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Introduction 

In tropical forests, studies of xylem traits governing water transport through plants, or hydraulic 

architecture (HA) (Tyree et al., 1991), and the turnover of species along environmental gradients 

(Gentry, 1988), or beta-diversity (sensu Ackerly & Cornwell, 2007), have progressed mostly in parallel 

until recently (Hao et al., 2008; Bartlett et al., 2015). In this Issue of New Phytologist, Cosme et al. (2017) 

present a timely contribution to the intersection of plant hydraulics with trait-based community ecology.  

Building on previous biogeographical work which demonstrated high species turnover (beta-diversity) 

across a gradient from valleys to plateaus in central Amazonia (Schietti et al., 2014), they explore how 

variation in HA might underpin this sorting, sampling pairs of congeneric species restricted mostly to 

either plateau or valley habitats.  Valley species had significantly lower wood density and higher 

hydraulically-weighted vessel diameter and vessel area, while the relationships of vessel diameter and 

the leaf:sapwood area ratio with tree height demonstrated differences in the two habitats.  This is 

notable, as it suggests that species differentiation in water transport traits mediate edaphic filtering 

along the valley-to-plateau gradient, in contrast to previous work where wood mechanical support 

mediated valley-to-plateau environmental filtering (Fortunel et al., 2014). The ‘hydro-edaphic gradient’ 

(as Cosme et al. 2017 describe it) is a pervasive feature of many tropical forests (and in particular, 

Amazonia; see (Nobre et al., 2011)), but is often overlooked in ecosystem models and studies of 

ecosystem processes in this biome (de Gonçalves et al., 2013). If plant HA traits mediate the 

environmental filtering of species at this local scale, as the findings of Cosme et al. suggest – and given 

the projection by climate models towards an increased frequency of drought events or overall 

seasonality in precipitation seasonality (stronger dry seasons and wet seasons (Boisier et al., 2015)) – 

then this background edaphic gradient could be further amplified and thus lead to an even stronger 

trait-mediated sorting of species under climate change.  

Habitat Favourability, Durational Stability, and the Safety-Efficiency Trade-off 

Two main concepts that underpin trait-mediated environmental filtering as presented in Cosme et al. 

(2017) are: 1) the habitat as defined by hydro-edaphic conditions and as a template upon which various 

ecological strategies are derived; and 2) a trade-off in xylem safety and efficiency defining the range in 

ecological strategies operating on top of this habitat template. Both of these concepts have a rich 



history and it is useful to explore them briefly. First, the notion of a habitat as a set of environmental 

and ecological conditions defining a space occupied by an organism has been around for centuries. It 

was arguably Southwood’s (1977) treatise 40 years ago on the ‘habitat templet’ that was the first 

rigorous attempt at quantifying habitat along the two axes of general ‘favourableness’ and ‘durational 

stability’. Understanding plateau and valley habitats in tropical forests in terms of their favourableness 

and durational stability raises important questions in light of the results presented by Cosme et al 

(2017), explored below. 

Second, it has been thought for some time that the ability of a plant to resist a meaningful degree of 

moisture stress (hydraulic safety) would come at the cost of reduced maximum potential rate of water 

transport in xylem (hydraulic efficiency). It turns out that both the expectation of and evidence for such 

a trade-off (or lack thereof) is quite complex and mixed, especially when considering a range of scales 

within plant xylem at which safety and efficiency operate (see Bittencourt et al., 2016; Gleason et al., 

2016 and references therein). Nonetheless, Cosme et al. (2017) observed shifts towards wider vessels, 

deeper sapwood, and lower wood density in valley habitats, all of which are consistent with the 

hypothesis that these species prioritize efficiency, in contrast to species in plateau habitats, which 

prioritize safety. Given the complexities surrounding the safety-efficiency trade-off in plant xylem, it is 

remarkable that such distinct plant strategies emerged in these contrasting habitats. 

However, the safety-efficiency trade-off interpretation of these patterns in vessel traits is contingent on 

both: a) increasing distance to the water table acting as a suitable proxy for the degree of hydraulic 

stress; and b) the various vessel traits (in particular vessel diameter and frequency) acting as suitable 

proxies for both efficiency and safety. (Cosme et al. (2017) did not measure xylem hydraulic conductivity 

or the xylem pressure at which a meaningful amount of efficiency is lost directly, but highlight these 

measures as priorities for future work).  Exceptions to these two assumptions are worth considering. 

As Cosme et al. (2017) acknowledge, there is the likelihood of stress induced by hypoxia or anoxia during 

periods of waterlogging in the wet season in valley habitats; hence maxima, and not minima, in soil 

hydraulic conditions could also be a (non-mutually exclusive) filtering mechanism. Consistent with this 

hypothesis, 90% of the species turnover from valley to plateau habitats occurs in areas affected by 

seasonal water table fluctuations (i.e., closer to valley bottoms; Schietti et al., 2014).  It is also possible 

that in valley habitats, a shallow rooting habit (due to the avoidance of waterlogging) combined with 

small reductions in the water table and rapid drainage of sandy soils during inter-storm periods of the 

dry season, albeit brief, could induce dramatic declines in soil water potential. In this case, another 

(again, not mutually exclusive) explanation for lower density wood and deeper sapwood in these valley 

habitats is to promote water storage via greater hydraulic capacitance to sustain transpiration during 

these short periods of potentially limiting soil moisture availability (Borchert & Pockman, 2005).  While 

the clay-rich soils of some Amazonian plateau habitats have a large fraction of water that is tightly 

bound and thus unavailable to plants (Fisher et al., 2008), the greater distance to the water table likely 

contributes to a much deeper rooting profile, and hence the large volume of soil available to plants via 

deep rooting (Nepstad et al., 1994), which could allow for more favourable conditions in plateaus versus 

valleys during droughts. Consistent with this, drought conditions in Borneo disproportionately affected 

species adapted to wet habitats, but the exact mechanism for this is not yet fully resolved (Itoh et al., 

2012). Cosme et al. (2017) have indeed highlighted that valley habitats are “…very hydrologically 

dynamic” and, as a counter-example to a rigid trade-off in safety versus efficiency, that valley species 

likely maintain a reasonable degree of safety by modulating efficiency at a scale different from that at 



which safety is maintained. In these species, increased efficiency arose primarily via increased sapwood 

area (individual scale), while the maintenance of safety purportedly occurred by maintaining a network 

of not-too-large vessels (tissue scale), as mean vessel diameter and vessel density did not differ 

significantly between plateau and valley species. The same mechanism, in which safety and efficiency 

can be effectively manipulated at different scales, can be said to be true for plateau species, and 

highlights the importance of a network-scale view of plant xylem (Loepfe et al., 2007). In sum, the 

complexities of hydro-edaphic conditions in valley versus plateau habitats manifest themselves in 

orthogonal dimensions -- both overall favourability as well as in durational stability (or extremes), and 

these dimensions comprise contrasting templates upon which hydraulic safety and efficiency are 

presumably maximized. 

Using measurements and models to discern causes and consequences of trait-mediated 

environmental filtering 

There is immense value in the findings of Cosme et al. (2017), as is the case for other similarly designed 

studies (Hao et al., 2008; Fortunel et al., 2014). First, the strong evidence presented for filtering by the 

hydro-edaphic habitat in terms of HA traits suggests the need for measurements designed to probe the 

chain of mechanisms which link xylem anatomy to plant hydraulic traits, and in turn, to plant 

performance in contrasting habitats, which could be said to be the ‘Holy Grail’ of a trait-based 

community ecology in terms of plant-water relations. Specifically, augmenting these findings with in situ 

measures of sap flux, tissue water content and/or potential, stem growth and leaf phenology in these 

contrasting congeneric species and habitats over periods of regular (seasonal) as well as extreme (e.g., 

drought and/or flooding) variability in soil water availability would go far towards achieving this goal. 

Second, there is exceptional value for the development of ecosystem models, particularly those which 

eschew traditional approaches involving an a priori-defined biogeographic range for a given plant type, 

and instead seek to represent ecosystem response to environmental change as an emergent outcome of 

trait-mediated environmental filtering (Fisher et al., 2015). The identification by Cosme et al. (2017) of 

plant hydraulic strategies can inform models which are now capable of incorporating plant hydraulic 

traits and the ecosystem-level outcome of community-level variation in these traits (Christoffersen et 

al., 2016). Combining these empirical and modelling efforts will be invaluable in advancing our 

understanding of both plant response to environmental change and effect on ecosystem function, 

respectively (Lavorel & Garnier, 2002).  
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