM shown (on the left side) in Figure 2 where S© = {ri}i∈N and S2 = {t}∪{si}i∈N. For all i ∈ N,
there are transitions si−→ri and si−→si+1 in si states, whereas P (ri, t) = 2−i and P (ri, s0) = 1− 2−i in random states.

Let σ be an arbitrary FR-strategy. We prove that PM,s0,σ(ϕ) = 0. By definition there is a transducer T with finite memory M
and initial mode m0 such that σT = σ. Let MT be the Markov chain obtained by the product of the MDP M and the
transducer T. The set of states inMT is M×S. We define a coloring function forMT such that it ignores the memory mode
and assigns to (m, s) the same color as state s in M. By a slight abuse of notation, we use the same notation Col for the
coloring functions of both M and MT . We also denote by PMT ,q(R) the probability of a measurable set R of infinite paths
(i.e., infinite plays), starting in the state q of MT .

We prove that PM,s0,σ(GF[S]Col=2 ∧ FG[S]Col 6=3) = 0. Equivalently, we show that PMT ,(m0,s0)(ϕ
T) = 0 where ϕT =

GF[M × S]Col=2 ∧ FG[M × S]Col 6=3. We proceed in three steps: we will show, using strong fairness of probabilistic choices
in Markov chains, that for all modes m ∈ M,

PMT ,(m0,s0)(GF(m, s0) ∧ FG[M× S]Col 6=3) = 0. (1)

Moreover,
JGF[M× S]Col=2K ⊆ JGF(M× {s0})K (2)

Since the memory of strategy σ is finite (|M| <∞), we will show that

JGF(M× {s0})K = J
∨
m∈M

GF(m, s0)K (3)

Using (1)-(3) we complete the proof as follows:

PMT ,(m0,s0)(GF[M× S]Col=2 ∧ FG[M× S]Col 6=3)

≤ PMT ,(m0,s0)(
∨
m∈M

(GF(m, s0) ∧ FG[M× S]Col 6=3)) by (2), (3)

≤
∑
m∈M

PMT ,(m0,s0)(GF(m, s0) ∧ FG[M× S]Col 6=3) union bound

= 0. by (1)

As a result PM,s0,σ(ϕ) = 0. Below, we prove (1), (2) and (3).

We first highlight two properties of the Markov chain MT . Consider the MDP M: (i) the only states with color 2 are
random states ri ∈ S©, wherein the only successors are s0 and t. Hence, from all states (m, ri) ∈ M× S© in MT , there are
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successors q1, q2 such that q1 ∈ M× {s0} and q2 ∈ M× {t}; moreover, all successors are in M× {s0, t}. (ii) The state t has
the unique successor s0. Hence, in MT , from all states (m, t) ∈ M× S© all successors q are such that q ∈ M× {s0}.

To establish (1), let (m, s0) ∈ M×{s0} be some state in the Markov chain MT . For the case PMT ,(m0,s0)(GF(m, s0)) = 0,
we trivially have (1). Therefore, we assume that PMT ,(m0,s0)(GF(m, s0)) > 0. So, there exists an infinite path satisfy-
ing GF(m, s0). Hence, there exists a finite path π from (m, s0) to itself. By the structure of the chain, π has a prefix
(ms0 , s0)(ms1 , s1) · · · (msi , si) ∈ (M× S2)∗ traversing player’s states, with ms0 = m, and next visiting some state (mri , ri).
By property (i), we know that (mri , ri) has a successor (mt, t) ∈ M× {t}. It implies that

πt = (ms0 , s0)(ms1 , s1) · · · (msi , si)(mri , ri)(mt, t)

is a finite path in MT , starting in (m, s0) with positive probability. By strong fairness of probabilistic choices,
PMT ,(m0,s0)(GFπt) = PMT ,(m0,s0)(GF(m, s0)). In other words, under the condition that state (m, s0) is visited infinitely
often, the finite path πt will be taken infinitely often, almost-surely. As an immediate result of this and the fact that (mt, t)
has color 3, we conclude (1).

To establish (2), we need to show that, for all infinite plays π∞ of MT , if π∞ ∈ JGF[M× S]Col=2K then π∞ ∈ JGF(M×
{s0})K. By the properties (i) and (ii) of MT , whenever π∞ visits some state from M × S©, which are the only states with
color 2, then π∞ must visit some state from M× {s0} within two steps. This results in (2).

To establish (3), we observe that the inclusion ⊇ is trivial. To show ⊆, let π∞ ∈ JGF(M × {s0})K be an infinite path in
the chain. As π∞ visits infinitely many elements from the finite set M× {s0}, there must exist some element (m, s0) that is
visited infinitely often. Hence, π∞ ∈ J

∨
m∈M GF(m, s0)K, which gives the inclusion and thus (3).

Now, we construct an HD-strategy σh such that PM,s0,σh(ϕ) = 1. The strategy σh is defined, for all partial plays ρ, as
follows:

σh(ρ) =

 r0 if ρ = s0

rk if there exists k > 0 such that ρ = (s0(S \ {s0})∗)k−1s0s1 · · · sk
sj otherwise, where the last state visited by ρ is sj−1.

Intuitively, σh is such that upon the k-th visit to state s0, the path s0s1 · · · sk is traversed and then the transition sk−→rk
is chosen. Observe that PM,s0,σh(GF[S]Col=2) = 1. Below, we argue that PM,s0,σh(GF[S]Col=3) = 0, which proves
that PM,s0,σh(ϕ) = 1.

We define the sequence of events Ek of visiting t between the kth and k + 1st visits of s0. For k ≥ 1, let

Ek = (s0(S \ {s0})∗)k−1s0(S \ {s0, t})∗ts0S
ω.

Observe that
∞⋂
n=1

∞⋃
k≥n

π(Ek) = JGF{t}K = JGF[S]Col=3K.

We use the Borel-Cantelli lemma to prove that infinitely many of Ek’s occur with zero probability, that is the probability
of GF[S]Col=3. In fact, by construction of σh, observe that PM,s0,σh(Ek) = 2−k. Consequently, we have

∞∑
k=1

PM,s0,σh(Ek) = 1 +
1

2
+

1

4
+

1

8
+ · · · = 2 <∞.

By the Borel-Cantelli lemma, we then have PM,s0,σh(GF[S]Col=3) = 0, and thus PM,s0,σh(ϕ) = 1. The proof is complete.

Remark 1. A strict subclass of finitely branching MDPs are 1-counter MDPs, where a finite-state MDP is augmented with
an integer counter [6]. The MDP in Theorem 1 (plus some auxiliary states) is implementable by a 1-counter MDP.

Proof. Figure 5 shows a 1-counter MDP with control-states {s, r, r′, t} that is functionally equivalent to the one used in
Theorem 1 (Figure 2 (left)). It just uses some auxiliary states that have no influence on the parity objective. Starting in s, the
player can choose whether to increase the counter by 1 or to go to r. In the random state r the behavior depends on the counter
value. If the counter is non-zero then the successors r, r′ are chosen with equal probability and the counter is decreased by 1.
If the counter is zero then t is the unique successor. In state r′ the counter is deterministically decreased until it becomes zero,
and then one goes to state s. The color function is Col(s) = 1, Col(r) = Col(r′) = 2 and Col(t) = 3. If one is in state r
with counter value n, then the probability of seeing state t before returning to state s is 2−n.
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Fig. 5: A 1-counter MDP implementing an MDP similar to the one used in Theorem 1. The dashed transitions (labeled with
zero test = 0?) are taken when the counter is zero.

Theorem 3. Let ϕ = Safety(T ). There exists an infinitely branching MDP M with initial state s such that
• for all FR-strategies σ, we have PM,s,σ(ϕ) = 0,
• for every c ∈ [0, 1), there exists an HD-strategy σ such that PM,s,σ(ϕ) ≥ c.

Hence, ε-optimal strategies for safety require infinite memory.

Proof. Consider the MDPM shown (on the left side) in Figure 3 where S2 = {s, t} and S© = {ri}i≥1. The state s is infinitely
branching: s−→ri for all i ≥ 1. For all random states ri, there are two successors P (ri, t) = 2−i and P (ri, s0) = 1 − 2−i.
The state t is a sink state.

Let σ be an arbitrary FR-strategy. By definition there is a transducer T with finite memory M and initial mode m0 such
that σT = σ. Let MT be the Markov chain obtained by the product of the MDP M and the transducer T. The set of states
in MT is M×S. We denote by PMT ,q(R) the probability of a measurable set R of infinite paths (i.e., infinite plays), starting
in the state q of MT .

Below, we prove that PM,s,σ(Safety({t})) = 0. Equivalently, we show that PMT ,(m0,s)(Safety(M × {t})) = 0. We
proceed in the following three steps: We will show, using strong fairness of probabilistic choices in Markov chains, that for
all modes m ∈ M,

PMT ,(m0,s)(GF(m, s) ∧ ¬F(M× {t})) = 0. (4)

Since the memory of strategy σ is finite (|M| <∞), we will show that

JGF(M× {s})K = J
∨
m∈M

GF(m, s)K (5)

Moreover, we will prove that
J¬F(M× {t})K ⊆ JGF(M× {s})K. (6)

Using (4)-(6), we complete the proof as follows:

PMT ,(m0,s)(¬F(M× {t}))
= PMT ,(m0,s)(GF(M× {s}) ∧ ¬F(M× {t})) by (6)

= PMT ,(m0,s)(
∨
m∈M

(GF(m, s0) ∧ ¬F(M× {t})) by (5)

≤
∑
m∈M

PMT ,(m0,s)(GF(m, s0) ∧ ¬F(M× {t})) union bound

= 0. by (4)

As a result, PM,s0,σ(Safety({t})) = 0. Below we prove (4), (5) and (6).

To establish (4), let (m, s) ∈ M×{s} be some state in the Markov chain MT . For the case PMT ,(m0,s)(GF(m, s)) = 0, we
trivially have (4). Therefore, we assume that PMT ,(m0,s)(GF(m, s)) > 0. So, there exists an infinite path satisfying GF(m, s).
Hence, there exists a finite path π from (m, s) to itself. By the structure of the chain, π visits some state (mri , ri). In M,
for all random states ri ∈ S©, the only successors are s and t. Hence, from all states (m, ri) ∈ M × S© in MT , there is
some successor q ∈ M × {t}. It implies that πt = (m, s)(mri , ri)(mt, t) is a finite path in MT , that starts in (m, s) with
positive probability. By strong fairness of probabilistic choices, PMT ,(m0,s)(Fπt) = PMT ,(m0,s)(GF(m, s)). As a result, we
conclude (4).
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To establish (5), we observe that the inclusion ⊇ is trivial. To show ⊆, let π∞ ∈ JGF(M × {s0})K be an infinite path in
the chain. As π∞ visits infinitely many elements from the finite set M× {s0}, there must exist some element (m, s0) that is
visited infinitely often. Hence, π∞ ∈ J

∨
m∈M GF(m, s0)K, which gives the inclusion and thus (5).

To establish (6), note that in M, all successors of s are from random states, from which the only successors are s and t.
Hence, for all infinite plays π∞ 6∈ JF(M × {t})K in MT , π∞ alternates between some states from M × {s} and next some
state from M× S©. It implies that π ∈ JGF(M× {s})K.

Now, let c ∈ [0, 1). Let n be such that c ≤ 1− 1
2n . We construct an HD-strategy σn such that

PM,s,σn(ϕ) ≥ 1− 1

2n
≥ c.

For all partial plays ρ, we define σn(ρ) = rn+k where k is the number of times ρ has visited s. Intuitively, upon the k-th visit
to s, the strategy σn chooses the transition s−→rn+k.

For all k ≥ 1, let Ek be the event of visiting t after the k-th visit of s, defined as follows

Ek = (sS©)k−1sS©t
ω.

Observe that JF{t}K is the disjoint union of all Ek events. Hence, we have

PM,s,σn(F{t}) =
∞∑
k=1

PM,s,σn(Ek) = by disjoint union

∞∑
k=1

PM,s,σn(J(sS©)k−1sS©K) · 1

2n+k

≤
∞∑
k=1

1

2n+k

=
1

2n

This proves that PM,s,σn(Safety({t})) = 1− PM,s,σn(F{t}) ≥ 1− 1
2n ≥ c.

Theorem 4. Let ϕ = {0, 1}-Parity be the co-Büchi objective. There exists an infinitely branching MDP M with initial
state s such that
• for all FR-strategies σ, we have PM,s,σ(ϕ) = 0,
• there exists an HD-strategy σ such that PM,s,σ(ϕ) = 1.

Hence, optimal (and even almost-surely winning) strategies and ε-optimal strategies for co-Büchi require infinite memory.

Proof. Consider the MDPM shown (on the right side) in Figure 3 where S2 = {s, t} and S© = {ri}i≥1. The state s is infinitely
branching: s−→ri for all i ≥ 1. For all random states ri, there are two successors P (ri, t) = 2−i and P (ri, s) = 1− 2−i. The
state t has the unique successor s.

Let σ be an arbitrary FR-strategy. By definition there is a transducer T with finite memory M and initial mode m0 such
that σT = σ. Let MT be the Markov chain obtained by the product of the MDP M and the transducer T. The set of states
in MT is M × S. We define a coloring function for MT such that it ignores the memory mode and assigns to (m, s) the
same color as state s in M. In particular, all states q ∈ M× {t} have color 1. We use the same notation Col for the coloring
functions of both M and MT . We denote by PMT ,q(R) the probability of a measurable set R of infinite paths (i.e., infinite
plays), starting in the state q of MT .

We prove that PM,s,σ(FG[S]Col 6=1) = 0. Equivalently, we show that PMT ,(m0,s)(FG[M × S]Col 6=1) = 0. We proceed in
three steps: we will show, using strong fairness of probabilistic choices in Markov chains, that for all modes m ∈ M,

PMT ,(m0,s)(GF(m, s) ∧ FG[M× S]Col 6=1) = 0. (7)

Since the memory of strategy σ is finite (|M| <∞), we will show that

JGF(M× {s})K = J
∨
m∈M

GF(m, s)K (8)
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Moreover, we show that
JFG[M× S]Col 6=1K ⊆ JGF(M× {s})K (9)

Using (7), (8) and (9), we complete the proof as follows:

PMT ,(m0,s)(FG[M× S]Col 6=1) =

PMT ,(m0,s)(GF(M× {s}) ∧ FG[M× S]Col 6=1) by (9)

= PMT ,(m0,s)(
∨
m∈M

(GF(m, s) ∧ FG[M× S]Col 6=1)) by (8)

≤
∑
m∈M

PMT ,(m0,s)(GF(m, s) ∧ FG[M× S]Col 6=1) union bound

= 0. by (7)

As a result, PM,s,σ(ϕ) = 0. Below we prove (7), (8) and (9).

To establish (7), let (m, s) ∈ M×{s} be some state in the Markov chain MT . For the case PMT ,(m0,s)(GF(m, s)) = 0, we
trivially have (7). Therefore, we assume that PMT ,(m0,s)(GF(m, s)) > 0. So, there exists an infinite path satisfying GF(m, s).
Hence, there exists a finite path π from (m, s) to itself. By the structure of the chain, π visits some state (mri , ri). Consider
the MDP M, for all random states ri ∈ S©, the only successors are s and t. Hence, from all states (m, ri) ∈ M×S© in MT ,
there is some successor q such that q ∈ M× {t}. It implies that πt = (m, s)(mri , ri)(mt, t) is a finite path in MT , that starts
in (m, s) with positive probability. By strong fairness of probabilistic choices, PMT ,(m0,s)(GFπt) = PMT ,(m0,s)(GF(m, s)). As
a result, we conclude (7).

To establish (8), we observe that the inclusion ⊇ is trivial. To show ⊆, let π∞ ∈ JGF(M× {s})K be an infinite path in the
chain. As π∞ visits infinitely many elements from the finite set M×{s}, there must exist some element (m, s) that is visited
infinitely often. Hence, π∞ ∈ J

∨
m∈M GF(m, s)K, which gives the inclusion and thus (8).

To establish (9), note that in M, all infinite plays must visit s infinitely often. Thus all runs in MT must visit M × {s}
infinitely often. In particular, this holds for those infinite runs π∞ ∈ JFG[M× S]Col 6=1K in MT . Thus π∞ ∈ JGF(M× {s})K.

Now we construct an HD-strategy σh such that PM,s,σh(ϕ) = 1. For all partial plays ρ, we define σh(ρ) = rk where k is
the number of times ρ has visited s. Intuitively, upon the k-th visit to s, the strategy σh chooses the transition s−→rk. Below
we argue that PM,s,σh(GF[S]Col=1) = 0, which proves that PM,s,σh(ϕ) = 1.

We define the sequence of events Ek of visiting t between the k-th and k + 1st visits of s. For k ≥ 1, let

Ek = (s(S© + S©t))
k−1s(S©t)sS

ω.

Observe that ∞⋂
n=1

∞⋃
k≥n

π(Ek) = JGF{t}K = JGF[S]Col=1K.

We use the Borel-Cantelli lemma to prove that infinitely many of Ek’s occur with zero probability, that is the probability
of GF[S]Col=1. In fact, by construction of σh, observe that PM,s,σh(Ek) = 2−k. Consequently, we have

∞∑
k=1

PM,s0,σh(Ek) =
1

2
+

1

4
+

1

8
+ · · · = 1 <∞.

By the Borel-Cantelli lemma, we then have PM,s,σh(GF[S]Col=1) = 0, and thus PM,s,σh(ϕ) = 1. The proof is complete.

B. Proofs of Section IV

Lemma 20. Let ϕ be an objective that is prefix-independent in a class C of MDPs. Let M = (S, S2, S©,−→, P ) ∈ C, and
s0 ∈ S, and σ be a strategy with PM,s0,σ(ϕ) = valM(s0). Suppose that s0s1 · · · sn for some n ≥ 0 is a partial play starting
in s0 and induced by σ. Then:

1) valM(sn) = PM,s0,σ(JϕKs0 | s0s1 · · · snSω).
2) If sn ∈ S© then valM(sn) =

∑
sn+1∈S P (sn)(sn+1) · valM(sn+1).

3) If sn ∈ S2 then valM(sn) = valM(sn+1) for all sn+1 ∈ supp(σ(s0s1 · · · sn)).

Proof. First we show PM,s0,σ(JϕKs0 | s0s1 · · · snSω) ≤ valM(sn). Define a strategy σ′ : S∗S2 → D(S) by σ′(w) =
σ(s0s1 · · · sn−1w) for all w ∈ S∗S2. Then we have PM,s0,σ(JϕKs0 | s0s1 · · · snSω) = PM,sn,σ′(JϕKsn) ≤ valM(sn).

Next we show valM(sn) ≤ PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Towards a contradiction, suppose that valM(sn) >
PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Then, by the definition of valM(sn), there is a strategy σ′ with PM,sn,σ′(JϕKsn) >
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PM,s0,σ(JϕKs0 | s0s1 · · · snSω). Define a strategy σ′′ that plays according to σ; if and when partial play s0s1 · · · sn is
played, then σ′′ acts like σ′ henceforth; otherwise σ′′ continues with σ forever. Using prefix-independence we get:

PM,s0,σ′′(JϕKs0)

= PM,s0,σ′′(JϕKs0 | s0s1 · · · snSω) · PM,s0,σ′′(s0s1 · · · snSω)

+ PM,s0,σ′′(JϕKs0 \ s0s1 · · · snSω)

= PM,sn,σ′(JϕKsn) · PM,s0,σ(s0s1 · · · snSω)

+ PM,s0,σ(JϕKs0 \ s0s1 · · · snSω) def. of σ′′

> PM,s0,σ(JϕKs0 | s0s1 · · · snSω) · PM,s0,σ(s0s1 · · · snSω)

+ PM,s0,σ(JϕKs0 \ s0s1 · · · snSω) def. of σ′

= PM,s0,σ(JϕKs0)

= valM(s0) def. of σ

This contradicts the definition of valM(s0). Hence we have shown item 1.
Towards items 2 and 3, we extend σ : S∗S2 → D(S) to σ : S∗S → D(S) by defining σ(ws) = P (s) for w ∈ S∗ and

s ∈ S©. Then we have for all sn+1 ∈ S:

PM,s0,σ(s0s1 · · · snsn+1S
ω) = PM,s0,σ(s0s1 · · · snSω) · σ(s0s1 · · · sn)(sn+1) (10)

Further we have:

valM(sn)

= PM,s0,σ(JϕKs0 | s0s1 · · · snSω) by item 1

=
PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω)

PM,s0,σ(s0s1 · · · snSω)

=

∑
sn+1∈S PM,s0,σ(JϕKs0 ∩ s0s1 · · · snsn+1S

ω)

PM,s0,σ(s0s1 · · · snSω)

=
1

PM,s0,σ(s0s1 · · · snSω)
·
∑

sn+1∈S
PM,s0,σ(s0s1 · · · snsn+1S

ω) ·

· PM,s0,σ(JϕKs0 | s0s1 · · · snsn+1S
ω)

=
∑

sn+1∈S
σ(s0s1 · · · sn)(sn+1) · PM,s0,σ(JϕKs0 | s0s1 · · · snsn+1S

ω) by (10)

=
∑

sn+1∈S
σ(s0s1 · · · sn)(sn+1) · valM(sn+1) by item 1

Thus we have shown item 2. Towards item 3, suppose sn ∈ S2. Then prefix-independence implies valM(sn) ≥ valM(sn+1)
for all sn+1 with sn−→sn+1. Since σ(s0s1 · · · sn) is a probability distribution, the equality chain above shows that valM(sn) =
valM(sn+1) for all sn+1 ∈ supp(σ(s0s1 · · · sn)). Thus we have shown item 3.

Lemma 6. Let ϕ be an objective that is prefix-independent in a class C of MDPs. Let M = (S, S2, S©,−→, P ) ∈ C.
Construct an MDP M∗ = (S∗, S∗2, S∗©,−→∗, P∗) by setting

S∗ = {s ∈ S | ∃σ. PM,s,σ(ϕ) = valM(s) > 0}

and S∗2 = S∗ ∩ S2 and S∗© = S∗ ∩ S© and

−→∗ = {(s, t) ∈ S∗ × S∗ | s−→t and if s ∈ S∗2
then valM(s) = valM(t)}

and P∗ : S∗© → D(S∗) so that

P∗(s)(t) = P (s)(t) · valM(t)

valM(s)

for all s ∈ S∗© and t ∈ S∗ with s−→∗ t. Then:
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1) For all σ ∈ ΣM∗ and all n ≥ 0 and all s0, . . . , sn ∈ S∗ with s0−→∗ s1−→∗ · · · −→∗ sn:

PM∗,s0,σ(s0s1 · · · snSω) =

PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)

2) For all s0 ∈ S∗ and all σ ∈ ΣM with PM,s0,σ(ϕ) = valM(s0) > 0 and all measurable R ⊆ s0S
ω we have

PM∗,s0,σ(R) = PM,s0,σ(R | JϕKs0).

Proof. Note that by Lemma 20.2 we have that P∗(s) is a probability distribution for all s ∈ S∗©; hence the MDP M∗ is
well-defined.

We prove item 1 by induction on n. For n = 0 it is trivial. For the step, suppose that the equality in item 1 holds for
some n. If sn ∈ S∗© then we have:

PM∗,s0,σ(s0s1 · · · snsn+1S
ω)

= PM∗,s0,σ(s0s1 · · · snSω) · P∗(sn)(sn+1)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)
· P∗(sn)(sn+1) ind. hyp.

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)
· P (sn)(sn+1) · valM(sn+1)

valM(sn)
def. of P∗

= PM,s0,σ(s0s1 · · · snsn+1S
ω) · valM(sn+1)

valM(s0)

Let now sn ∈ S∗2. If σ(s0s1 . . . sn)(sn+1) = 0 then the inductive step is trivial. Otherwise we have:

PM∗,s0,σ(s0s1 · · · snsn+1S
ω)

= PM∗,s0,σ(s0s1 · · · snSω) · σ(s0s1 . . . sn)(sn+1)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)
· σ(s0s1 . . . sn)(sn+1) ind. hyp.

= PM,s0,σ(s0s1 · · · snSω) · valM(sn+1)

valM(s0)
· σ(s0s1 . . . sn)(sn+1) def. of −→∗

= PM,s0,σ(s0s1 · · · snsn+1S
ω) · valM(sn+1)

valM(s0)

This completes the inductive step, and we have proved item 1.
Towards item 2, let s0 ∈ S∗ and σ ∈ ΣM such that PM,s0,σ(ϕ) = valM(s0) > 0. Observe that σ can be applied also in the

MDPM∗. Indeed, for any s ∈ S∗2, if t is a possible successor state of s under σ, then valM(s) = valM(t) by Lemma 20.3
and thus t ∈ S∗.

Let again n ≥ 0 and s0, s1, . . . , sn ∈ S.
• Suppose s0s1 · · · sn is a partial play in M∗ induced by σ. Then we have:

PM∗,s0,σ(s0s1 · · · snSω) · PM,s0,σ(ϕ)

= PM,s0,σ(s0s1 · · · snSω) · valM(sn)

valM(s0)
· PM,s0,σ(ϕ) item 1

= PM,s0,σ(s0s1 · · · snSω) · valM(sn) assumption on σ
= PM,s0,σ(s0s1 · · · snSω) · PM,s0,σ(JϕKs0 | s0s1 · · · snSω) Lemma 20.1
= PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω)

• Suppose s0s1 · · · sn is not a partial play in M∗ induced by σ. Hence PM∗,s0,σ(s0s1 · · · snSω) = 0. If s0s1 · · · sn is not
a partial play in M induced by σ then PM,s0,σ(s0s1 · · · snSω) = 0. Otherwise, since σ is optimal, there is i ≤ n with
valM(si) = 0, hence PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω). In either case we have PM∗,s0,σ(s0s1 · · · snSω) · PM,s0,σ(ϕ) =
0 = PM,s0,σ(JϕKs0 ∩ s0s1 · · · snSω).

In either case we have the equality PM∗,s0,σ(R) = PM,s0,σ(R | JϕKs0) for cylinders R = s0s1 · · · snSω . Since probability
measures extend uniquely from cylinders [5], the equality holds for all measurable R ⊆ s0S

ω . Thus we have shown item 2.

Lemma 8. Let S be countable and s ∈ S. Call a set of the form swSω for w ∈ S∗ a cylinder. Let P,P ′ be probability
measures on sSω defined in the standard way, i.e., first on cylinders and then extended to all measurable sets R ⊆ sSω .
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Suppose there is x ≥ 0 such that x · P(C) ≤ P ′(C) for all cylinders C. Then x · P(R) ≤ P ′(R) holds for all measurable
R ⊆ sSω .

Proof. Let C = {C ⊆ sSω | C cylinder} denote the class of cylinders. This class generates an algebra C∗ ⊇ C, which is the
closure of C under finite union and complement. The classes C and C∗ generate the same σ-algebra σ(C). The class C∗ is the
set of finite disjoint unions of cylinders [5, Section 2]. Hence x · P(R) ≤ P ′(R) for all R ∈ C∗.

Define
Q = {R ∈ σ(C) | x · P(R) ≤ P ′(R)} .

We have C ⊆ C∗ ⊆ Q ⊆ σ(C). We show that Q is a monotone class, i.e., if R1,R2, . . . ∈ Q, then R1 ⊆ R2 ⊆ · · · implies⋃
iRi ∈ Q, and R1 ⊇ R2 ⊇ · · · implies

⋂
iRi ∈ Q. Suppose R1,R2, . . . ∈ Q and R1 ⊆ R2 ⊆ · · · . Then:

x · P
(⋃

i

Ri

)
= sup

i
x · P(Ri) measures are continuous from below

≤ sup
i
P ′(Ri) definition of Q

= P ′
(⋃

i

Ri

)
measures are continuous from below

So
⋃
iRi ∈ Q. Using the fact that measures are continuous from above, one can similarly show that if R1,R2, . . . ∈ Q and

R1 ⊇ R2 ⊇ · · · then
⋂
iRi ∈ Q. Hence Q is a monotone class.

Now the monotone class theorem (see, e.g., [5, Theorem 3.4]) implies that σ(C) ⊆ Q, thus Q = σ(C). Hence x · P(R) ≤
P ′(R) for all R ∈ σ(C).

C. Proofs of Section V

Theorem 10. Let M = (S, S2, S©,−→, P ) be an MDP, and ϕ = Reach(T ). Let s0 ∈ S and σ be a strategy with
PM,s0,σ(ϕ) = 1. Then there is an MD-strategy σ̂ with PM,s0,σ̂(ϕ) = 1.

Proof. We can assume that T = {t} for some t ∈ S. We can also assume that all states are almost-surely winning, since in
order to achieve an almost-sure winning objective, the player must forever remain in almost-surely winning states.

Let ε1 := 1/2. By Theorem 9 there exists an MD-strategy σ1 such that PM,s0,σ1(ϕ) ≥ 1 − ε1. In fact, by the proof of
Theorem 9 there exists a finite subset V1 ⊆ S such that PM,s0,σ1(JϕKs0 ∩ V ω1 ) ≥ 1− ε1. Let U1 denote the states that occur
in those plays that are both contained in JϕKs0 ∩ V ω1 and induced by σ1. Then PM,s0,σ1

(JϕKs0 ∩ Uω1 ) = PM,s0,σ1
(JϕKs0 ∩

V ω1 ) ≥ 1 − ε1. By the definition of U1, for all s ∈ U1 the MD-strategy σ1 induces a play from s0 to t via s. Hence we
have PM,s,σ1

(JϕKs ∩ Uω1 ) > 0. Since U1 ⊆ V1 is finite, there are c > 0 and ` ∈ N such that for all s ∈ U1 we have
PM,s,σ1(sU≤`−1

1 {t}ω) ≥ c, i.e., from any state in U1 the probability that t is reached in ≤ ` steps is at least c.
Consider the MDPM1 obtained fromM by fixing σ1 on U1 (i.e., inM1 the states in U1 are random states). We argue that

all states are almost-surely winning inM1. Indeed, let s ∈ S be any state. Recall that s is almost-surely winning inM. Define
an HR-strategy σ in M1 as follows: first play a strategy that is almost-surely winning for s in M; if and when U1 is entered
and then left again (entering some state s′ ∈ S \ U1) then forget the history and play again a strategy that is almost-surely
winning for s′ in M; and so forth. This strategy σ reaches {t} with probability 1 whenever the play stays outside of U1. I.e.,
almost all plays that eventually always avoid U1 reach {t}. Moreover, whenever the play enters U1, the probability that t is
reached in ≤ ` steps is at least c, i.e., there is a uniform bound. Thus almost all plays that enter U1 infinitely often reach {t}.
It follows that we have PM1,s,σ(ϕ) = 1.

Now we repeat the argument, but with M1 instead of M and with ε2 = 1/4 instead of ε1. This yields a set U2 ⊇ U1 and
an MD-strategy σ2 that agrees with σ1 on U1 so that PM,s0,σ2

(JϕKs0 ∩Uω2 ) = PM1,s0,σ2
(JϕKs0 ∩Uω2 ) = 1− ε2. Similarly as

before, obtain an MDP M2 from M1 by fixing σ2 on U2. Then repeat again, and so forth, with εi = 1/2i for i = 1, 2, . . .
Define U :=

⋃
i≥1 Ui. Observe that on all s ∈ U almost all (i.e., all except finitely many) strategies σi agree. Let σ̂ be an MD-

strategy that on all states in U agrees with almost all MD-strategies σi. By our construction we have PM,s0,σ̂(JϕKs0∩Uω) ≥ 1−ε
for all ε > 0. Hence PM,s0,σ̂(JϕKs0 ∩ Uω) = 1.

Proposition 11. Let M = (S, S2, S©,−→, P ) be an MDP, and s0 ∈ S, and σ a strategy, and Col : S → {1, 2}, and
ϕ = Parity(Col). Suppose PM,s0,σ(ϕ) = 1. Then there is an MD-strategy σ′ with PM,s0,σ′(ϕ) = 1.

Proof. We can assume that all states are almost-surely winning, since in order to achieve an almost-sure winning objective,
the player must forever remain in almost-surely winning states. We provide an MD-strategy σ̂ such that for all states s ∈ S
we have PM,s,σ̂(ϕ) = 1.
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Set ϕ′ = Reach([S]Col=2). Note that JϕK ⊆ Jϕ′K. Since all states are almost-surely winning for ϕ, all states are almost-
surely winning for ϕ′. By Theorem 10 and Lemma 7 there is an MD-strategy σ̂ such that for all states s ∈ S we have
PM,s,σ̂(ϕ′) = 1. That is, σ̂ reaches the set [S]Col=2 with probability 1, regardless of the start state. It follows that it reaches,
with probability 1, the set [S]Col=2 infinitely often. Hence PM,s,σ̂(ϕ) = 1 holds for all s ∈ S.

D. Proofs of Subsection VI-A

Proposition 13. Let M = (S, S2, S©,−→, P ) be a finitely branching MDP, and T ⊆ S, and ϕ = Safety(T ). Define an
MD-strategy σopt-av (for “optimal avoiding”) that, in each state s, picks a successor state with the largest value valM(s) =
supσ∈Σ PM,s,σ(ϕ). Then for all states s ∈ S we have PM,s,σopt-av

(ϕ) = valM(s), i.e., σopt-av is uniformly optimal.

Proof. We can assume that T is a sink. Fix a state s0. Write s0s1s2 · · · ∈ sSω for a random run, i.e., s1, s2, . . . denote
random states. For any n ∈ N let [Xn¬T ] : s0S

ω → {0, 1} be the random variable that indicates if sn 6∈ T . Note that
[Xn¬T ] ≥ valM(sn). Writing EM,s0,σopt-av

for the expectation with respect to PM,s0,σopt-av
, we have:

PM,s0,σopt-av
(ϕ)

= PM,s0,σopt-av

( ∞⋂
i=0

JXi¬T Ks0
)

semantics of ϕ

= lim
n→∞

PM,s0,σopt-av

( n⋂
i=0

JXi¬T Ks0
)

measures are continuous from above

= lim
n→∞

PM,s0,σopt-av (Xn¬T ) T is a sink

= lim
n→∞

EM,s0,σopt-av
([Xn¬T ]) definition of [Xn¬T ]

≥ lim inf
n→∞

EM,s0,σopt-av
(valM(sn)) [Xn¬T ] ≥ valM(sn)

A straightforward induction on n, using the definition of σopt-av , shows that EM,s0,σopt-av (valM(sn)) = valM(s0) holds
for all n ∈ N. Hence PM,s0,σopt-av (ϕ) ≥ valM(s0). The converse inequality holds by the definition of the value. Hence
PM,s0,σopt-av

(ϕ) = valM(s0).

Lemma 15. LetM = (S, S2, S©,−→, P ) be a finitely branching MDP, and Col : S → N a color function. Let s be a state,
and σ a strategy, and τ < 1. Then PM,s,σ(FG¬Safe(τ) ∧ FG[S]Col=0) = 0.

Proof. For any n ∈ N define Zn =
(
[S]Col=0

)n
. That is, ZnSω is the event that the first n visited states have color 0. For

any state s 6∈ Safe(τ), let n(s) ∈ N be the smallest number such that PM,s,σ(Zn(s)S
ω) ≤ (1 + τ)/2. This is well-defined.

Let L ⊆ S∗ be the set of finite sequences s0s1 · · · sn−1 such that s0 6∈ Safe(τ) and n = n(s0) and ∀i < n. si ∈
[S]Col=0 \ Safe(τ). We show for all s ∈ S \ Safe(τ) and all k ∈ N that PM,s,σ(LkSω) ≤

(
1+τ

2

)k
. We proceed by induction

on k. The case k = 0 is trivial. For the induction step, let k ≥ 0. We have:

PM,s,σ(Lk+1Sω)

≤ PM,s,σ(Zn(s)L
kSω) as L ∩ {s}S∗ ⊆ Zn(s)

≤ PM,s,σ(Zn(s)S
ω) · sup

s′∈S\Safe(τ)

PM,s′,σ(LkSω)

≤ PM,s,σ(Zn(s)S
ω) ·

(
1 + τ

2

)k
induction hypothesis

≤
(

1 + τ

2

)k+1

definition of n(s)

This completes the induction proof. Write ϕ := G¬Safe(τ) ∧ G[S]Col=0. We have for all s ∈ S:

PM,s,σ(ϕ) = PM,s,σ(Lω) JϕK = Lω

= lim
k→∞

PM,s,σ(LkSω)

≤ lim
k→∞

(
1 + τ

2

)k
as shown above

= 0 τ < 1
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It follows:
PM,s,σ(Xjϕ) = 0 for all s ∈ S and all j ∈ N

Thus we have:

PM,s,σ(FG¬Safe(τ) ∧ FG[S]Col=0) = PM,s,σ(Fϕ)

= PM,s,σ

( ⋃
j∈N

JXjϕKs
)

≤
∑
j∈N
PM,s,σ(Xjϕ)

= 0

E. Proofs of Subsection VI-B

Lemma 18. Let P be a probability measure over the sample space Ω. Let (Ri)i∈I be a countable partition of Ω in measurable
events. Let E ⊆ Ω be a measurable event. Suppose P(Ri ∩ E) = P(Ri) holds for all i ∈ I . Then P(E) = 1.

Proof. We have:

P(E) = P

(⋃
i∈I

(Ri ∩ E)

)
=
∑
i∈I
P(Ri ∩ E) =

∑
i∈I
P(Ri) = P

(⋃
i∈I

Ri

)
= P(Ω) = 1
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