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Abstract

We present a fast, efficient technique for performing
neural style transfer of human motion data using a
feedforward neural network. Typically feedforward
neural networks are trained in a supervised fashion;
both specifying the input and desired output simul-
taneously. For tasks such as style transfer this data
may not always be available and so a different train-
ing method is required. We present a method of
training a feedforward neural network making using
of a loss network; in this case a convolutional au-
toencoder trained on a large motion database. This
loss network is used to evaluate a number of separate
error terms used in training the feedforward neural
network. We compute a loss function in the space of
the hidden units of the loss network that is based on
style difference and motion-specific constraints such
as foot sliding, joint lengths, and the trajectory of
the character. By back-propagating these errors into
the feedforward network we can train it to perform
a transformation equivalent to neural style transfer.
Using our framework we can transform the style of
motion thousands of times faster than previous ap-
proaches which use optimization. We demonstrate
our system by transforming locomotion into various
different styles.
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learning, machine learning

1 Introduction

Motion style transfer is a technique for converting
the motion of an actor to that of a different charac-
ter, for example to a character that is old, depressed,
happy, or hurt etc. Automating this process can save
animators a lot of time since they do not need to cre-
ate many different variations of motions based upon
which character is performing such a motion. Instead
they can produce a single set of motions which are au-
tomatically adapted for use with different characters.

Many previous techniques for style transfer have been
developed. Most of these methods are data-driven
and require a set of corresponding motions both in
the neutral style and the characterized style. These
motions must be temporally aligned so that associ-
ated poses can be computed and a regression of some
form learned. Constructing such a data-set can be
tedious for artists and even with automatic meth-
ods, obtaining a good temporal alignment between
motions can be difficult or require significant manual
intervention by a technical developer.

Neural style transfer, first introduced by [1] and
adapted for motion data by [2] uses a deep neural
network to perform the style transfer task, solving
an optimisation problem over the neural network hid-
den units to produce motion in the style of one clip,
but with the content of another. This method over-
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comes a number of the issues with conventional style
transfer methods. Firstly, it only requires a single
exemplar motion to represent the style rather than
a database of corresponding clips. Secondly, it does
not require any kind of alignment between content
and style clips, instead calculating the style implic-
itly by taking an average over all the frames of the
motion’s Gram matrix. Both of these things are ap-
pealing to developers as they reduce the amount of
data preparation required.

One of the disadvantages of neural style transfer has
conventionally been the speed. Instead of performing
a regression, neural style transfer requires solving an
optimisation problem which is computationally ex-
pensive and may take a long time.

In this paper we present a technique inspired by the
work of [3] that removes this disadvantage of speed
while retaining the other advantages of the original
style transfer scheme [1] . To do this we train a
fast feedforward neural network to perform a regres-
sion task satisfying the constraints of the original op-
timisation problem, as well as new motion-specific
constraints. We also replace the pre-trained classifi-
cation network with an auto-encoding convolutional
network as used in [2]. This acts as a loss network
which has the advantage of being trained unsuper-
vised, and is additionally used to fix any artifacts or
noise that may be present in the produced motion.

In summary, our contribution is the following:

• A fast, efficient neural style transfer technique
designed for motion data.

2 Related Work

In this section we first review methods in computer
graphics about motion style transfer. Then we review
the use of deep learning methods in transformation of
data with an emphasis on style transfer. Finally, we
will discuss previous motion synthesis methods based
on deep learning techniques.

2.1 Motion Style Transfer

Motion style transfer is an old problem in computer
animation, with the idea being to import a style from
some motion clip and apply it to some other motion.
Motion style transfer is very useful especially for ap-
plications such as computer games, where we wish to
minimize the amount of motion data in the package.

One approach is to handle the motion in the fre-
quency domain: Unuma et al. [4] and Bruderlin et
al [5]. propose to transform the motions in the fre-
quency domain. Neutral motions are converted into
motions with different emotions by transferring the
difference of the Fourier coefficients. Pullen and Bre-
gler [6] define the style of the motion by the high
frequency elements of the motion data and add them
to a novel motion to transfer the style. Yumer and
Mitra [7] slide a window along the motion and ap-
ply a FFT to extract the high frequency data that
represents the style.

Another stream of work for motion style transfer is to
use dynamic models: Hsu et al. [8], use a linear time
invariant model to produce a time series model where
the style is embedded. Min et.al. [9] propose a multi-
linear analysis approach to synthesize and transfer
motion styles between actors. This method can be
used to reduce ambiguity as the models can represent
the motion data in a low-dimensional space. Another
advantage of this method is the omission of the foot
contact definition to prevent the foot sliding problem
as the model is constructed from motion registration.
The work by Xia et al. [10] shows that style transfer
of human motion can be performed in real-time by
constructing a local mixture of auto-regressive mod-
els of styles and contents that can be used to stylise a
sequence of different motion contents such as a walk-
ing motion immediately followed jumping. The idea
is to calculate the closest possible style from a given
current motion using the trained model which is then
used to predict the motion of the next frame.
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2.2 Feedforward Transformation and
Style Transfer

Using feedforward neural networks for data trans-
formation has recently been applied to various im-
age processing tasks. Related works include the use
of convolutional neural networks to transform low-
resolution images to produce high-resolution images
[11], coloring of grayscale images [12], and segmen-
tation or semantic scene understanding of an image
[13, 14, 15]. Like other neural network approaches,
once the models are trained they can easily and
quickly be used to perform similar transformations
to new input data.

Gatys et al. [1] show that the concept of image trans-
formation using deep neural networks can be used
to combine distinct elements of an image by using
method known as style transfer. Their work shows
that convolutional neural networks can be used to
combine two images by transferring the style of one
image to the content of another image. The com-
bined image manages to successfully capture the vi-
sual style of one image while preserving the content of
the other image. As shown by Zeiler and Fergus [16],
each convolutional layer of the network captures the
shape representation of the objects in the image with
increasing levels of detail. This feature of the network
can then be used to capture the content representa-
tion of the data. On the other hand, the style in
the image data is represented as the texture char-
acteristics such as color and local features, generally
encoded by the Gram matrix.

Recently Johnson et al. [3] proposed a deep neu-
ral network structure with a perceptual loss func-
tion that can be used to carry out image transfor-
mation tasks such as style transfer and production of
high-quality super-resolution images. They suggest
that a loss function based on perceptual difference
can be used to improve the performance compared to
the common per-pixel mean squared error compari-
son. Their method produces style-transferred images
comparable to [1] but is faster by a three orders of
magnitude. We adopt this approach, but use motion
specific constraints and an additional manifold pro-

jection step to make it suitable for use with motion
data.

2.3 Deep neural network for human
motion analysis

Before the widespread success in various research ar-
eas such as image transformation, the popularity of
deep neural networks was from their achievement in
obtaining state-of-the-art performances in recogni-
tion problems, especially for image and speech recog-
nition. These successes can be generalized and used
for other problems including classification and recog-
nition of human motion data [17].

One of the earliest human motion synthesis tech-
niques using neural networks is the conditional Re-
stricted Boltzmann Machine (cRBM) [18] and the
Recurrent Temporal Restricted Boltzmann Machine
(RTRBM) [19]. While both approaches successfully
produce human motion data, the motions are very
noisy due to the per-frame sampling and addition-
ally often converge to an average pose due to the
ambiguity in the mapping. Fragkiadaki et al. [20]
propose a variant of Recurrent Neural Networks to
learn and synthesize human motion data known as
the Encoder-Recurrent-Decoder network. Work by
Holden et al. [21] shows that a convolutional autoen-
coder can be used to learn a manifold of human mo-
tion. This has many purposes in research including
reconstructing, cleaning, or denoising motion data.
Furthermore, Holden et al. [2] combine this autoen-
coder with a feedforward neural network to regress
from high-level user inputs to full body motion data.
They then provide a framework to edit the generated
motions using the motion manifold and by optimizing
the motion in the hidden unit space to satisfy con-
straints such as bone-length and foot sliding. This
editing process can also be used to convert the mo-
tion style using the Gram matrix in a scheme similar
to Gatys et al. [1].
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Figure 1: An overview of the two networks used by our system. Shown at the left in orange is the
transformation network T , a feed forward convolutional network which performs the style transformation.
Shown at the right in green is the loss network L, a convolutional autoencoder which represents a manifold
over human motion and has two tasks - firstly to help compute the loss between motion content and style, and
secondly to re-project motion onto the manifold to fix any small artefacts resulting from the style transfer.

3 Methodology

Our proposed network architecture is similar to the
image transformation technique proposed by Jonhn-
son et al. [3]. An overview of our system is shown
in Fig. 1. It consists of two separate neural net-
work structures, a convolutional autoencoder net-
work which serves as the loss network L and a feed
forward convolutional network to perform motion
style transformation which we refer as the transfor-
mation network T .

3.1 Data Representation

Each pose is represented by the 21 joint positions in
three-dimensional Euclidean space local to the char-
acter root projected onto the floor plane. Appended

to this are three additional variables for turning ve-
locity, and forward and sideways velocities. This
gives us 66 degrees of freedom (DOF) in total per
pose. While our proposed framework can be used to
process motion data of any length - for training pur-
poses motion data is split into overlapping windows
of 240 frames at 60 frames per second. Any motions
with less than 240 frames are padded with the first
and last frames.

3.2 Loss Network

Contrary to Johnson et al. [3] who use a pre-trained
image classification network, the loss network L in
our system is a convolutional autoencoding network
trained to reconstruct the motion data X which it
receives as input. The purpose of using such a net-
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work is to learn the latent, manifold structure of the
motion database [21]. It allows us to partially em-
ulate the classification network used in Johnson et
al. [3] but in an unsupervised fashion. In Holden et
al. [2], it was shown that a single convolution and
pooling layer was enough to effectively capture mo-
tion content style in the latent variables, and as such
a deeper or more complex network is not required.
We therefore follow their construction which we will
now briefly revise. The loss network is built from a
single convolution and pooling layer that uses a one-
dimensional convolutional calculated over the tempo-
ral dimension. The encoding operation can be writ-
ten as:

L(X) = ReLU(Ψ(X ∗W0 + b0)), (1)

where the weight matrix W0 represents a tensor com-
posed of m hidden units (in our case m = 256), d
features (in our case d = 66), and a temporal filter
width of w0 (in our case w0 = 25). The vector b0

represents the biases of the layer and the operation
Ψ represents a max-pooling operation used to reduce
the number of features over the temporal axis by tak-
ing the maximum value between two consecutive pa-
rameters. We use Rectified Linear Units (ReLU) [22]
as an activation function to provide non-linearity to
the network. Having a filter width of 25 corresponds
to around half a second of motion after the pool-
ing has taken place, which is a reasonable length of
time to represent most movements or components of
movement. As our initial input has 66 dimensions,
using 256 hidden units allows us to represent motion
using sparse basis, which are more natural than the
fully correlated basis that are often found via meth-
ods such as PCA. Similarly, the decoding operation
of the convolutional autoencoder is defined as follows:

L†(H) = (Ψ†(H)− b0) ∗ W̃0 (2)

where H are the hidden units produced by the for-
ward operation, Ψ† is the depooling operation (in our
case average depooling), and W̃0 is the deconvolution
operation.

To train the convolutional autoencoder, the input
motion data X is encoded into the the hidden unit
space, and then decoded back to reconstruct X̃.

The loss function

Loss(X, θ) = ‖X− L†(L(X))‖22 + α‖θ‖1 (3)

is then back-propagated to optimize the network pa-
rameters θ = {W0,b0} using stochastic gradient de-
scent, where the second term is the L1 sparsity reg-
ularization term.

Training takes around 6 hours on a NVIDIA GeForce
GTX 660 GPU but since we use the pre-trained net-
work from [2], for the purposes of this paper, training
is not required.

3.3 Transformation Network

The transformation network T is a simple three-layer
convolutional neural network where each layer has a
similar construction to the encoding layer of the loss
network without the pooling operation. Each layer
contains 128 hidden units and all but the final output
layer use ReLU units as a non-linearity.

3.4 Training

The goal of this work is to train the transformation
network T without explicitly providing the desired
inputs and outputs. To do this we make use of the
given loss network L to encode various constraints
about how we wish for the transformed motion to
be.

During training we define the loss function of the
transformation network using the following terms:

Content To ensure the output of the transforma-
tion network contains the content of the input motion
I we define content loss to be the difference between
hidden unit values of the input motion when passed
to the loss network L and the hidden unit values of
the transformed motion T (I) when passed to the loss
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network. This comparison can be thought of as en-
coding the distance along the motion manifold [21]
between the transformed and un-transformed motion.
This is scaled by some user specified weight c, in our
case 1.0:

Losscontent = c‖L(I)− L(T (I))‖ (4)

.

Style To ensure the output of the transformation
network contains the style of the given style clip S
we define the style loss to be the difference between
the Gram matrix of the hidden unit values of the
transformed motion when passed to the loss network
and the Gram matrix of the hidden unit values of
the style motion when passed to the loss network.
This follows the work of Gatys et al. [1, 23] and com-
parison ensures the style of the motion produced by
the transformation network matches that of the given
style clip S. This is scaled by some user specified
weight s in our case 0.01:

Lossstyle = s‖Gram(L(S))−Gram(L(T (I)))‖. (5)

The Gram matrix is given by the following and rep-
resents the sum over the temporal axis i of the inner
product of the hidden unit values:

Gram(H) =
∑
i

HiH
T
i . (6)

By pairing stylized clips to their associated content
clips during training, a transformation network that
applies the style in different contexts can be learned.
For example, given an “angry” style, all training clips
where the content contains running are paired with
the “angry run” style, while all content clips contain-
ing walking are paired with the “angry walk” style.
In this way, although a different network is required
for each style, a single network can be trained to work
for a variety of contents.

Constraints As well as the content and style, it is
important that the transformed motion T (I) respects

the constraints of human motion. This means there
should be no foot sliding artifacts, the bone lengths
must not vary, and the trajectory should be similar
to the input motion in shape. We therefore calculate
additional loss functions relating to constraints of hu-
man motion. All of these constraints must be scaled
with respect to the units of the input data.

To remove foot sliding, when the feet are considered
in contact with the ground (a variable previously la-
belled in the training data) we ensure that for each
of the foot joints j, the local translational velocity

v
T (I)
r plus the local rotational velocity ωT (I) × p

T (I)
j

negates the velocity of the root of the character rela-
tive to the forward direction r′:

Lossfoot =
∑
j

‖vT (I)
r + ωT (I) × p

T (I)
j + v

T (I)
j − r′‖2.

(7)
For each bone b consisting of joints j1 and j2 we cal-
culate the distance between the joint positions in the

joint space of the transformed motion given by p
T (I)
bj1

and p
T (I)
bj2

, and calculate the mean squared difference

of this with the given bone length lb:

Lossbone =
∑
b

|‖pT (I)
bj1
− p

T (I)
bj2
‖ − lb|2. (8)

Given desired trajectory velocities v′
r and desired

turning angle velocities ω′ we calculate the mean
squared error of these and the trajectory velocities
and turning angle velocities the transformed motion

given by v
T (I)
r and ωT (I):

Losstraj = ‖ωT (I) − ω′‖2 + ‖vT (I)
r − v′

r‖2. (9)

Training Thus the final loss function that takes
into account the content, style, and motion con-
straints is finally computed as follows:

Loss = Losscontent + Lossstyle + Lossfoot

+ Lossbone + Losstraj . (10)

Given this loss function the transformation net-
work T is trained using stochastic gradient descent
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Figure 2: Images generated by deep neural networks
often contain high frequency noise and other artifacts
(Top). Motion generated by our transformation net-
work (Bottom) also sometimes has these problems
(Grey), but we fix this using an additional step of
projecting back onto the motion manifold previously
found using the convolutional autoencoder (Blue).

with automatic derivative calculation performed us-
ing Theano. We use the momentum based optimiza-
tion algorithm Adam [24] to improve learning speed.
The transformation network is trained for 100 epochs
using a locomotion dataset of about 20 minutes of
locomotion data. Training for a single style takes
around 20 minutes on a NVIDIA GeForce GTX 970.
Once trained the transformation network can per-
form the style transfer task very quickly.

Manifold Projection Data produced using deep
neural networks often contains small amounts of noise
or other artifacts (See Fig. 2). For images these small
errors may be acceptable but for motion data this
greatly impacts the visual quality of the result. To
solve this problem we re-purpose the pre-trained con-
volutional autoencoder used as the loss network and,
following the work of [21], pass the transformation
motion through it to project it back onto the motion
manifold, effectively removing any undesirable noise
or artifacts.

Method Frames Runtime FPS
Our Method 240 0.012 sec 21818.18
Our Method 480 0.014 sec 33802.81
Our Method 960 0.017 sec 55813.95
Holden et al. 240 15.219 sec 15.76
Holden et al. 480 20.341 sec 23.59
Holden et al. 960 33.371 sec 28.76

Table 1: Performance comparison between our
method and [2].

4 Experimental Results

In this section we demonstrate some of the results
of our method. We test our method on ten differ-
ent styles and various kinds of locomotion including
walking, jogging, and running. As well as a a quali-
tative evaluation we compare our results to the most
similar previous work - the optimisation based style
transfer technique presented in Holden et al. [2]. For
a more detailed look at the results, the readers are
referred to the supplementary video.

In Fig. 3 we show a selection of style transfer results
for different styles of locomotion including old man,
zombie, injured, and depressed.

In Fig. 4 we show a comparison to [2]. Our method
produces results which are in most cases visually very
similar but which can be generated in a much shorter
runtime.

In Table 1 we show a breakdown of the runtimes
of our method and that of [2]. Our method has a
vastly superior runtime and better scaling charac-
teristics due to the implicit parallelism of the trans-
formation network. All performance characteristics
were recorded on a NVIDIA GeForce GTX 660 GPU.

5 Limitations & Future Work

Unlike [2] our method requires for training a database
of motion data similar in content to the kind of mo-
tions that will be supplied at runtime. For example
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training our method to perform style transfer for lo-
comotion data requires a database of locomotion. For
more specific motions it may be difficult or undesir-
able to acquire such a database.

Our method still requires the whole motion to be
specified up-front and as such will require further
adaptations for use in interactive applications. Ad-
ditionally, while neural style transfer requires very
little manual intervention and no alignment of data,
compared to previous style transfer techniques it can
be difficult to control from an artistic standpoint and
often there is no clear way to fix undesirable results.

Experimentally we found our method does produce as
good results on motion that is not primarily locomo-
tion E.G. punching and kicking. Since Neural Style
Transfer is difficult to understand and control, future
experimentation is required to see how it can most
effectively be applied to different kinds of motion.

The manifold projection operation used to remove
artefacts from the stylized motion may introduce foot
sliding. In our results we don’t make an attempt to
remove this - showing the raw output of the system
- but for use in production this must be removed via
some fast post process such as analytical IK.

The framework presented in this paper is specific to
style transfer but it may be useful to learn many more
other transformations of motion data given a single
exemplar (I.E. in our case this is the single style clip).
For example it may be possible to use this framework
to transform motions for use on characters of different
sizes, weights, or structures.

6 Conclusion

In conclusion we present a fast neural style transfer
algorithm that can be used to perform style transfer
on a variety of styles with a much faster runtime than
previous methods.
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Figure 3: Some results of our method. Red: Style,
Green: Content, Blue: Transfered. From top to bot-
tom zombie, old man, injured, depressed.

Figure 4: Visual comparison of our method to [2].
Green: Content, Orange: Holden et al., Blue: Our
Method. From top to bottom zombie, old man, in-
jured, depressed.
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