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Monitoring is a key aspect of payments for ecosystem services (PES) schemes, providing a basis for payments. PES
monitoring however presents challenges, including in balancing technical accuracywith cost, local equity and le-
gitimacy. This is particularly true in smallholder carbon PES, where managers have limited resources and capac-
ity. Here we explore ways to improve monitoring in smallholder projects. We looked at two well-established
projects in Uganda and Mexico, and appraised five monitoring methodologies: two remote sensing and three
field measurement approaches. Eachmethodology varied in data resolution, methodological complexity and de-
gree of local participation.We collected quantitative and qualitative information on four aspects of performance:
accuracy; costs; local equity; and local legitimacy.We show that methodologies with greater data resolution and
local participation performed better in all four aspects, while greater methodological complexity was not associ-
ated with significantly improved performance. We conclude that monitoring in smallholder and other types of
PES may be improved through: 1) devolving analyses to the local level; 2) communicating to stakeholders a dis-
tinction between ‘applied’ and ‘scientific’ accuracy; and 3) documenting and communicating the diverse func-
tions of monitoring, referred to here as co-benefits – a contrast to simple ‘monitor and pay’ conceptions of PES.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Payments for Ecosystem Service (PES) schemes are increasingly ad-
vocated (Milder et al., 2010), although questions remain about their con-
ceptual validity (Kosoy and Corbera, 2010; Kronenberg and Hubacek,
2013) and technical feasibility (Guerry et al., 2015; Naeem et al., 2015).
PES are conceptualised as payments to providers of ecosystem services,
conditional on delivery of an ecosystem service, often resulting from
maintaining a particular land use (Engel et al., 2008).Monitoring ensures
conditionality, with providers only paid when they satisfy contractual
land use conditions (Corbera et al., 2007; Sommerville et al., 2009;
Fisher, 2013). Early conceptions of PES present it as a pure economic in-
centive focused solely on the technical monitoring of ecosystem service
delivery to trigger payments (Ferraro and Kiss, 2002; Ferraro, 2011;
Benson and Jafry, 2013). However it is argued that, in practice, managing
trade-offs inmonitoring, and optimisingmonitoring to be accurate, cost-
efficient and locally effective remains a key challenge (Fisher, 2013;
Meijaard et al., 2014; Naeem et al., 2015). Through this paper we
. This is an open access article under
contribute to a more nuanced appreciation of these terms and consider
options through which they may be promoted.

One of the origins of this challenge is the need for reductionist ap-
proaches to monitoring in complex landscapes. Smallholder carbon PES
(SCPES), where farmers plant trees to sequester carbon, exemplifies
this challenge, given the need for such schemes to deal with diverse
smallholders in diverse landscapes. SCPES projects deploy different re-
mote sensing, activity-based and field ecology measurement methods
to monitor impacts of land use, although links between land manage-
ment and ecosystem service provision are often uncertain (Ascough et
al., 2008; Fisher et al., 2009; Meijaard et al., 2014). Attempting to over-
come this uncertainty, monitoring often becomes complex (i.e. depen-
dent on complex technologies and technical expertise) and costly
(Baker et al., 2010; Meijaard et al., 2014), so becoming geared towards
an external technical audience, and less comprehensible to local actors
(Peskett et al., 2011; Fisher, 2013; Leach and Scoones, 2013; Lovell, 2015).

This drift towards complexmonitoringmay create trade-offs between
accuracy, costs, equity and legitimacy. The aforementioned compromise
between technical complexity and local transparency is one example of
a broader trade-off between perceived accuracy on the one hand, and
local equity in distributional outcomes (i.e. howmonitoring affects partic-
ipating smallholder income) (Brown, 2003) and legitimacy in decision
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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making (i.e. whether monitoring decisions are perceived as fair and ac-
ceptable to smallholders) on the other (Adger et al., 2003). Similarly,
more complex monitoring may increase costs, reducing SCPES revenues
to existing providers and lowering incentives for potential new providers
(Engel et al., 2008; Berry andRyan, 2013). Yet, conversely, if simplermon-
itoring is less precise, thismay also lower revenues: due to the principle of
conservativeness, less precise monitoring will intentionally underesti-
mate the provision of ecosystem services to ensure that certified services
are not false (Hamburg, 2000), in turn reducing services available for sale
(Berry and Ryan, 2013;Watson et al., 2013). Understanding how toman-
age trade-offs in local legitimacy, local equity, cost and accuracy is thus in-
tegral to improving the success of PES schemes. This is particularly true for
smallholder and community carbon projects in the tropics, which have
very limited resources and capacity, and the growing number of
REDD+ projects searching for robust and cost-effective monitoring
(Chhatre et al., 2012; Torres andSkutsch, 2015; Bayrak andMarafa, 2016).

The available literature on smallholder and community forestry, and
ecological monitoring, provides some preliminary insights on managing
trade-offs between accuracy, costs, equity and legitimacy. For example, a
wide literature suggests that local participation does not itself guarantee
local equity in carbon and other types of PES schemes,with equity in out-
comes also being heavily dependent on local context, as well as individ-
ual financial, human, natural, physical and social capital (Brown, 2003;
Corbera and Brown, 2008; Peskett et al., 2011; Fisher, 2013; Martin et
al., 2014; Pascual et al., 2014; Calvet-Mir et al., 2015; Hendrickson and
Corbera, 2015; Kariuki and Birner, 2016). On monitoring specifically,
local participation in monitoring can change or perpetuate existing
land and resource access arrangements, and so have varied (positive or
negative) impacts on local equity, justice and social change (Van
Rijsoort and Jinfeng, 2005; Petheram and Campbell, 2010; Osborne,
2011; Funder et al., 2013; Hendrickson and Corbera, 2015). For example,
Staddon et al. (2014, 2015) argue that, even in participatory community
monitoring, external ‘scientific’ approaches dominate and local elites can
continue to benefit disproportionately.

Another potential trade-off with regards to costs and accuracy is that
there are divergent views on whether increased methodological com-
plexity and cost (to both farmers and intermediaries) should necessarily
result in more robust monitoring. The large literature on particular PES-
related methodologies (Brown, 2002; Wollenberg et al., 2012;
Geijzendorffer and Roche, 2013; Porras et al., 2013; de Araujo Barbosa
et al., 2015; Bustamante et al., 2016) generally assumes that more com-
plex monitoring will be more accurate (e.g. see the ‘Tier’ approach in
IPCC, 2006). This issue is illustrated by Baker et al. (2010), Cacho and
Lipper (2006) and Meijaard et al. (2014) all of whom point to the prob-
lem of the complexity and cost of technology and expertise in carbon
PES. Studies have begun to question whether the relationship between
complexity and accuracy is linear by showing that the relationship
does not hold within methods such as field measurement (Danielsen et
al., 2008; Danielsen et al., 2013; Brofeldt et al., 2014) and remote sensing
(Hill et al., 2013; Mitchard et al., 2014). Additionally, field tests have
shown thatfield ecologymeasurements (one step in overall monitoring)
by local community members can be less costly to projects (in terms of
labour) than, and similarly accurate to, those taken by technical interme-
diaries (Holck, 2007; Danielsen et al., 2008; Brofeldt et al., 2014). The lit-
erature also therefore suggests potential to manage trade-offs in PES
monitoring through rationalising methodological complexity, costs to
smallholders and intermediaries, and perceptions of accuracy.

Another example of a trade-off stems from that fact that perceptions,
expectations, assumptions and methods of monitoring vary depending
on who demands the monitoring (Meijaard et al., 2014), which may
in turn affect how trade-offs in PES monitoring should be managed.
For example, carbon PES monitoring is generally an upwardly account-
able process, targeted towards a technical audience, and subsequently
buyers (Fisher, 2013). Yet, as discussed above, there is apparent dis-
agreement amongst stakeholders on what represents robust or fair
monitoring. Additionally, carbon PES is increasingly claimed to be
associated with a range of environmental and social ‘co-benefits’,
where other outcomes (in addition to carbon sequestration) are
targeted and achieved through a single carbon project (Anderson and
Zerriffi, 2012). This may lead to local stakeholders perceiving a project
and its benefits differently to external stakeholders. Understanding
how monitoring is perceived by different stakeholders (Table 2), and
addressing any apparentmisconceptions, is thus also integral to achiev-
ing accuracy, local equity and legitimacy in PES monitoring.

Our aim is therefore to examine the accuracy, cost, equity and legiti-
macy performance of five monitoring methodologies of varying com-
plexity (Table 1) used to measure carbon sequestration in smallholder
forestry interventions, and the perceptions of these methodologies
amongst four key actors: smallholders, local intermediaries, technical ex-
perts, and buyers (Table 2). We draw lessons for PES monitoring from
two case studies of agroforestry SCPES projects in Uganda and Mexico,
which have sold certified carbon offsets for the voluntary carbonmarket
since 2003 and 1997 respectively. The two projects provide good exam-
ples because, while SCPES (and these two projects in particular) provide
some of the oldest examples of PES, research on specific smallholder
monitoring methodologies is limited to general aspects of conditionality
(Fisher, 2013) and specific technological aspects (Rosenstock et al., 2013;
Seebauer, 2014). Additionally, smallholders tend to be a poorer socioeco-
nomic group who collectively safeguard a wide range of ecosystem ser-
vices from landscapes, and so may increasingly be targeted by PES
(Milder et al., 2010; Daw et al., 2011). Finally, with limited economies
of scale, optimisation of monitoring is particularly pertinent to small-
holder projects to keep costs down (Wunder et al., 2008; Rosenstock et
al., 2013). Although PES design (and therefore monitoring) will differ
with the scale, technological context and objectives of the project
(Farley and Costanza, 2010), lessons from SCPES schemes may be valu-
able for PES more generally.

The three research questions framing this study are:

1. How does the choice of monitoring methodology affect perceptions
of local equity in outcomes, and legitimacy in decision making?

2. How do costs and accuracy vary with the complexity of themonitor-
ing methodology?

3. How do perceptions and expectations of monitoring vary amongst
different actors?

In answering these questions we discuss how data resolution, per-
sonal interaction, local labour, and potential PES income are key mecha-
nisms for optimisingmonitoring in our cases.We then elaborate onwhy
PESmonitoringmay benefit from ecosystem service analyses by local (as
opposed to external) actors, better communication of uncertainty and
accuracy to stakeholders, and greater recognition of the diverse social
functions ofmonitoring (in contrast to narrowconceptions of PES as sim-
ple ‘monitor and pay’ interventions).

2. Study Sites and Methods

2.1. Study Sites

Our cases, ‘Scolel'te’ inMexico and ‘Trees for Global Benefits’ in Ugan-
da, sell carbon offsets certified by the Plan Vivo Standard (Plan Vivo,
2013). Bothprojects involve smallholders: a landholder reliant onhouse-
hold land and labour (Plan Vivo, 2013). Scolel'te has been active in the
Mexican state of Chiapas since 1994 (certified since 1997), is adminis-
tered by the local intermediary AMBIO, and currently supports over
1200 smallholders. Trees for Global Benefits has been running in south-
west Uganda since 2003 and is administered by Ecotrust Uganda, engag-
ing over 4800 smallholders. The comparative maturity of these projects
provided research respondents with an unusually long duration of expe-
rience of being monitored in PES.

We applied five monitoring methodologies to the same 31 agrofor-
estry plots in 2015 to estimate with each methodology the change in



Table 1
Monitoring methodologies assessed in the study.

No. Name Description

RS1 External remote sensing An external specialist without local knowledge conducts a dot-grid analysis of canopy cover using flexible
advanced spectral patterns, and relates results to a basic regional-level modelling of CO2e at different
canopy proportions (modelling done with the SHAMBA GHG model; see Woollen et al., 2014).

RS2 Participatory remote sensing The same as external remote sensing except using only rigid basic spectral patterns and carried out by a
local field technician with knowledge of the area and plots.

FM3 Basic field measurement A local technician looks up the stocking density of trees with DBH N 5 cm against the basic regional-level
SHAMBA modelling of CO2e at different stocking densities.

FM4 Intermediate field measurement A local technician inputs plot-level data on location, tree stocking density, species and growth rates, and
regional-level data on other land use into the SHAMBA model.

FM5 Advanced field measurement A local technician inputs detailed plot-level data for all variables (tree growth, stocking density and land
use) into the SHAMBA model.
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carbon since each plot joined theproject. Ten of the plotswere inMexico,
and 21 in Uganda (Fig. 1). The plots ranged from 0.5 to 2.5 ha and had
similar management regimes: planting of even-aged, mainly medium-
growing native tree species (approximately 400 trees/ha) in the first
three years after joining the program, with a selective thinning regime,
and intercropping in early years until canopy closure. Plots had been in
the program for varying amounts of time (4 to 14 years). Plots were se-
lected at random from a pool of available smallholders, stratified to get
the full breadth of plot ages. Given that we investigated variation be-
tween the monitoring methodologies rather than between plots, all
plots were treated as being of one population to which the monitoring
methodologies could be applied.
Fig. 1.Map indicating t
2.2. Carbon Offset Monitoring Methodologies

We define a monitoring methodology as the combination of a ‘data
source’ (e.g. field measurements or remote sensing spectral data) and
‘analysis method’ (e.g. modelling). We selected five methodologies
(Table 1) based on feasibility in our cases and their representativeness
of the spectrum of methods recommended for forestry projects (IPCC,
2006): two using remote sensing and three using field measurement.
Fig. 2 describes the data, analyses and workflow for each methodology
(see Appendix 1 for further information). Basic field measurement typ-
ifies current monitoring in the projects. At the outset, methodologies
were differentiated based on data resolution, methodological
he 31 project sites.



Fig. 2. Data, analysis and workflows of monitoring methodologies. Collectively the study relied on seven separate data sources (in solid-line boxes). Each of the five monitoring
methodologies (in dotted-line boxes) relied on a selection of these data sources (indicated with arrows).
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complexity (i.e. technological sophistication) and relative level of local
participation in data collection/analysis (Table 3). The former two attri-
butes continue to be the criteria for model differentiation under the
IPCC's land emissions modelling approach (IPCC, 2006; Smith et al.,
2014), while the latter is akin to other studies on participatorymonitor-
ing (Danielsen et al., 2008).

The data sources for both remote sensing methodologies were
WorldView-2 multispectral and pan-chromatic imagery (1.85 m and
0.46 m resolution, respectively) donated by the DigitalGlobe Founda-
tion, and GPS boundaries collected by field technicians. Across field
measurement methodologies, data sources for each plot were the GPS
field location, stocking density of trees, a systematic random sample of
tree diameter, and historical land use information for the plot from
semi-structured interviews with the owner (see Stakeholders section
below).

For data analysis, emission modelling was conducted using the
Small-Holder Agriculture Monitoring and Baseline Assessment
(SHAMBA) methodology developed by the University of Edinburgh to
estimate emissions from agriculture and tree planting on a per hectare
basis (Woollen et al., 2014). SHAMBA was selected above other poten-
tialmodels (e.g. Hillier et al., 2011) as the onlymodel explicitly designed
for tropical smallholder projects (Berry and Ryan, 2013). The model
consists of three sub-models: a RothC module for soil; a stock and
flow woody and crop biomass model, similar to the DALEC model
(Williams et al., 2005); and simpler approaches for non-CO2 greenhouse
gas emissions related to biomass burning, N fixation and the use of
fertilisers (model and documentation freely available online: http://
bit.ly/1t58lFd). SHAMBA contains databases of emission factors, tree al-
lometry, climate and soil information so that it can be used by non-spe-
cialists (Berry and Ryan, 2013). Given that carbon analyses usually
require costly specialist knowledge (Cacho and Lipper, 2006; Meijaard
et al., 2014), the use of SHAMBA implies a lower cost for carbon analyses
generally – this is a key assumption in our analyses.
2.3. Stakeholders

We identified fourmain stakeholder groups: smallholders, local inter-
mediaries, technical experts and buyers (Table 2). These groupings are
noted in other studies (Corbera and Brown, 2008; Peskett et al., 2011).
Thirty-one smallholders were selected using random sampling, stratified
by plot age, and six intermediaries and were selected purposively based
on their roles in the projects. Seventy-five buyers were engaged through
a targeted online survey, based on their interaction with Plan Vivo. The
empirical methods employed were semi-structured interviews (on both
monitoring experiences, and past land use on the plots) and observation
for all stakeholders, except for buyers which relied on a questionnaire.
We also conducted a joint workshop with intermediaries from each case
to further investigate intermediary perceptions.We then employed a the-
matic analysis (see Vaismoradi et al., 2013) to organise perspectives from
different stakeholders under the key aspects of performance (see below).

2.4. Performance of Monitoring Methodologies: Definitions and Methods of
Comparison

Themonitoringmethodologieswere scored across the four key aspects
of performance apparent in the existing literature (see Introduction):

• Statistical accuracy: We define statistical accuracy as agreement be-
tween the GHG estimate from the methodology and the ‘true’ value.
In the absence of a known truth and given the infeasibility of ad-
vanced field measurements (e.g. destructive sampling of trees or lon-
gitudinal soil samples, see Milori et al., 2012), we accepted results
from advanced field measurement (FM5) as a benchmark for the
‘maximum conservative estimate’ of GHG removals for each plot,
and as a proxy for true accuracy. We measured statistical accuracy of
other tools as the average difference of results from this benchmark,
in tCO2e ha−1 year−1.

http://bit.ly/1t58lFd
http://bit.ly/1t58lFd


Fig. 3. Box plot showing variation of monitoring methodology results for each plot. N.B.
Quantitative results for participatory remote sensing were not completed due to a small
sample size.
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• Cost performance: using semi-structured interviews, a literature re-
view, and Cacho and Lipper's (2006) cost categories, we investigated
‘cost performance’ in implementation (lower cost means better cost
performance) for intermediaries and smallholders. The analysis was
based on real costs for FM3 (as it resembles current monitoring), and
we used a review of component costs (e.g. remote sensing imagery;
local labour costs) and semi-structured interviews with stakeholders
to estimate if the othermethodologies would likely be higher or lower.

• Perceived local equity and legitimacy: throughworkshopswith interme-
diaries and structured surveys with smallholders, conducted by two
researchers (assisted by a primary field assistant in each country), we
sought perceptions from six intermediaries and 31 smallholders on
local distributional equity (monitoring effects on participating small-
holder income) (Brown, 2003) and legitimacy in decision making
(whether monitoring decisions are perceived as fair and acceptable
to smallholders) (Adger et al., 2003). To avoid bias from asking hypo-
thetical questions, we began interviews with a discussion of the legiti-
macy and equity aspects of the current monitoring regime with which
respondents had experience (and which approximates FM3). We then
followed this with a discussion onwhat would happen if the three key
aspects of monitoring tools (i.e. data resolution, complexity and local
participation) varied from the current level in (e.g. ‘how would you
Table 2
Use of monitoring information by key stakeholders.

Stakeholder group Description

Smallholders Local land owners or custodians who alter land use in order to main
ecosystem service provision

Local intermediaries A local organisation that registers and monitors smallholders, provi
such as extension services, and reports to technical experts

Technical experts External actors (including carbon certification organisations, techni
and auditors) who review and verify reports from local intermediar
ecosystem services and register ecosystem service credits for sale

Buyers Buyers of ecosystem service credits, including re-sellers. From indiv
large organisations
feel if calculations of the amount of carbon in your trees were more/
less complex than they are already?’; ‘howwould you feel if field visits
weremore/less frequent?’; ‘howwould you feel if themonitoring tech-
nicianmeasured fewer/more trees?’).We viewed that the practical dif-
ference between FM4 and FM5 was minimal in these criteria, so these
were assessed together.

• Perceived accuracy:we focused on the roles of technical intermediaries
and buyers, given their dominant role in shaping monitoring (Fisher,
2013). For technical intermediaries, following Drescher et al. (2013),
three technical experts with practical experience in GHGmodelling in-
dependently conducted a pedigree analysis (Risbey et al., 2001) on
sources of error and strength of method. Buyer perceptions were
based on an online survey of 75 buyers asking ‘which of the monitoring
methodologies is most accurate?’ along with a short description of each
methodology.

Scores for all aspects were converted into ordinal scores of perfor-
mance (very poor, poor, moderate, good, very good) relative to each
other, with the exception of statistical accuracy, which is reported in
tCO2e ha−1 year−1. All scoring results were compiled in Table 3, akin
to Danielsen et al. (2008). These main results are supplemented by
Table 4 and Table 2, respectively describing the ‘success factors’ and
use of information by different stakeholders.

3. Results

Overall, therewas variation betweenmonitoring tools across all four
aspects of performance (Table 3). Methodologies using regional-level
data recognised less of the natural variability in GHG removals between
plots than methodologies using plot-level data (intermediate and ad-
vanced fieldmeasurement; FM4 and FM5) (Fig. 3). This ability to recog-
nise variability appeared to underpin improved performance in
accuracy, equity and legitimacy (discussed further below).

Anothermain area of differencewas the diversity of uses ofmonitor-
ing information between stakeholders (Table 2). We believe that this
variation underpinned the results on perceived local equity and legiti-
macy, which we consider are by definition related to a stakeholder's
existing expectations of monitoring.

3.1. Does the Choice of Monitoring Methodology Affect Local Perceptions of
Equity?

Perceived local equity varied amongst methodologies, with field
measurement methods assessed as more equitable than remote sensing
methods (Table 3). Intermediaries perceived that fieldmeasurement ap-
proaches would have lower costs and higher accuracy (and so higher
ecosystem service estimates), leading tomore equitable (higher) income
for smallholders (Table 4). Smallholder assessments mainly agreed
Use of monitoring information

tain/increase • Planning PES income
• Adapting land management and increase performance
• Improving land management skills and knowledge

des support • Making smallholder payment decisions
• Identifying capacity building needs of smallholders
• Identifying and resolving issues with smallholders and technical actors
• Reporting to technical actors
• Marketing credits to buyers

cal advisors
ies, certify

• Verifying and certifying ecosystem service
• Identifying support for intermediaries and smallholders
• Reporting to market actors (potential buyers; industry standards)
• Conducting academic research

iduals to • Choosing an ecosystem service scheme
• Communicating broader impact (including co-benefits) of
ecosystem service investments
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Table 4
Main success factors for each aspect of performance arising from the data.

Performance
aspect

Stakeholder/source Indicators of success

Equity Smallholder • Reduces monitoring costs and improves ac-
curacy of estimates (and therefore income)

• Allows heterogeneity (flexibility) in land use
• Rewards over-performance

Intermediary • Reduces monitoring costs and improves ac-
curacy of estimates (and therefore income)

Legitimacy Smallholder • Maximises local interaction for negotiation
and advice

• Simplifies data collection
Intermediary • Maximises local interaction for negotiation

and advice
• Simplifies data collection

Cost Cost assessment • Reduces costs through local data collection
and analysis

Accuracy Technical actors • Uses plot-level field measurement data for
estimating main carbon pools

Buyers • Includes field visits
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(Table 4), but gave higher scores for plot-level methodologies (interme-
diate and advanced field measurement) due to their relative ability to
allow heterogeneous land use and to recognise over-performance.

Some intermediary views were qualified by the perspective that, in
their case, SCPES financial flows in isolation are currently insufficient
to fully cover the cost of monitoring (and embedded activities such as
capacity building). According to this view, in this case, no monitoring
approach can currently provide truly equitable outcomes unless relying
on supplementary grant (non PES-generated) funding.

Beyond our immediate remit of equity in outcomes, on the related
topic of local equity of participants' access to PES schemes (Brown,
2003), our results suggest that monitoring reforms may have minimal
impact on improving carbon PES access for smallholders with less land
or lower social capital. Intermediaries stated that changes to monitoring
would not impact who could be involved in the scheme, with risks to
smallholder food security and livelihoods being maintained as grounds
for exclusion regardless of monitoring methodology. Relatedly, field ob-
servations and other research (Fisher, 2013) suggested that farmers
were mainly recruited through social groups and institutional arrange-
ments (e.g. NGO membership, community ties) that pre-dated the pro-
ject. Reforms to monitoring would not necessarily impact these
separate issues of local equity in access.

Additionally, discussionswith local community technicians revealed
equity considerations in devolving coordination and data collection to
local technicians or volunteers. In both cases there were varying ac-
counts from technicians as to whether their remuneration covered
their opportunity costs. While this was not fully investigated by the
study, it does raise the issue of how costs are shared within intermedi-
ary organisations (e.g. between ‘headquarters’ staff and local techni-
cians or volunteers). For example, the increased field data collection
implied by FM5 would imply increased time costs for local technicians.

3.2. Does the Choice of Monitoring Methodology Affect Perceptions of Local
Legitimacy?

For legitimacy, fieldmeasurement approaches once again performed
better than remote sensing (Table 3). Intermediaries and smallholders
attributed this to:

a) Local participation through field visits, with reduced opportunities
for smallholder participation in decisionmaking under remote sens-
ing;

b) Local understanding of data collection, with simple measurements
such as tree diameter viewed asmore legitimate and locally accessi-
ble than satellite data (Table 4); and
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c) Citing a lack of public extension services in the study areas, better
opportunities to deliver agroforestry extension services (amonitor-
ing ‘co-benefit’) through field measurement approaches.

Some intermediaries stated that transparencywas less important for
the ‘data analysis’ part of themethodologies. They suggested that, in the
case of agroforestry monitoring, all available analyses are too opaque to
be truly understood by smallholders and many intermediaries, and so
all will continue to fail in this aspect of legitimacy. This was supported
by the smallholder semi-structured interviews, which predominantly
reported a poor understanding of the analysis method from even the
most basic methodology (basic field measurement; FM3) and reported
only an occasional desire to better understand the analysis.

3.3. Do Costs Vary With the Complexity of the Monitoring Methodology?

Givenminimal time requirements for smallholders in all of the exam-
ined methodologies, farmer cost performance was largely even, except
for external remote sensing, whichwasmarginally lower. For intermedi-
aries, while the least complex methodology (basic field measurement)
had the best cost performance, this criterion was not closely coupled
with complexity for other methodologies (Table 3). Rather, costs ap-
peared related to data collection and specialist knowledge, rather than
to complexity per se (Table 4). Remote sensing methodologies were
more costly due to the additional cost of high-resolution remote sensing
data (although DigitalGlobe Foundation donated the data for this study)
and the relative expense of specialist analysts. Specialist costs for GHG
modelling in all tools were assessed to be lower due to the use of
SHAMBA – a model designed for rapid automated plot-level modelling
at the local intermediary level (Berry and Ryan, 2013) – thus decoupling
higher complexity from monitoring cost. If a different GHG accounting
model was used, the analyses of cost outcomes would vary.

3.4. Does Accuracy Vary With the Complexity of the Monitoring
Methodology?

All methodologies produced conservative statistical accuracy results
relative to similar field studies. Average estimates from our testedmeth-
odologies ranged from 2.6 to 6.5 tCO2e ha−1 year−1 which are conserva-
tive relative to estimates for similar interventions in Eastern Africa: 4.6 to
10.1 tCO2e ha−1 year−1 (Kimaro et al., 2011) and 6.1 to 13.6 tCO2e ha−1-

year−1 (Nyadzi et al., 2003) (figures scaled to comparable stocking den-
sities). Similarly, in Mexico, de Jong et al. (1995) found an average
sequestration of 14.29 tCO2e ha−1 year−1 for the same interventions
and locality. Thus, despite varying statistical accuracy between themeth-
odologies, all methodologies can be said to produce conservative results
on average.

Statistical accuracy improvedwith complexity for fieldmeasurement
methodologies, though with diminishing improvements in accuracy
frommedium to high complexity (Table 3). Table 3 shows that interme-
diate fieldmeasurementwas routinelymuch closer than basic fieldmea-
surement to the benchmark of advanced fieldmeasurement. This can be
explained by the only point of differentiation between these two meth-
odologies: the use of plot- rather than region-level monitoring informa-
tion in intermediate field measurement for the most sensitive model
input variables (plot location, tree stocking density, species and growth
rates, see sensitivity analysis: Ryan et al., 2014). Advancedfieldmeasure-
ment gained only marginally on intermediate field measurement by
using plot-level input data for every variable, including less sensitive var-
iables on fire, fertiliser and crop GHG sources (Ryan et al., 2014).

External remote sensing was rated as equally complex as the bench-
markmethodology (advanced field measurement), yet it had the lowest
statistical accuracy (Table 3). The technical review suggested this was
due to: a) data resolution in data collection, where field boundaries
had a minimum error of up to 6% on 1 hectare plot (i.e. ±3 m) and
(evenwith high-qualityWorldView-2products) individual tree canopies
were hard to distinguish; and b) data analysis, where regional- rather
thanplot-level ecosystemservice estimateswere used. It can be assumed
that participatory remote sensing would share the same limitations.

The technical and buyer perspectives on accuracy broadly aligned
with the statistical accuracy results, with increasingly complex field
measurement approaches scoring higher (Table 4). For buyers, follow
up questions indicated a perception of greater accuracy frommethodol-
ogies that include field visits.

Importantly for reconciling different stakeholder's expectations of
monitoring, the buyer survey indicated that purchasing decisions of
many buyers of agroforestry carbon offsets are in fact influenced more
by price and the presence of social co-benefits, such as capacity building,
rather than perceptions of robustness or accuracy.

3.5. Do Perceptions and Expectations of Monitoring Vary Amongst Different
Actors?

Stakeholder groups had diverse uses of monitoring information
(Table 2). Smallholders were concerned with how monitoring can sup-
port income and skills, local intermediaries and technical actors focused
on project management, while buyers used information to select and
communicate about ecosystem service investments. A key novel aspect
to come from smallholder and local intermediary participants was the
focus on agroforestry extension as a concurrent aspect of monitoring
visits, which was a key factor in the stronger legitimacy scoring of field
measurement methodologies. While an agrosilvicultural extension co-
benefit was apparent for smallholders, intermediaries and technical ac-
tors still appeared to have the greatest use of current monitoring infor-
mation. This corroborates the finding that carbon PES monitoring
regimes evolve to serve a technical rather than local audience (Peskett
et al., 2011; Fisher, 2013).

4. Discussion

There aremanymonitoringmethodologies available to different PES
schemes, and the effectiveness of a methodology will vary depending
on the context of each project and the demands of key stakeholders
(Meijaard et al., 2014). Following the testing (via two cases) of a set of
methodologieswhich span the spectrumof those recommended for for-
est projects (IPCC, 2006), we elaborate three conclusions that may help
to optimise monitoring in PES schemes generally: 1) devolving plot-
level field measurement and analysis functions to the local level can
provide a ‘quadruple win’ by improving all aspects of monitoring per-
formance; 2) the monitoring demands of stakeholders could be
rationalised by communicating that simpler methodologies can have
the same ‘applied accuracy’ as more complexmethodologies, where es-
timates are conservative; and 3) documenting and communicating
about the broader functions of PES, including monitoring, may support
more effective project design and may show that co-benefits are better
rewarded by the market.

4.1. Local Data Analysis: A Quadruple-win?

Our findings build on existing research on the importance of local ac-
tors in project monitoring and administration (Brofeldt et al., 2014;
Calvet-Mir et al., 2015) by suggesting that, in our cases, accuracy, costs,
local equity and legitimacy may all be supported through devolving,
not only data collection, but also data analysis, to the local level. Based
on our results, we propose that local participation and data resolution
aremore important thanmethodological complexity in improvingmon-
itoring in SCPES schemes.We then suggest that the devolution of analyt-
ical capacity to local actors (such as technicians employed by local
intermediaries) could strengthen local participation and provide a cost-
effective means of maintaining or increasing data resolution.

Fig. 4 presents a conceptual model derived from our results of the
pathways by which the methodological attributes of data resolution,



Fig. 4. Pathways by which local participation and improved data resolution positively impact accuracy, costs, perceived local equity and legitimacy. Solid-line boxes are methodological
attributes, solid-line ovals are aspects of performance, and dotted-line boxes are pathways.
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local participation and methodological complexity can positively influ-
ence the performance aspects of accuracy, costs, local equity and
legitimacy.

For local participation, the first pathway is through participation
supporting increased field presence of the project and, in turn, promot-
ing perceived legitimacy.We found that methodologies involving higher
levels of field visits and personal interaction gave smallholders greater
scope for communication and negotiation over project decisions. This
supports the broader notion that personal communication, mediation
and translation is key to effectively managing the ‘boundary’ between
technical knowledge and practice for sustainable development (Cash et
al., 2003). A second pathway is that local participation may include
utilising local labour,whichwe found to reduce costs relative to using ex-
ternal staff. This increased potential local income and, subsequently, per-
ceived local equity. This agrees with existing findings on local data
collection on the cost advantages of using local labour, after the initial
costs of training are met (Danielsen et al., 2013; Brofeldt et al., 2014).
Local labour costs will vary significantly between projects, but given
the generally high cost of external expertise (Meijaard et al., 2014)
local labour may broadly be a more attractive prospect. We discuss
below the equity impacts of this at the intra-community level (given
that this labour constitutes local technicians and not necessarily mem-
bers of the wider community).

For data resolution, we suggest three main pathways by which it im-
pacts monitoring performance, all of which stem from our finding that
improved data resolution improves accuracy. First, improved data reso-
lution reduced the number of GHG credits lost due to uncertainty: coars-
er data creates ecosystem service estimateswith greater uncertainty and,
because conservatism dictates the use of the lower bound of the esti-
mate, lower ecosystem service values for each smallholder. Thus high
data resolution can increase potential income and improve local per-
ceived equity. Second, plot-level (i.e. high resolution) estimates can im-
prove both perceived local equity and legitimacy through recognising
(and potentially rewarding) over-performance. If a smallholder exceeds
performance targets (e.g. greater growth rates), under current ap-
proaches using rigid ex-ante estimates (including tiered payment
schemes) and without a new plot-level analysis, the intermediary
would only know that the smallholder had exceeded expectations, but
not by howmuch. If a smallholder had innovated outside the prescribed
intervention (e.g. planted different, more successful trees) the interme-
diary knows even less – all they know is that the smallholder has not
followed the prescribed regional-level land use. Plot-level data analysis
would recognise over-performance in both scenarios, which was per-
ceived to improve equity. Finally, we suggest that plot-level data resolu-
tion improves local equity through allowing for a greater diversity of
land uses. Regional-level ecosystem service estimates during project de-
sign lead to smallholders being contractually locked into a relatively spe-
cific land use, thus limiting responses to natural variability of social and
ecological conditions and potentially inhibiting their adaptive capacity
(Anderson and Zerriffi, 2012; van de Sand, 2012; van de Sand et al.,
2014). Plot-level data resolution in monitoring (and design) may allow
for greater land use flexibility in projects. This aligns with existing re-
search in our Mexico case study suggesting that more flexible land use
design and contractual conditions may better reflect the diversity of
local social conditions (Costedoat et al., 2016) and farmer aspirations
(Otto, 2016). It also agrees with the broader assessment of environmen-
tal monitoring by Danielsen et al. (2010) which suggests that local in-
volvement improves outcomes and the decision making at smaller (i.e.
village) scales.

Broadly, we suggest that improved local participation and data reso-
lution can be supported through maintaining the role of local actors in
data collection (Brofeldt et al., 2014) and further devolving data analysis
functions to the local level. In addition to increasing legitimacy through
maintaining field visits, enabling local actors to conduct analyses may
present a cost-effective way for PES schemes to move from coarse re-
gional-level analyses to plot-level calculations, so increasing accuracy
and flexibility. We suggest that field measurement approaches are
more suited to this approach: given the apparent technical and cost bar-
riers of remote sensing analyses in smallholder agroforestrymonitoring,
field measurement analyses by local technicians may be the only cur-
rently feasible way to routinely obtain and analyse high resolution
plot-level data. In any case, even if the technical and cost barriers to re-
mote sensing in smallholder PES could be overcome, the local equity
and legitimacy issues would remain.

Empowering local technicians and distinguishing between under-
and over-performing smallholders does of course come with its chal-
lenges. Benefiting local technicians is not the same as benefiting the
wider community, or indeedmarginalisedmembers within the commu-
nity. Thus devolution ofmonitoring to the local level does not necessarily
increase local equity in access to PES income for those currently excluded
from schemes, and does not necessarily prevent (and in some cases may
enable) elite capture (Funder et al., 2013; Staddon et al., 2015). On over-
performance, intermediaries in our cases suggested that, given the
opaque nature of carbon PES analyses, communitiesmay not understand
how over-performance is calculated, leading to perceptions of inequity.
Schemeswould need to consider this in the design ofmonitoring regime,
such as through cross-community verification and benefit-sharing
mechanisms – elements of which already exist in our cases.

Aside from these challenges, the question is: how can PES analyses be
devolved?We see two parts to this solution. The first involves PES certi-
fication standards moving their rules and processes ‘closer to the farm’,
where plot- instead of regional-level project designs and ecosystem ser-
vice estimates are encouraged. This would be amajor reform for thema-
jority of agroforestry projects associated with the main PES certification
standards (VCS, 2011, Plan Vivo, 2013, The Gold Standard, 2014), and
represents a change of direction from the increasing use of regional
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‘hands-off’ approaches to ecosystem service analyses, such as those that
fully rely on remote sensing (see de Araujo Barbosa et al., 2015; Dong et
al., 2015). Although RS with local participation may be appropriate in
non-smallholder projects (see Bustamante et al., 2016). More broadly,
where such plot-level analyses are designed to provide useful informa-
tion back to farmers (e.g. on how to improve the carbon performance
of their land use, or on over-performance to then use in negotiations
with intermediaries), they could support adaptive decision making and
management amongst PES smallholders (Stringer et al., 2006; Davies et
al., 2015). This could allow PES certification bodies to begin to address
criticisms that they are fundamentally ‘upwardly’ accountable (Fisher,
2013) and that they perpetuate existing power asymmetries (Kosoy
and Corbera, 2010; Kronenberg and Hubacek, 2013).

The second part of the solution is technical. Existing studies
(Danielsen et al., 2013; Brofeldt et al., 2014) already show that, with ap-
propriate training, local actors can conduct robust data collection, and in-
novations are already underway to support data collection in areas with
variable infrastructure and literacy (Hartung et al., 2010; Stevens et al.,
2013). We suggest that technical innovations can also put previously
complex ecosystem service analyses at the fingertips of local non-spe-
cialists. Tools are being developed for smallholder plot-level carbon anal-
yses, such as the SHAMBAmodel used in this study (Woollen et al., 2014)
and the Cool Farm Tool (Hillier et al., 2011), but formal applications to
date rely on external expertise for analysis (e.g. Cool Farm Alliance,
2011). We therefore argue a need for further development of such tech-
nologies to truly devolve PES analysis to the local level.

Such technical innovations should, however, be treated critically.
We highlight two key issues. First,while automationmay present an op-
portunity, intermediaries in our caseswhohad trialed new technologies
reported issues with technological reliability (e.g. data access; system
crashes), user issues (e.g. difficulties in correcting data entry mistakes)
and backward-compatibility with older (e.g. paper based) systems. Sec-
ond, care would need to be taken that the efficiencies implied by newer
devolved analysis tools (such as the lower costs associated with the use
of SHAMBA in this study) do in fact result in better cost outcomes local-
ly, and do not simply transfer costs from intermediaries onto local tech-
nicians or volunteers. PES schemes should thus be critical in their
decision to adopt new technologies, ensuring that new systems are re-
liable and the costs justified (Newman et al., 2012) – new technology
may not always be the best solution.

4.2. Clarifying ‘Accuracy’ in PES

Our results point to the need for more nuanced understandings
amongst PES stakeholders of the relationship between methodological
complexity and accuracy, and to distinguish between ‘scientific’ and ‘ap-
plied’ accuracy where conservatism is a key principle of an ecosystem
service certification standard.

First, our results show diminishing returns to accuracy for increasing
complexity, thusmoderating the simple assumption that complexity im-
plies accuracy. Diminishing returns are well established in the statistical
design of environmental monitoring (e.g. power analysis and sampling,
see Caughlan andOakley, 2001). However, the association between tech-
nological complexity and accuracy is less clear and, at least theoretically,
a simpler model could provide a similarly or more accurate result
(Brooks and Tobias, 1996; Young et al., 1996). Yet there appears to be a
bias in PES schemes towards more technologically complex monitoring,
partly to ‘prove’ conservativeness (Baker et al., 2010; Meijaard et al.,
2014). Our results suggest that accuracy and complexity can be balanced
in carbonmonitoring through improved data-resolution and focusing on
the key carbon pools and fluxes. Theoretical approaches to focusing data
collection and analysis in environmental management already exist (see
for example Runge et al., 2011). Finding practical ways to apply this in
PES design so that schemes can assess the marginal accuracy gains
from increased monitoring complexity could ensure that monitoring
complexity per se does not become an end goal.
Second, our results illuminate a potential misunderstanding in the
practical application of the complexity/accuracy assumption in the pre-
cise-or-conservative approach. As elaborated in the results section, the
estimates from all of the tested methodologies were conservative rela-
tive to other research studies. Not only this, but carbon PES schemes
would employ the lower bound of the 95% confidence interval, leading
to further conservatism. So in practice, while ‘accuracy’ varies amongst
themethodologies, carbon units certified by any of thesemethodologies
would all be equally ‘real’ or ‘robust’ as they are all conservative. Accord-
ing to the complexity/accuracy assumption, PES schemes using less so-
phisticated monitoring may be viewed as less robust, whereas in fact
they may simply be more conservative (and so equally robust).

This leads us to propose a separation in PES accounting between ‘sci-
entific’ accuracy, which is concernedwith certitude (i.e. the proximity of
the estimated value to the true value), and ‘applied’ accuracy, which is
concerned with conservatism (i.e. the probability that the estimated
value is lower than the true value). To use the language of risk and uncer-
tainty, scientific accuracy is concerned with reducing statistical uncer-
tainty in estimates as much as possible, whereas applied accuracy is
about managing the risks of the (inevitable) residual statistical uncer-
tainty by ensuring that a lower (conservative) value is used in practice.
This is similar to the argument already made in the ecosystem service
and natural resource management map-making literature which pro-
poses that, due to inherent imprecisions in mapping geographical fea-
tures, there is a need to distinguish between (sometimes overwrought)
claims to scientific accuracy on one hand, and the practical ‘usability’ of
simpler analyses on the other – simple maps may be just as informative
(McCall, 2006; Vorstius and Spray, 2015). This distinction is important in
the context of competition between PES certification organisations be-
cause confusion of the two concepts could drive PES certification organi-
sations to increase monitoring complexity to distinguish their certified
carbon credits and remain competitive in the market, when such com-
plexity is perhaps not justified, and in fact can reduce benefits locally
by driving up costs and reducing transparency. PES certification organi-
sations may benefit from better communicating this distinction to tech-
nical project staff, project auditors, credit resellers and buyers.

4.3. Payments for Ecosystem Services: More Than Payments

Our results demonstrate diverse stakeholder purposes and demands
in SCPESmonitoring, which contrasts with early, narrow conceptions of
PES as an institutionally simple economic incentive (Ferraro, 2001). We
suggest that recognising the broader functions of monitoring could in-
crease PES success and income, as well as deliver on the ethical obliga-
tion to hold monitoring ‘downwardly’ accountable to smallholders.

Simple conceptions of PES envisage a basic programdesign relative to
other interventions, with a focus solely on administering contracts and
conditional payments for conservation, presented as immune from
broader ‘non-environmental objectives’ (Ferraro, 2001; Ferraro, 2011).
Our study presents two pieces of evidence which build on existing cri-
tiques arguing that PES schemes necessarily evolve to encompass
broader social considerations in practice (Fisher, 2013; Pascual et al.,
2014). This is particularly true for smallholder and community projects.

First, in both of our cases, monitoring was interwoven with agrofor-
estry extension services. Such capacity building ‘co-benefits’ have been
demonstrated in development aid projects (Wanvoeke et al., 2015),
and our results extend this into thefield of PES. Both smallholders and in-
termediaries considered monitoring and extension linked, contributing
greatly to perceived legitimacy. Given the persistent lack of public agri-
cultural extension services following their withdrawal in the 1980s (at
least partly due to governments seeking economic efficiencies through
privatisation) (Haug, 1999; Benson and Jafry, 2013), we suggest that in-
termediaries found the need to provide extension support to small-
holders, paid for by effectively levying a charge on smallholder's
ecosystem service credit income. Following the simple economic effi-
ciency logic of the narrow PES conception it may be argued that the



Box 1
Summary of issues to consider in designing PES monitoring.

• Empowering local technicians to conduct PES analyses by
moving the rules and processes of PES certification ‘closer
to the farm’, and by continuing to develop technologies for
their use;

• Ensuring that new technologies are in fact the best option –
new technologies may not always be appropriate

• Where analyses are devolved, introducing safeguards to pro-
tect against dominance/capture by local elites;

• Ensuring that the data collected and analysed is appropriate
through maximising marginal accuracy gains (and so
maximising certified PES credits) from complexity (e.g. mov-
ing to plot-level data for key variables) while resisting further
complexity;

• Understanding and communicating to stakeholders a separa-
tion in PES accounting between ‘scientific’ and ‘applied’ accu-
racy – less accurate PES monitoring can be just as robust in
practice, once conservatism is applied;

• Better documenting and communicating extension efforts
and other co-benefits to: 1) avoid at the outset misconcep-
tions that PES is ‘simple’, and; 2) to potentially improve PES
sales by capitalising on buyers’ interests in local benefits; and

• Being realistic about the potential of PES, including monitor-
ing and technical interaction, to support social change.
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ideal approach would be for intermediaries to forgo extension functions
and the associated levy, instead permitting smallholders to decide if and
how they source such services. Our cases would suggest it is a circular
and self-defeating prospect in practice in some contexts: in the name
of economic efficiency, externalising on to smallholders the responsibil-
ity and risk of sourcing extension services – services which smallholders
have little prospect of sourcing as public extension was itself withdrawn
in the name of economic efficiency. This example demonstrates that PES
schemes, including monitoring, evolve to encompass concerns beyond
that of a simple economic incentive.

The second, and related, way in which in our study illustrates the
broader functions of PES monitoring is through the expectations of
buyers with regard to co-benefits, including smallholder capacity build-
ing (e.g. through agrosilvicultural extension). Far from the narrower pay-
ments-for-conservation view of PES (Ferraro, 2011), the buyer survey
indicated that purchasing decisions of many buyers of agroforestry car-
bon offsets are in fact influenced by the presence of social co-benefits,
such as capacity building. This may indicate that ecosystem service
buyers' willingness to pay for social co-benefits is filling the void in agri-
cultural extension funding created by the retreat of the state. It also sug-
gests that PES intermediariesmay gain from better articulating to buyers
the diverse functions of their monitoring as the surveyed buyers indicat-
ed a willingness to pay for such co-benefits. Better documenting and
communicating extension efforts could thus benefit several different ac-
tors and capitalise on buyers' interests in local benefits.

Overall, we argue that accepting at the outset a broader conception of
PES, could improve project success through better understanding the
needs and desires of all stakeholders, ensuring that these broader func-
tions are costed in the project design, and by articulating to buyers the
value of co-benefits. However, this will not transcend the known limita-
tions of the PES concept in addressing broader developmental issues
such as empowerment and poverty reduction (Wunder et al., 2008;
Fisher et al., 2013), or indeed the known limits of any project-based ini-
tiatives to challenge wider structures of marginalisation (Hickey and
Mohan, 2005). In agreement with the results of other studies (Corbera
and Brown, 2008; Staddon et al., 2015), the monitoring processes in
our caseswere observed to be embeddedwithin pre-existing institution-
al frameworks. Depending on implementation, this could reinforce
existing inequities or bring about some new element of social change.
As argued by Anderson and Zerriffi (2012), if intermediaries are seeking
to achieve and market social co-benefits through their PES scheme, they
should be realistic about the scheme's potential for social change, given
its design.

Given the above proposed roles for devolved data analysis, and im-
proved understandings of accuracy and the diverse functions of moni-
toring, we summarise below (Box 1) seven issues for consideration in
the design of smallholder schemes, and for PES more generally.

5. Conclusion

PES is one approach in the bigger environment and development in-
tervention toolbox. Where PES is deemed a useful approach, and given
its continued and increasing popularity, it is important to optimise PES
implementation, including monitoring, to maximise overall benefits
for socioecological systems.

Through two cases of SCPES monitoring in Mexico and Uganda, this
study suggests that trade-offs between accuracy, costs, local equity and
legitimacy can be effectively balanced in PES monitoring, and that all of
these aspects may be supported through improving data resolution and
participation. We suggest three key measures: supporting local actors
to conduct plot-level ecosystem service analyses; clarifying understand-
ings of accuracy; and explicitly valuing themyriad rolesmonitoring plays
for different stakeholders in PES schemes. In doing so, we have framed
seven key issues to consider when designing PES monitoring (Box 1).

While our findings stem from two cases of smallholder carbon
schemes, the findings may be relevant for PES or land-use schemes
with different scales of operation (e.g. larger REDD+ projects) and eco-
logical objectives (e.g. water and or biodiversity PES). Balancingmethod-
ological complexity and accuracy with costs and transparency can be
seen to be a general issue faced by the majority of PES and other land-
use schemes. Our findings on the importance of data resolution and par-
ticipation in managing this trade-off may serve to inform the design of
such schemes.
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Appendix 1. Monitoring Tool Descriptions

For this study, a monitoring tool consists of two parts: 1) the data
sources; 2) the method of analysis (see Fig. 2 in manuscript).
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Five monitoring tools were implemented, collectively using seven
data sources. The various data sources are described below.

Data 1: Satellite data
WorldView-2 panchromatic (0.5m) and 8-bandmultispectral (2m)
resolution was donated by The DigitalGlobe Foundation.
Data 2: GPS boundaries
On visiting each plot, the smallholder was handed a GPS (model
Garmin eTrex 10 or 20) and they tracked the boundary around the
plot. This produced a GPS Exchange file (.gpx) for use in analysis.
Data 3: Canopy vs stem diameter survey
Crown and stem diameter were measured by field technicians
for a random mix of species (in Uganda n = 49; in Mexico n
= 31) on random plots, stratified by DBH size (bins of 10 cm,
from DBH N 5 cm). A linear regression was then conducted to
find the relationship between single tree crown and stem diam-
eter for each country. Data was entered manually into monitor-
ing databases.
Data 4: Intervention-level literature review and expert opinion
Intervention-level data and assumptions were generated for each
country through a review of relevant literature (project design doc-
uments, technical specifications, feasibility studies, peer-review lit-
erature, grey literature). Where values could not be found in the
literature, the expert opinion of local field technicians was used.
Data was entered manually into monitoring databases.
Data 5: Plot-level tree inventory
A field technician collected location, tree stocking density, species
and tree growth (DBH at 1.3 m where DBH N 5 cm) on each plot.
Stocking density only included trees with DBH N 5 cm. Species and
tree growth data were collected for trees selected using systematic
sampling (every 10th treewith DBH N 5 cm). Datawas enteredman-
ually into monitoring databases.
Data 6: Plot-level smallholder interview
The field technician interviewed the smallholder about landman-
agement on their plot, including on a counterfactual baseline
scenario. Data was collected on: tree thinning and mortality;
crops, yields and residues; synthetic and organic fertiliser use;
and fire occurrence. Data was entered manually into monitoring
databases.
Data 7: Basic modelling
There were two parts to this modelling:

a) An external specialist used the data from the intervention-
level literature review (Data 4) in a hybrid process-empirical
model (SHAMBA) (model and documentation freely available on-
line: http://bit.ly/1t58lFd) to do regional level modelling on CO2e
at different stocking densities.

b) The regional crown/stem relationship (Data 3) was then used
to relate the stocking density CO2e estimates in the first step to a
canopy proportion.
FM1: External remote sensing and CO2e quantification
An external technical specialist without local knowledge of the
area quantified CO2e through first conducting a dot-grid analy-
sis of canopy cover using WorldView-2 satellite data (Data 1)
and plot GPS boundaries collected by the smallholder (Data 2).
This canopy proportion was then related to the basic interven-
tion-level modelling of CO2e at different canopy proportions
(Data 7).
FM2: Participatory remote sensing and CO2e quantification
This analysis was the same as Analysis 1 except that the dot-grid
analysis was led by a local field technician with knowledge of the
area and plots.
RS3: Basic CO2e modelling and quantification
Analysis 3 related the stocking density of trees with DBH N 5 cm
(Data 5) to the basic intervention-level modelling of CO2e at differ-
ent stocking densities (Data 7).
RS4: Intermediate CO2e modelling and quantification
An external specialist used plot-level data from the tree inventory
(Data 5; location, tree stocking density, species and growth rates)
and intervention-level data from the literature review (Data 4) for
all other inputs. This data was input into SHAMBA to assess CO2e
at the time of monitoring.
RS5: Advanced modelling CO2e and quantification
An external specialist used only plot-level data (Data 5 and Data 6).
This data was input into SHAMBA to assess CO2e at the time of mon-
itoring. NUSAP protocol/questions.
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