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 25 

Abstract  26 

 27 

HIV and SIV replication in human cells is restricted at early post-entry steps by host inhibitory 28 

factors. We previously described and characterised an early phase restriction of HIV-1 and 2 29 

replication in human cell lines, primary macrophages and PBMCs. The restriction was termed 30 

Lentiviral restriction 2 (Lv2). The viral determinants of Lv2 susceptibility mapped to the HIV-2 31 

Env and CA. We subsequently reported a whole genome siRNA screen for factors involved in to 32 

HIV which identified RNA-associated Early-stage Anti-viral Factor (REAF). Using HIV-2 chimeras 33 

of susceptible and non-susceptible viruses we show here that REAF is a major component of the 34 

previously described Lv2. Further studies of the viral CA demonstrate that the CA mutation I73V 35 

(previously called I207V), a potent determinant for HIV-2, is a weak determinant of 36 

susceptibility for HIV-1. More potent CA determinants for HIV-1 REAF restriction were identified 37 

at P38A, N74D, G89V and G94D.  These results firmly establish that in HIV-1 CA is a strong 38 

determinant of susceptibility to LV2/REAF.  Similar to HIV-2 the HIV-1 Env can rescue sensitive 39 

CAs from restriction. We conclude that REAF is a major component of the previously described 40 

Lv2 restriction. 41 

 42 

 43 

 44 

 45 

 46 



Importance 47 

 48 

Measures taken by the host cell to combat infection drive the evolution of pathogens to 49 

counteract or side step them. The study of such virus-host conflicts can point to possible 50 

weaknesses in the arsenal of viruses and may lead to the rational design of anti-viral agents. 51 

Here we describe our discovery that the host restriction factor REAF fulfils the same criteria 52 

previously used to describe Lentiviral restriction (Lv2). We show that, like HIV-1 CA, the CA of 53 

HIV-1 is a strong determinant of LV2/REAF susceptibility.  We illustrate how HIV counteracts 54 

LV2/REAF by using an envelope with alternative routes of entry into cells.  55 

 56 

 57 

Introduction  58 

 59 

Infection of cells by human and simian immunodeficiency virus (HIV and SIV) is initiated by 60 

binding of the viral envelope (Env) to CD4. Conformational changes in the viral Env expose a site 61 

that can interact with a chemokine receptor, either CXCR4 or CCR5, expressed at the cell 62 

surface of CD4+ T cells and primary macrophages (1, 2). Viruses in general can enter cells 63 

through different routes, either directly at the plasma membrane (PM) or through one of a 64 

number of endocytic pathways (3).  Influenza is a prototypical virus that enters cells through an 65 

endocytic route and requires the acid environment of the late endosome to trigger its fusion 66 

and entry into cells. Since the mechanism of HIV fusion is pH independent (4) it has been widely 67 

assumed that HIV fuses at the PM (5-7). pH independent endocytic entry has recently been 68 



observed (8-15) and is thus a possible mechanism of HIV entry; this however remains a topic of 69 

considerable controversy (16, 17). Regardless of the route, once HIV fuses at the plasma 70 

membrane the conical core is released into the cytoplasm. The viral genomic RNA is reverse 71 

transcribed by the virally encoded RNA/DNA dependent reverse transcriptase (RT), resulting in 72 

virally encoded RNA:DNA, single and double stranded (ss and ds)DNA intermediates. The RNase 73 

H activity of RT degrades the RNA from these hybrids resulting in ssDNA from which the second 74 

DNA strand is synthesised (18, 19). Once reverse transcription is complete the double stranded 75 

proviral DNA is processed for integration into the host cell genome. 76 

 77 

HIV must overcome many cellular barriers to its replication as it journey to the nucleus to 78 

integrate into the host genome (20, 21). Interferon-induced transmembrane proteins (IFITMs) 79 

can inhibit virus-cell membrane fusion (22) and the process of reverse transcription itself is also 80 

vulnerable. Immediately after initiation, members of the Apolipoprotein B mRNA-editing, 81 

enzyme-catalytic, polypeptide-like (APOBEC) family of restriction factors induce deoxycytidine 82 

to deoxyuridine mutations in the nascent DNA (23). Further disabling reverse transcription 83 

SAMHD1 depletes the dNTP substrates required (24). RNA-associated Early-stage Anti-viral 84 

Factor (REAF) was described to inhibit HIV and SIV replication during reverse transcription (25). 85 

REAF is intrinsically expressed and provides an initial line of defence against HIV and SIV 86 

infection. It associates with reverse transcripts; either ssDNA or RNA:DNA hybrids, however the 87 

precise mechanism of its action is not yet understood. A more recently described restriction 88 

factor MX2/MXB inhibits replication at a later stage, suppressing nuclear import and proviral 89 

formation (26-28). Integration is inhibited by the TRIM28 (KAP1)/SETDB1 complex (29). Once 90 



the provirus is integrated the late phase of the replication cycle begins with the production of 91 

viral proteins (30). A plasma membrane located restriction factor tetherin/BST2/CD317, 92 

prevents viruses from leaving the cell at the late budding stage of the life cycle (31).  93 

 94 

The first Lentiviral restriction factor 1 (Lv1) effective against HIV-1 was identified as rhesus 95 

TRIM5α (32, 33). Lv1/TRIM5α is species specific and active against HIV-1 in non-human primate 96 

cells. TRIM5α forms a lattice around the capsid (CA) resulting in premature disassembly of the 97 

conical core (34). It is not known if Lv2 is species specific. It inhibits HIV-1 and 2 during reverse 98 

transcription and susceptibility is determined by the viral CA (35). Lv2 differs from Lv1 in that 99 

the Env is an additional determinant of restriction. Approximately half of HIV-1 and HIV-2 100 

viruses are susceptible to Lv2 (35). Lv3 is a post entry restriction to infection of simian MAGI 101 

cells by HIV-1 and similar to Lv2 is dependent on fusion events at the cell membrane (36). Lv4 102 

restricts nuclear entry of SIV isolates in human cells (37).  A recently described restriction to 103 

HIV-1 induced by TLR 7/8 agonist in human monocytes is termed Lv5 (38). So far the identities 104 

of Lv3, 4 and 5 are unknown. Here we describe the identification of REAF as a potent 105 

component of Lv2. 106 

 107 

To identify components of Lv2 we designed a whole genome siRNA screen (20). HeLa-CD4 cells 108 

were transfected with an siRNA library targeting 19,121 human genes and then challenged with 109 

an HIV-189.6 (MCR) pseudovirus (20). One factor identified was RPRD2 (here called RNA-110 

associated Early-stage Anti-viral Factor; REAF) which we now show fulfils the characteristics 111 

used to define Lv2 (35,38).  112 



 113 

Materials and Methods 114 

 115 

Cells. Buffy coats from seronegative donors were obtained from the National Blood Service 116 

(Brentwood, UK). Donors were anonymous and patient consent was not required. Peripheral 117 

blood mononuclear cells (PBMC) were prepared by density-gradient centrifugation 118 

(Lymphoprep, Axis-Shield). Monocyte-derived macrophages (MDM) were isolated from PBMC 119 

using CD14+ MACS Microbeads (Miltenyi Biotec) and left to differentiate for 5 days in RPMI 120 

1640/10% foetal calf serum (FCS) and 15ng/ml granulocyte macrophage colony stimulating 121 

factor (GM-CSF; Peprotech). HEK 293T, HeLa-CD4, U87-CD4-CXCR4, HeLa EKV and HeLa 122 

EKVΔCPSF6-358 cells and their optimal culture conditions have been described previously (39-123 

42). 124 

Preparation of REAF knockdown cells. The pSUPER RNAi system (pSUPER.retro.puro; 125 

Oligoengine) was used for expression of shRNA in mammalian cells (43, 44). For REAF 126 

knockdown pSUPER.retro.puro(shREAF) was generated by digestion with BglII and HindIII, 127 

annealing of the specific primers and ligation. The shRNA target sequences are shown in upper 128 

case within the primers listed below:  129 

shREAF-BglII: 5’ gatccccCACGTAAGCCCTCAGATGAttcaagagaTCATCTGAGGGCTTACGTGttttta 3’  130 

shREAF-HindIII: 5’ agcttaaaaaCACGTAAGCCCTCAGATGAtctcttgaaTCATCTGAGGGCTTACGTGggg 131 

3’ 132 

The vector was either transfected directly into HeLa-CD4 cells for transient knockdown or used 133 

to generate stable knockdown cell lines. Briefly, retroviruses were produced by co-transfecting 134 



pSUPER.retro.puro(shREAF) with an HIV-1 gag-pol expression vector (p8.91) (45) and pMDG 135 

VSV-G Env into HEK 293T cells. Supernatant containing virus was harvested after 48 hours and 136 

was used to transduce HeLa-CD4 cells under puromycin selection. REAF silencing in transient 137 

and stably knocked down cells was confirmed by Western blot. 138 

 139 

Plasmids and virus production. The infectious molecular clone for HIV-189.6 was obtained from 140 

the Centre for AIDS Research (NIBSC, UK). Infectious full-length and chimeric HIV clones were 141 

prepared by polyethylenimine (PEI; Polysciences) or Lipofectamine 2000 (Invitrogen) 142 

transfection of HEK 293T cells. The virus named in parentheses for each pseudotype denotes 143 

the Env used. 144 

 145 

Production of CA mutant viruses. HIV-1 CA mutants were generated by site directed 146 

mutagenesis (SDM) of the HIV-1NL4.3-derived viral clone pBR-NL43-IRES-eGFP (46) with further 147 

modification to introduce stop codons in the first and third codons of the Env coding sequence. 148 

HIV-1 pseudovirus particles were produced by PEI transfection of HEK 293T cells using a 1:1 149 

molar ratio of viral plasmid to MCR/MCN/VSV-G/NL4.3 Env expression plasmid. 150 

 151 

Western blot. SDS-PAGE separated proteins were detected with the primary rabbit polyclonal 152 

antibody against REAF (Eurogentec) or GAPDH (loading control; Abcam) followed by 153 

horseradish peroxidase-conjugated donkey α-rabbit antibody (GE Healthcare). Protein was 154 

visualised using a chemiluminescence kit (ECL; GE Healthcare). 155 

  156 



siRNA transfection and infection with replication competent virus. HeLa-CD4 cells were 157 

seeded at 2.5×104 cells/well in 24-well plates. siRNA transfection (30nM) was performed using 158 

HiPerfect (QIAGEN) according to the manufacturer’s instructions using the following sequences: 159 

siREAF:  5’ CACGTAAGCCCTCAGATGATA 3’ 160 

siCB:  5’ ACAGCAAATTCCATCGTGT 3’  161 

72 hours after siRNA transfection, cells were challenged with virus for up to 5 hr. Infection was 162 

assessed up to 48 hours by intracellular p24 staining.  163 

 164 

In situ immunostaining for p24 antigen. Infected cells were fixed with cold (-20°C) 165 

methanol:acetone (1:1), washed with PBS then immunostained for p24 using mouse anti-HIV-1 166 

p24 monoclonal antibodies EVA365 and 366 (NIBSC, UK) (1:50) as previously described (47). 167 

Infected cell foci stained blue (regarded as foci of infection (FFU/ml)) and were quantitated by 168 

light microscopy.  169 

 170 

Statistical analysis. The results presented are derived from a minimum of three independent 171 

experiments performed in duplicate at minimum. Differences between two treatments were 172 

tested for statistical significance using unpaired two-tailed t-Tests. * denotes p < 0.05, n.s. not 173 

significant.  174 

 175 

Results 176 

 177 



The HIV-2 molecular determinants of Lv2 restriction were previously mapped using two HIV-2 178 

molecular clones of viruses derived from the same patient, HIV-2MCR and HIV-2MCN, which are 179 

differentially sensitive to Lv2.  A gene swapping approach between the viruses identified the 180 

gag and env genes as critical determinants of Lv2 restriction (39). These chimeric viruses 181 

(shown schematically in Fig. 1A) were tested to determine if they had the same pattern of 182 

susceptibility to REAF. 183 

HeLa-CD4 cells were knocked down for REAF using specific (siREAF) or non-targeting control 184 

siRNA (cyclophilin B, siCB) (Fig. 1B). Fig. 1C shows viral rescue in HeLa-CD4 cells following 185 

treatment with siREAF and compared with cells treated with siCB. Repeat experiments 186 

consistently show, as expected for a virus highly sensitive to Lv2 (39), that the HIV-2MCR virus is 187 

potently rescued in comparison to HIV-2MCN (50 fold vs 10 fold; p = 0.004). When the env and 188 

gag from the restricted HIV-2MCR was inserted in place of the relatively insensitive HIV-2MCN env 189 

and gag (HIV-2MCNmcr env+gag), greater sensitivity of this virus to REAF was observed (66 fold). In 190 

the reciprocal experiment, where the env and gag from HIV-2MCN replaced the HIV-2MCR genes 191 

(HIV-2MCRmcn env+gag), the resulting chimera was only rescued 3 fold (p < 0.001). These results for 192 

susceptibility to REAF are consistent with the Lv2 phenotype previously described (39). A single 193 

point mutation in HIV-2MCR CA at position 73 is known to be a critical determinant of Lv2 194 

restriction (previously labelled position 207). Fig. 1C shows that HIV-2MCR CA I73V is rescued only 195 

12 fold from REAF restriction compared to 50 fold for wild type HIV-2MCR (p = 0.003).   196 

To confirm these results and for further experiments we generated HeLa-CD4 cell lines 197 

permanently expressing shRNA specific for REAF mRNA. Western blot (WB) analysis shows that 198 

the HeLa-CD4-shREAF cells expressed much less REAF protein than the parental HeLa-CD4 cells 199 



(Fig. 1D). The phenotype of knockdown of REAF in this cell line was confirmed using HIV-2MCR 200 

and HIV-2MCR CA I73V. The HIV-2MCR virus was restricted 326 fold compared to 33 fold for the HIV-201 

2MCR CA I73V (Fig. 1E; p = 0.016).  202 

We previously reported that Lv2 was active in HeLa-CD4, human primary PBMC and MDM but 203 

not in U87-CD4-CXCR4 cells (39). REAF mRNA (data not shown) and protein is present in MDM 204 

and to much lower levels in PBMC (Fig. 1F) while WB analysis shows it to be barely detectable in 205 

U87-CD4-CXCR4 (Fig. 1G).  206 

 207 

As previously reported for Lv2 (39) and further demonstrated here, the HIV-2 determinants for 208 

REAF are Env and CA (specifically amino acid 73). We sought to identify the determinants of 209 

REAF restriction for HIV-1. Fig. 2A shows that, compared to HIV-189.6, HIV-1NL4.3 is more resistant 210 

to REAF restriction (3 fold vs 21 fold; p < 0.001). We used HIV-1NL4.3 to further establish if the 211 

equivalent HIV-2 CA mutation 73 plays a role in Lv2/REAF restriction in HIV-1. Using SDM we 212 

generated HIV-1NL4.3 CA I73V. Both wild type and mutant CA were pseudotyped with HIV-2MCR Env 213 

and/or HIV-1NL4.3 Env and tested for their susceptibility to REAF using the HeLa-CD4-shREAF cell 214 

line. Fig. 2B shows that wild type HIV-1NL4.3 CA is only weakly susceptible to REAF when 215 

pseudotyped with HIV-1NL4.3 Env. However when the CA is mutated (HIV-1NL4.3 CA I73V (NL4.3)) the 216 

restriction is more potent but still relatively weak compared to HIV-2 (15 fold, compare to Fig. 217 

1E for HIV-2). The CA I73V was further restricted when pseudotyped with an HIV-2MCR Env (21 218 

fold, p = 0.03), but not with HIV-2MCN Env (16 fold, p = n.s.). Thus CA amino acid 73 and Env are 219 

determinants of Lv2/REAF restriction for both HIV-1 and 2.  220 

 221 



The CA amino acid at position 73 lies in the binding domain of the cleavage and polyadenylation 222 

specific factor 6 (CPSF6) protein (48). This is of particular interest as the adjacent CA mutation 223 

(N74D) has been shown to affect the sensitivity of HIV-1 to depletion of RanBP2, Nup153 and 224 

TNPO3 nuclear pore proteins (49, 50).  225 

N74D is an HIV-1 escape mutant that was generated by passage of HIV-1NL4.3 in cells expressing 226 

an artificially mutated CPSF6-358 that perturbs HIV-1 nuclear entry (50). CPSF6 is a pre-mRNA 227 

processing protein that shuttles between the nucleus and the cytoplasm (51). The mutant form 228 

CPSF6-358 lacks a C-terminal nuclear-targeting arginine/serine (RS)-rich domain and so is 229 

confined to the cytoplasm and restricts HIV-1 before nuclear entry (50, 52, 53). 230 

We tested whether the Lv2/REAF HIV-2 CA determinant I73V was similar to N74D with respect 231 

to resistance to CPSF6-358. Another CA mutation, P38A, which was mutated outside the CPSF6 232 

CA binding region was included as a negative control (54). HeLa-CD4 target cells permanently 233 

expressing the mutant CPSF6-358 (HeLa EKVΔCPSF6-358) or vector alone (HeLa EKV) (42, 48) 234 

were challenged with pseudotypes carrying a mutant or wild type CA. Fig. 2C shows that, as 235 

expected, infection of the pseudotypes with wild type and P38A CA are inhibited (62 and 73 236 

fold respectively). However both CA mutants, HIV-1NL4.3 CA I73V (VSV-G) and HIV-1NL4.3 CA N74D (VSV-237 

G), were resistant to CPSF6-358 (3.3 and 1.6 fold; both p < 0.001).   238 

 239 

Given this similarity in resistance to CPSF6-358 we also sought to determine whether, similar to 240 

I73V, N74D is more susceptible than wild type virus to REAF restriction. HeLa-CD4 and HeLa-241 

CD4-shREAF cells were challenged by pseudotypes with either wild type or mutated CA. Fig. 3A 242 

shows that HIV-1NL4.3 (MCR) is rescued 13 fold. Surprisingly HIV-1NL4.3 CA N74D (MCR) is even more 243 



restricted and is rescued 53 fold (p < 0.001), suggesting CA N74D is a more potent determinant 244 

of REAF restriction in HIV-1 245 

As well as being less sensitive to CPSF6-358, the CA N74D mutation has a more stable conical 246 

core which results in delayed disassembly and reverse transcription (55). It is thought that 247 

optimal disassembly of the conical core is required for successful infection as mutations 248 

interfering with core stability often result in a disturbance of reverse transcription kinetics (54, 249 

56-58). We previously reported that REAF was transiently down modulated shortly after 250 

infection (25). We hypothesised that unstable capsids will prematurely disassemble and expose 251 

reverse transcripts to REAF. The corollary of this is that capsids that disassemble too late will 252 

miss the window of time where REAF is absent. To test this hypothesis that capsid stability was 253 

a determinant of REAF/Lv2 restriction we investigated the REAF susceptibility of CA mutations 254 

with varying CA stability. P38A, in contrast to N74D, is highly unstable (54, 59) while G94D is 255 

unaffected (55). The G89V mutation in the cyclophilin binding loop was chosen because it has 256 

previously been shown to affect sensitivity to host restriction factors  (42, 54, 57, 58). P38A is 257 

also distinct from N74D in that it is sensitive to CPSF6-358 (Fig. 2C). Fig. 3C, D and E show the 258 

infectivity of all three capsid mutants. HIV-1NL4.3 CA P38A (MCR), HIV-1NL4.3 CA G89V (MCR) and HIV-259 

1NL4.3 CA G94D were severely compromised on HeLa-CD4 cells (titre of <500 FFU/ml; compared to 260 

wild type CA, Fig. 3B). However their replication was rescued in the absence of REAF similar to 261 

HIV-1NL4.3 CA N74D (MCR) (Fig. 3F; all p < 0.001). 262 

 263 

We showed above that in addition to CA, HIV-1 Env also confers sensitivity to REAF (Fig. 2B). We 264 

previously determined that HIV-2MCN Env has the ability to overcome Lv2 (35, 39).  If REAF is Lv2 265 



the HIV-2MCN Env would overcome REAF restriction. HeLa-CD4-shREAF cells were challenged 266 

with HIV-1NL4.3 with a wild type CA pseudotyped with HIV-2MCN Env. As expected the wild type 267 

HIV-1NL4.3 CA was only slightly restricted and the HIV-2MCN Env could reduce this to a small but 268 

significant degree (5.6 to 3.1 fold; p = 0.007) (Fig. 4A). In contrast the HIV-1NL4.3 strains carrying 269 

REAF sensitive CA mutations N74D, P38A, G89V and G94V were potently rescued with the HIV-270 

2MCN Env (Fig. 4B-E, all p-values < 0.001) further confirming that REAF and Lv2 are similarly 271 

rescued by viral Env.  272 

 273 

Discussion 274 

Here we show that REAF is a major component of the previously described restriction Lv2 (35, 275 

60, 61) . HIV chimeric viruses and mutants that delineate susceptible and resistant clones 276 

demonstrate that Lv2 and REAF are indistinguishable. Both Lv2 and REAF restriction activity are 277 

molecularly determined by the viral Env and CA. The CA amino acid at position 73 in HIV-2 was 278 

a crucial determinant of Lv2 and confirmed here for REAF (39). The equivalent amino acid at 279 

position 73 also affects HIV-1 susceptibility to REAF. Although the effects of I73V are statistically 280 

significant they are much weaker compared to HIV-2. Indeed, the same amino acid substitution 281 

rendered HIV-2MCN less susceptible but HIV-1NL4.3 more susceptible to REAF. This led us to the 282 

hypothesis that the overall structure or stability of the CA rather than precise molecular 283 

interactions is critical. It has been proposed that disassembly too early prior to localisation at 284 

the nuclear pore would result in exposure to restriction factors and premature termination of 285 

reverse transcription (19, 62-65). Indeed it has been proposed that HIV-1 disassembly involves a 286 

regulated collapse of the conical core which protects viral reverse transcription complexes (66). 287 



Also it has been shown that disassembly occurs within an hour of fusion and is facilitated by 288 

reverse transcription (67-69). We have observed that cellular REAF is reduced within one hour 289 

of viral challenge, but importantly, levels are rapidly replenished an hour later (25). REAF 290 

associates with viral nucleic acid and restricts replication during reverse transcription (25). We 291 

therefore suggested that the temporary reduction in REAF protein level allows viruses to 292 

reverse transcribe in the absence of REAF associated activity. This model is in keeping with the 293 

notion that CA stability is a determinant of REAF associated restriction. We further tested the 294 

hypothesis that CA stability is a determinant of REAF susceptibility using already well 295 

characterised mutants with different CA stabilities.  Compared to I73V (20 fold) more potent 296 

effects (more than 50 fold) were observed with mutants P38A (unstable), N74D (hyperstable) 297 

and G94D (unaffected) (55). Since all these CA mutations result in greater susceptibility to REAF 298 

associated activity despite having divergent CA stabilities we cannot conclude that CA stability is 299 

a major determinant of susceptibility to REAF. Regardless we show that the CA is a strong 300 

determinant of REAF restriction in HIV-1.  Given the multifunctional role of CA in HIV-1 301 

replication (70), understanding the role of CA in susceptibility to REAF associated activity may 302 

shed light on more specific interactions of CA with host cell factors required for efficient 303 

infectivity of HIV.  304 

 305 

It is highly controversial whether or not infectious HIV conical cores enter the cytoplasm after 306 

fusion at the plasma membrane or through an endocytic route (8-17, 35, 60). Our previous 307 

observation of Lv2 suggests that, although either route is possible, infection is more successful 308 

when the virus fuses at the plasma membrane and avoids an endocytic entry pathway (35, 60). 309 



Our results here confirm that, like Lv2, the choice of entry route as determined by the viral Env 310 

is a determinant of susceptibility to REAF associated activity. HIV-1NL4.3 can be rendered 311 

sensitive to REAF if pseudotyped with HIV-2MCR while HIV-2MCN Env does not. These previously 312 

characterised HIV-2 Envs fuse either at the plasma membrane (MCN) or via an endocytic route 313 

(MCR) [35,38]. Furthermore all CA mutants which were rendered highly sensitive to REAF 314 

associated activity were protected when pseudotyped with an MCN Env.  315 

We propose that, similar to Lv2, REAF may be more active against viruses attempting to access 316 

the cytoplasm via an endosome. Therefore, fusion at the plasma membrane is a more efficient 317 

replication pathway. However we cannot eliminate the possibility that some viruses will bypass 318 

REAF associated activity regardless of entry route, for example if they have a conical core 319 

without the sensitivity conferring mutations described here. Future studies that address the 320 

role of Env and CA in determining REAF associated restriction will shed light on these early host 321 

cell interactions in the early life cycle of HIV.  322 
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Figure legends  516 



 517 

Figure 1 518 

  519 

REAF is an important component of Lv2. A) A schematic representation of the HIV-2 molecular 520 

clones, chimeric viruses and site directed mutagenesis (*) used to map the determinants of 521 

REAF restriction. B) Western blot of HeLa-CD4 cell lysate following REAF siRNA knockdown 522 

compared with non-targeting control (siCB). GAPDH is added as a loading control. C) Titration of 523 

constructs on HeLa-CD4 cells transiently transfected with siREAF showing fold change 524 

compared to cells transfected with siCB control (compared with HIV-2MCR: HIV-2MCN p = 0.004, 525 

HIV-2MCNmcr env+gag p = n.s., HIV-2MCRmcn env+gag p < 0.001, HIV-2MCR CA I73V p = 0.003). D) WB of 526 

knockdown of REAF in HeLa-CD4-shREAF cells compared to HeLa-CD4 cells. GAPDH is added as a 527 

loading control. E) Fold change for HeLa-CD4-shREAF cells infected with HIV-2MCR and HIV-2MCR 528 

CA I73V confirms the Lv2 phenotype in the stable knockdown cells (p = 0.016). F) WB of REAF 529 

levels in MDM and PBMC compared to HeLa-CD4 cells. GAPDH is added as a loading control. G) 530 

WB of REAF levels in U87-CD4-CXCR4 cells compared to HeLa-CD4 cells. GAPDH is added as a 531 

loading control. 532 

 533 

 Figure 2 534 

 535 

The HIV-1 CA determinants of REAF associated restriction are the same as those for HIV-2 and 536 

are in the CPSF6 binding pocket. A) A comparison of the susceptibility of HIV-1NL4.3 and HIV-189.6 537 

following transient knockdown of REAF by siRNA (p < 0.001). B) Mutation of the HIV-1NL4.3 538 



capsid (HIV-1NL4.3 CA I73V (MCR) or HIV-1NL4.3 CA I73V (NL4.3)) renders it susceptible to restriction in 539 

HeLa-CD4-shREAF cells (p = 0.03). C) Fold inhibition of HIV-1NL4.3 (VSV-G) with CA mutants I73V 540 

and N74D (p < 0.001) in the presence of mutant CPSF6-358 compared to vector alone. 541 

 542 

Figure 3 543 

 544 

Mutant capsids are sensitive to REAF restriction. A) Infection of HeLa-CD4-shREAF cells with 545 

HIV-1NL4.3 CA N74D (MCR) renders it susceptible to REAF compared to viral pseudotype with wild 546 

type CA (HIV-1NL4.3 (MCR)) (p < 0.001). B-E) Titres of HIV-1NL4.3 (MCR), HIV-1NL4.3 CA P38A (MCR), 547 

HIV-1NL4.3 CA G89V (MCR) and HIV-1NL4.3 CA G94D (MCR) following challenge of HeLa-CD4 and HeLa-548 

CD4-shREAF cells. F) Fold change for HIV-1NL4.3 CA P38A (MCR), HIV-1NL4.3 CA G89V (MCR) and HIV-549 

1NL4.3 CA G94D (MCR) on HeLa-CD4-shREAF cells compared to wild type CA (HIV-1NL4.3 (MCR)) show 550 

they are also susceptible to REAF (all p <0.001). 551 

 552 

Figure 4 553 

 554 

Viral envelope determines susceptibility to REAF associated restriction. A) Infection of HeLa-555 

CD4-shREAF cells with HIV-1NL4.3 (MCN) decreases sensitivity to REAF associated restriction 556 

compared to HIV-1NL4.3 (MCR) (p = 0.007).  Comparison of HIV-2MCR and HIV-2MCN Env on 557 

pseudotypes carrying B) N74D (p < 0.001), C) P38A (p < 0.001), D) G89V (p < 0.001) and E) G94D 558 

(p = 0.001) CA show HIV-2MCN Env makes these viruses less sensitive to REAF. 559 










