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Abstract—GPUs are often limited by off-chip memory band-
width. With the advent of general-purpose computing on GPUs,
a cache hierarchy has been introduced to filter the bandwidth
demand to the off-chip memory. However, the cache hierarchy
presents its own bandwidth limitations in sustaining such high
levels of memory traffic.

In this paper, we characterize the bandwidth bottlenecks
present across the memory hierarchy in GPUs for general-
purpose applications. We quantify the stalls throughout the
memory hierarchy and identify the architectural parameters that
play a pivotal role in leading to a congested memory system. We
explore the architectural design space to mitigate the bandwidth
bottlenecks and show that performance improvement achieved
by mitigating the bandwidth bottleneck in the cache hierarchy
can exceed the speedup obtained by a memory system with a
baseline cache hierarchy and High Bandwidth Memory (HBM)
DRAM. We also show that addressing the bandwidth bottleneck
in isolation at specific levels can be sub-optimal and can even be
counter-productive. Therefore, we show that it is imperative to
resolve the bandwidth bottlenecks synergistically across different
levels of the memory hierarchy. With the insights developed in
this paper, we perform a cost-benefit analysis and identify cost-
effective configurations of the memory hierarchy that effectively
mitigate the bandwidth bottlenecks. We show that our final
configuration achieves a performance improvement of 29% on
average with a minimal area overhead of 1.6%.

I. INTRODUCTION

With the advancement of parallel computing in the domain
of general-purpose applications, GPUs are increasingly used
to address the computational demands of such workloads. Due
to high levels of multithreading, such workloads present a
high demand on the off-chip memory bandwidth. This has
led to the introduction of deeper memory hierarchies to filter
the bandwidth demand to the off-chip memory. However,
due to high cache miss rates and cache thrashing [1], the
off-chip bandwidth bottleneck is only partly mitigated. More
importantly, the cache hierarchy exposes its own bandwidth
limitations in sustaining such high levels of memory traffic [2].

Traditional approaches in the realm of CPU and GPU view
the bandwidth bottleneck largely in the off-chip memory and
address it by employing schemes such as efficient scheduling
policies [3], incorporating fairness [4], and scaling the memory
technology [5]. As a result, the off-chip bandwidth bottleneck
is well understood and researched. However, as the bandwidth
bottleneck in modern GPUs is distributed across the entire
memory hierarchy, addressing the problem only in the off-
chip memory no longer serves as a panacea for the entire
memory system. Therefore, it motivates us to rethink and
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Fig. 1. Issue-stall cycles, Average Hit Latencies to L2 (L2-AHL) and Average
Memory Latencies (AML) for memory-intensive applications.

evaluate the bandwidth implications of other levels of the
memory hierarchy.

To this end, we aim to characterize the severity of the
bandwidth problem posed by the three levels of the memory
hierarchy, viz., private L1s, shared L2 and off-chip memory,
and also characterize the role of peripheral network elements
such as interconnects and buffers. In this paper we show
that, due to bandwidth limitations, there is severe congestion
between the L1 and L2 as well as between the L2 and off-
chip memory. Such high levels of congestion lead to increased
memory latencies [6], and this has three major implications.
1 In memory-intensive applications, due to insufficient com-

putation to mask high memory latencies, such latencies appear
in the critical path of system performance. 2 High latencies
of outstanding miss requests lead to prolonged contention
for cache resources such as Miss Status Holding Registers
(MSHRs) and replaceable cache lines. This effect increases
memory latencies even further, as succeeding requests get
serialized and have to wait for outstanding misses to com-
plete and relinquish the resources. 3 Back pressure from a
congested lower level further throttles the cache pipeline and
prevents it from operating at peak throughput, exacerbating the
bandwidth limitation in the cache hierarchy. A combination of
the above factors force the cores to stall, leading to perfor-
mance degradation. In Fig. 1 we show that memory-intensive
applications, when run on a simulated GTX 480 GPU, exhibit
high average memory latencies (AML; 452 cycles on average)
and spend a considerable fraction of application runtime in a
stalled state (62% on average) waiting for memory operations
to complete. Additionally, high average L2 hit latencies (L2-
AHL; 303 cycles on average) indicate that there is considerable
congestion between the L1 and the shared L2 cache and
therefore suggests that the high average memory latencies are
due to bandwidth limitations in both the cache hierarchy and
the off-chip memory.



In order to reduce congestion in the memory system, we
explore several design choices at each level of the memory hi-
erarchy and evaluate their efficacy in alleviating the bandwidth
bottleneck. We conduct a design space exploration and show
that solving the problem in isolation in specific levels of the
memory hierarchy can give sub-optimal results and can even
be counter-productive, only creating even more congestion
elsewhere in the memory system. For instance, we observe that
to prevent throttling of L1 cache, increasing the L1 bandwidth
by increasing the MSHRs to handle more outstanding misses
can lead to performance degradation due to even higher
congestion between L1 and L2. We verify this observation on
a real GTX 480 GPU chip by increasing the core frequency,
effectively increasing the L1 request rate, and observe a
performance degradation (detailed discussion in Section VI).
On the other hand, matching the increased bandwidth demand
of L1 at the L2 cache significantly improves performance
which even exceeds the performance achieved by a memory
system with baseline cache hierarchy and High Bandwidth
Memory (HBM) DRAM. Therefore, in order to efficiently
solve the bandwidth bottleneck, we show that it is imperative
to address the bandwidth demand of different memory levels
in tandem and provide a synergistic solution. Additionally,
we use the insights developed in this paper to perform a
cost-benefit analysis and propose efficient ways to mitigate
the bandwidth bottlenecks at different levels of the memory
hierarchy. Overall, this paper expands the understanding of
the bottlenecks across the GPU memory hierarchy and serves
as a guide for architects and programmers to optimally scale
bandwidth of the memory hierarchy and write bandwidth-
sensitive programs respectively.

In summary, we make the following contributions:
• We quantify the congestion levels across the GPU mem-

ory hierarchy and investigate the causes.
• We identify various design choices in the memory system

and their efficacy in mitigating the bandwidth bottlenecks.
• We conduct a design space exploration and show that

synergistic scaling of L1 and L2 resources can reasonably
match or even exceed the benefits of an HBM DRAM.

• We identify cost-effective configurations of the memory
hierarchy and observe a performance improvement of up
to 29% on average with a minimal area overhead of 1.6%.

II. BACKGROUND

A. Baseline Architecture

In this study, we consider a baseline similar to NVIDIA’s
Fermi architecture [7], [8]. However, as the organization of
the memory hierarchy is fairly consistent across different
architectures, we expect our observations to be applicable to
Kepler and Maxwell as well. As shown in Fig. 2, a typical
GPU consists of several execution units organized into a set of
highly multithreaded SIMT Cores (or simply Cores). A set of
register files occupy the highest level in the memory hierarchy
and are used to maintain the state of several concurrent threads.
The next level is formed by the private caches of a core, viz. L1

TABLE I
BASELINE ARCHITECTURE PARAMETERS FOR GPGPU-SIM

Parameter Value
Core 15 SMs, Greedy-then-oldest (GTO) scheduler

Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz
Threads per SM 1536
Registers per SM 32768
Shared Memory 48 KB
L1 Data Cache 16KB, 128B line, 4-way, LRU, write-evict,

32 MSHR entries, 8-entry miss queue
Interconnect Crossbar, Fly-topology, 32B flit size

L2 Cache 768 KB, 128B line, 8-way, LRU, write-back,
12 banks, 32 MSHRs, 8-entry miss queue,
32B data port width, 8-entry request queue

DRAM GDDR5 DRAM, Command clock 924 MHz, FR-FRCFS
384-bits net buswidth, 6 Memory Partitions,

2 DRAM chips/partition, 32-bits buswidth/chip,
8 bytes burst length, 16 DRAM banks/chip

DRAM Timing Constraints CCD = 2, RRD=6, RCD=12, RAS=28, RP=12,
RC=40, CL=12, WL=4, CDLR=5, WR=12
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Fig. 2. Baseline GPU Architecture

data cache, shared memory (scratchpad) and read-only texture
and constant caches. Private caches are backed by a shared
L2 cache that has an access latency of around 120 cycles for
non-texture accesses in an uncongested memory hierarchy. The
L2 cache is organized into multiple banks and each L2 bank
communicate with the cores through a router in the crossbar,
which transfers data packets at the granularity of flits. The
shared L2 is further backed by an off-chip memory that has
an additional access latency of around 100 cycles, excluding
arbitration delays within the DRAM, which are governed by
DRAM bandwidth. For general-purpose applications, prior
works have shown low utilization and contention for register
files [9], [10]. Therefore, we focus only on private L1, shared
L2 and off-chip memory for bottleneck analysis as register
files are seldom a bottleneck in such applications.

B. Simulation Framework

We model a GTX 480 GPU on a cycle-accurate simulator
GPGPU-Sim (v3.2.2) [11] with the baseline architecture pa-
rameters listed in Table I. We use GPUWattch [12] to compute
the area and power in our experiments.

C. Workloads

For the purpose of this study, we use applications from
three major general-purpose benchmark suites, viz., Rodinia
(v3.0) [13], MapReduce [14] and Parboil [15]. In Table II, we
list the memory-intensive benchmarks sorted by the speedup
shown on an infinite bandwidth memory system (P∞). We also
show the performance improvement observed on a memory
system with baseline cache hierarchy and an infinite bandwidth
DRAM (PDRAM). We discuss the observations in Section III-B.



TABLE II
LIST OF WORKLOADS: P∞ – SPEEDUP WITH INFINITE BANDWIDTH

MEMORY SYSTEM; PDRAM – SPEEDUP WITH A BASELINE CACHE
HIERARCHY AND INFINITE BANDWIDTH DRAM.

# Suite Benchmark Abbrv. P∞ PDRAM

1 Map. Matrix Multiplication mm 4.90 1.01
2 Par. Lattice-Boltzman Method lbm 3.40 1.87
3 Map. Similarity Score ss 3.23 1.00
4 Rod. Nearest Neighbour nn 3.11 1.84
5 Rod. Hybrid Sort hybridsort 3.10 1.24
6 Rod. Computational Fluid cfd 3.08 1.06
7 Map. Page View Rank pvr 2.89 1.01
8 Rod. Breadth-First Search bfs 2.84 1.00
9 Rod. Particle Potential lavaMD 2.70 1.00
10 Rod. Stream Cluster sc 2.70 1.13
11 Par. Breadth-First Search bfs’ 2.10 1.00
12 Map. Inverted Index ii 1.98 1.00
13 Rod. Speckle Reduction sradv1 1.51 1.19
14 Rod. Speckle Reduction sradv2 1.49 1.08
15 Rod. Needleman-Wunsch nw 1.43 1.09
16 Par. PDE Solver stencil 1.23 1.20
17 Rod. Wavelet Transform dwt2d 1.20 1.14
18 Par. Sum of Absolute Differences sad 1.16 1.09
19 Rod. Tracking Microscopy leukocyte 1.08 1.00

Average 2.37 1.15

III. MOTIVATION

In this section, we motivate the need to mitigate the band-
width bottleneck in GPUs and discuss the potential benefits.

A. Latency tolerance

Multithreaded processors employ massive thread-level par-
allelism (TLP) to hide memory latencies. Upon encountering
an instruction that is waiting on a long latency memory op-
eration, the corresponding warp is de-scheduled and an active
warp (if any) is scheduled, thereby overlapping the latency
of memory operation. Therefore, GPUs are usually tolerant
to memory latencies. However, memory-intensive applications
often run into memory misses causing all of the warps to
stall due to pending memory instructions. In such a case, miss
latencies get exposed due to lack of sufficient overlapping
computation and therefore lie in the critical path, directly
impacting performance.

Fig. 3 shows the impact of memory latencies on perfor-
mance, using a representative set of benchmarks from Table II.
In this study, we modify the memory hierarchy of the baseline
architecture so that all the L1 miss responses are returned
with a fixed and pre-determined latency that is varied in
the simulator and is represented on the x-axis. The resultant
performance is plotted on the y-axis which is normalized to
the performance of the baseline architecture.

We observe that for most benchmarks such as nn, sc and
lbm, the performance remains fairly tolerant to modest L1
miss latencies. This is because the cores are able to effectively
overlap such latencies with computation, in line with the
philosophy of multithreaded architectures. However, when
the memory latencies are higher, there is a direct impact
on performance, indicating that such high latencies lie in
the critical path. For instance, IPC for nn reduces modestly
from 3.3× to 3.03× (normalized to baseline IPC) on varying
the miss latencies from 0 to 250 cycles. However, further
increasing the L1 miss latencies rapidly degrades performance,
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Fig. 3. Performance variation with increasing L1 miss latency.

reducing the IPC to 1.9× in the next 250 cycles. Furthermore,
other benchmarks such as leukocyte and dwt2d are sensitive to
even small latencies, indicating a lack of sufficient thread-level
parallelism.

In addition, we make two major observations about the
baseline memory latencies, i.e., the point on the x-axis where
the performance curve intercepts the baseline IPC of 1×
(shaded region), and therefore, matches the average memory
latency of the baseline architecture. 1 For most benchmarks,
the baseline memory latencies are significantly higher than
the latencies of performance plateau (or peak performance).
Therefore, the baseline performance is well beyond the ef-
fective operating range of latency tolerance. 2 The baseline
memory latencies are also critically higher than the ideal
access latencies of L2 (120 cycles) and DRAM (additional
100 cycles via L2). This suggests that there is considerable
congestion in the memory system since traversing the memory
system takes significantly higher latencies than the minimum
memory access latencies of L2 and DRAM. In summary, the
above results indicate that there lies a significant opportunity
to improve performance by reducing the latencies incurred due
to congestion in the memory hierarchy.

B. Performance impact of reducing congestion

In Table II, we have shown the speedup obtained with
an infinite bandwidth memory system (P∞) and observe an
average performance improvement of 2.37×. In such a case,
L1 miss requests do not suffer any congestion-related slow-
down in the memory system and only incur the minimum
memory access latencies of 120 cycles to L2 (for non-texture
accesses) and another 100 cycles to off-chip memory for
L2 miss requests. Therefore, the speedup can be mapped to
Fig. 3 between the latency range of 120 to 220 cycles, with
the average memory latency depending on the L2 miss rate.
We also show the performance improvement with an infinite
bandwidth DRAM appended to a baseline cache hierarchy
(PDRAM). In such a case, L1 miss requests suffer congestion-
related slowdown only in the cache hierarchy and access the
off-chip memory with a constant 100 cycle latency without
incurring any congestion or timing limitations in the DRAM.
We notice an average performance improvement of only 1.15×
which is considerably less than the average P∞, which includes
an infinite bandwidth to both caches as well as DRAM.
A comparatively lower performance improvement of PDRAM

suggests that the existing bandwidth bottleneck in the cache



hierarchy plays a crucial role in increasing the miss latencies
and thereby slowing down memory-intensive applications. In
the subsequent sections, we investigate the cause of such high
congestion in the memory system, focusing not only on the
off-chip memory but also on the cache hierarchy since it is
critical to performance. We also analyze the finer implications
of congestion that cause performance degradation. Using these
insights, we explore the opportunities to reduce the congestion-
related latencies and show how it translates to performance
improvements.

IV. DISSECTING THE BANDWIDTH BOTTLENECK

In a typical memory hierarchy, the bandwidth demand tapers
down the memory system [16]. In principle, this is because
each level filters the bandwidth demand to the lower level and
therefore, the lower levels require only a fraction of bandwidth
of the higher levels. However, if the bandwidth provided by
the lower level is insufficient to service the bandwidth demand
of the higher level, requests queue up in the memory system
due to the bandwidth skew between the adjacent levels of the
memory. This can lead to congestion in the network between
the two levels and as a consequence, requests in the higher
level will have to wait for longer durations to get serviced.

In Fig. 4 and Fig 5, we quantify the congestion between
adjacent memory levels through an occupancy histogram of
access queues to L2 and DRAM respectively. The stacked
bars for each benchmark indicate the occupancy levels in
the access queue, aggregated throughout the usage lifetime
of the queue. We define usage lifetime as the time when the
queues are occupied by at least one request. The occupancy
histogram of the buffers between the adjacent memory levels,
therefore, serves as a measure of the bandwidth skew, and
thereby indicates the degree of congestion between the two
levels. In Fig. 4 we note that on average, the access queues
to L2 are full (indicated by the 100% occupancy bar in black)
for 46% of their usage lifetime. Such high congestion aligns
with the observation of high L2 access latencies. Similar to
the congestion between L1 and L2, high bandwidth demand
of L2 misses and low DRAM service rate causes the DRAM
access queues to get full leading to congestion between the
two levels. In Fig. 5 we note that on average, DRAM access
queues are full for 39% of their usage lifetime.

A. Implications of congestion

Limited bandwidth to traverse the memory system, and
queuing delays due to congestion, lead to high memory laten-
cies. Such high latencies are critical to system performance
and cause performance degradation (as shown in the post-
plateau region in Fig. 3). In this subsection, we delve further
into the finer implications of high latencies (and congestion)
and show how it leads to performance degradation. We sum-
marize the results in Fig. 7.

1) Data and Fetch Hazards: When a warp encounters an
instruction that is waiting on a pending memory (or compute)
operation due to a data dependency, it is de-scheduled and no
longer participates in thread level parallelism. This condition
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is known as a data hazard. Once the pending memory (or
compute) operation completes, the data dependency is resolved
and the warp is allowed to resume execution. Since floating-
point operation latencies are fairly small, the majority of data
hazards are caused by pending loads [17]. When all warps are
de-scheduled due to data hazards, which is often the case in
memory-intensive applications, the core is forced to stall. In
such a scenario, memory latencies contribute directly to stall
cycles and govern how soon a warp can be released from a
data hazard to continue execution.

Since instruction cache misses share the congested memory
system with irregular data misses, high response latencies
drain the instruction buffers, thereby de-scheduling the warp
at instruction fetch. This is known as a fetch hazard. High
instruction cache misses can cause the fetch buffer to drain
for all warps. This causes the core to stall until the instruction
misses complete and the warp resumes decoding.

2) Structural Hazards: High miss latencies can lead to
prolonged contention of limited cache resources that are used
to maintain the context of outstanding miss requests. This
prevents the cache from sending new miss requests to the
lower level in the memory system. This condition is known
as a structural hazard. This further adds to the miss latency
since the new misses get serialized, as they have to wait for
the pending requests to complete and relinquish the resources.
A structural hazard can occur due to a lack of free MSHR
entries in a cache to hold the context of a new miss request.
Since Fermi employs an allocate-on-miss policy for reserving
new cache lines, a structural hazard can also be caused due
to a lack of replaceable cache lines in a set as all cache lines
might be reserved by pending miss requests.

3) Memory back pressure: In a congested memory system,
due to the inability of network queues to accept new requests,
preceding queues get full. This cascading effect of congestion
percolates up to the higher levels of the memory hierarchy
and is known as memory back pressure. When memory back
pressure reaches the higher level cache, it manifests as a
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Fig. 6. Illustrating the effects of structural hazards

structural hazard due to lack of free entries in cache miss
queues and therefore, prevents the cache from issuing a new
miss request. For instance, back pressure from slow off-chip
memory fills up the DRAM scheduler queue, in turn causing
the L2 miss queues to get full. This leads to a structural hazard
in the L2 cache as it cannot issue a new miss, thereby stalling
the entire L2 cache pipeline. The back pressure eventually
percolates up to the L1 cache and throttles core performance.

4) Discussion: Apart from further increasing the miss la-
tencies, structural hazards (due to lack of cache resources or
back pressure) have the following two major effects:
• Increased hit latencies. As structural hazards stall the

cache pipeline, they prevent the succeeding requests from
accessing the cache even if such requests are cache hits. This
results in higher latencies for cache hits.
• Restricted parallelism on cores. A structural hazard in

the load-store unit can cause all warps to stall when they
attempt a memory instruction. This prevents the independent
compute instructions in the instruction stream from getting
issued, as the preceding memory instructions are waiting for
the structural hazard to resolve. This serialization of memory
and compute instructions prevents the core from hiding any
further memory latencies, and thus performance suffers.

In Fig. 6, we illustrate the above two scenarios with the
help of an example. In the first case, we assume an MSHR
with two entries thereby allowing only two outstanding misses.
Whereas in the second case, we assume a higher number of
MSHRs that do not pose a structural limitation. For the sake
of simplicity, we assume 6 cycles memory latency for an L1
load miss and 4 cycles for an ALU operation. In the first case,
upon encountering the first two load misses, i.e., I1 and I2 ,
the MSHR gets full and can no longer accept any more misses.
Since I3 is also a miss, it encounters a structural hazard
and therefore stalls the L1 cache pipeline, in turn stalling the
load-store unit (LSU). A succeeding cache hit in I4 needs
to wait to access the L1 cache as there is a blocking I3
waiting for prior misses to relinquish the MSHR resources.
Therefore, I4 gets serialized with the outstanding misses
leading to a higher hit latency of I4 . Additionally, a successive
multiplication instruction, I5 , needs to wait in the instruction
queue as the previous instruction from the same warp is
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pending at the issue stage. This structural dependency forces
the execution units to remain stalled despite an independent
multiplication instruction in the instruction stream. Therefore,
I4 proceeds with the hit only at t = 8, after the response for
the first load relinquishes an MSHR entry and unblocks the
LSU. Thereafter, multiplication begins at t = 9 completing the
execution at t = 12. In contrast, in the second scenario with
no structural hazards, all independent instructions are issued
successively. I4 results in a hit at t = 4 and ALUs begin
computation at t = 5, completing the execution at t = 8. Note
that in real systems, the miss latencies exceed hundreds of
cycles thereby magnifying the effect of such structural hazards.

5) Summary: In Fig. 7, we demonstrate the distribution of
the core’s issue-stall cycles and attribute the cause of stall
to one of the following reasons: data hazard due to a pending
memory (data-MEM) or compute (data-ALU) operation; struc-
tural hazard due to resource contention in memory unit (str-
MEM) or compute unit (str-ALU); and fetch hazard due to lack
of instructions in the fetch buffer (fetch). As different warps
can encounter different hazards in the same cycle, we consider
a stall cycle as a data hazard when no warp can be issued due
to existing data dependencies and the corresponding functional
units do not pose a structural limitation for at least one warp.
Similarly, a stall cycle is considered as a structural hazard
when at least one warp, without any data dependencies, can
be issued but is forced to stall due to resource contention in the
corresponding functional units. We note that structural hazards
from the memory stage form a major portion of the stalls with
an average of 71% of issue-stall cycles. Data hazards due to
pending memory instructions and fetch hazards contribute to
15% and 8% of issue-stall cycles on average, respectively. On
average, data and structural hazards due to arithmetic units
form very small portions of the issue-stall cycles, i.e., 5.5%
and 0.5% respectively.

B. Causes of congestion

In the previous sections, we observed that there is high
congestion across the memory hierarchy due to distributed
bandwidth bottleneck that leads to performance degradation. In
order to construct the design space for mitigating congestion,
we now explore finer causes of congestion by analyzing each
memory level in detail.

1) Off-chip memory: Off-chip memory has been studied
widely in context of bandwidth utilization [3], [4]. DRAM
timing constraints, such as activate and precharge delays,
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Fig. 8. L2 stalls due to back pressure from interconnect (bp-ICNT) and
DRAM (bp-DRAM) and contention on L2 data port, cache lines and MSHRs.

prevent DRAM from operating at peak throughput. Such
constraints lead to low bandwidth efficiency in the DRAM,
i.e., the ratio of time when DRAM is transferring data on the
memory bus to the time when there is at least one pending
request in the DRAM scheduler queue. Therefore, a bandwidth
efficiency of 100% would mean that the DRAM is always
operating at peak throughput. In our simulations, we observe
a low average bandwidth efficiency of 41% and a maximum
of 65% for stencil.

2) L2 cache: Since L2 cache interacts with both DRAM at
the lower level and L1 cache at the higher level, a myriad of
factors can clog the L2. First, structural hazards due to a lack
of MSHRs or non-replaceable cache lines can block the L2
pipeline. Second, memory back pressure due to congestion in
the DRAM access queues can stall the L2 miss queue, creating
another structural hazard at the L2 cache. Third, a busy L2
data port due to an ongoing cache line fill from DRAM or an
ongoing read of an L2 cache line can cause port contention,
forcing the subsequent L2 hits to wait before another cache
line can be read. And finally, as L2 responses are injected into
the crossbar at the granularity of flits (or network packets), it
can take several cycles to inject an entire cache line. This
forces the L2 responses to wait for long durations in the L2
response queue, eventually asserting back pressure on the L2.

In Fig. 8 we quantify the L2 cache stalls due to the
above factors. We note that on average, structural hazards
due to lack of MSHRs and replaceable cache lines contribute
to 3% and 8% of L2 cache stalls. Memory back pressure
from DRAM contribute to 35% of total stalls whereas L2
data port contention leads to 12% of stall cycles on average.
Back pressure from L2 response queues due to slow crossbar
injection rate leads to 42% of L2 stalls on average, appearing
as the main cause of congestion at the L2 cache.

3) L1 cache: We perform a similar analysis for L1 cache
to determine the prime factors that stall the L1 cache pipeline.
L1 cache can stall due to structural hazards from MSHR as
well as due to non-replaceable cache lines, similar to L2 cache.
Also structural hazard due to back pressure from L2 can stall
the L1 cache pipeline. In Fig. 9 we quantify the impact of
such parameters. We note that on average, MSHR and cache
line contention contribute to 41% and 11% of total L1 stalls
and L2 back pressure is responsible for 48% of L1 stalls.
Therefore, back pressure from L2 appears as the major cause
in throttling the L1 cache, followed by MSHR contention and
cache contention.
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pressure from L2 cache (bp-L2).

4) Summary: The above discussion provides insight into
the reasons behind the stalls in the memory system and
therefore, serves as a guiding tool in pruning the design space
to best mitigate the high congestion between different levels of
the memory hierarchy. We also observe the relative importance
of parameters across caches. For instance, we note that the
scarcity of MSHRs in L1 caches has a huge impact as they
contribute to 41% of L1 stalls on average. On the other hand,
MSHRs in L2 do not block the L2 cache as they contribute
to only 3% of L2 stalls. We also note that back pressure
contributes to significant proportion of stall cycles at both L1
and L2 caches.

V. CONSOLIDATING THE DESIGN SPACE

In this section, we use insights from the above analysis
to consolidate the design parameters that can be effective in
mitigating congestion in the memory hierarchy. In the previous
section, we observed that stalls at different levels of the
memory hierarchy prevent caches (and cores) from operating
at peak throughput. However, removing all such stalls and
operating at peak throughput may not always alleviate con-
gestion as the peak throughput itself can be a limiting factor.
Therefore, we classify the micro-architectural parameters into
the following two categories:

1 Type ‘=’: Parameters that minimize stalls, allowing for
the caches and cores to operate at peak throughput.

2 Type ‘+’: Parameters that increase the peak throughput.
In the following subsections, we identify such parameters

for the above categories and summarize our architectural
design space in Table III.

A. Off-chip memory

The baseline architecture employs First-Ready First-Come-
First-Serve (FR-FCFS) scheduling policy that prioritizes ac-
cesses to an already opened DRAM row from a pool of
pending requests in the scheduler queue to achieve higher row-
buffer hits. To maximize the benefit of FR-FCFS scheduling,
we increase the scheduler queue size and allow the DRAM to
search in a larger pool of pending requests and schedule more
row-buffer hits. Maximizing row-buffer hits allows the DRAM
to operate closer to the peak DRAM throughput, increasing
the bandwidth efficiency. In order to maximize bank-level
parallelism, we increase the number of banks per DRAM chip
while keeping the size of the DRAM constant. This reduces the
number of rows per bank and therefore, spreads the accesses
to different banks thereby increasing concurrency. Finally, to



TABLE III
CONSOLIDATED DESIGN SPACE SHOWING BASELINE, SCALED (4×) AND

COST-EFFECTIVE CONFIGURATIONS.
Design Parameter Type Baseline value Scaled value (4×) Cost-effective

(a) DRAM
Scheduler queue = 16 entries 64 entries 16 entries
DRAM Banks = 16 banks/chip 64 banks/chip 16 banks/chip

Bus width + 384-bits 1536-bits 384-bits
(b) L2 Cache

L2 miss queue = 8 entries 32 entries 32 entries
L2 response queue = 8 entries 32 entries 32 entries

MSHR = 32 entries 128 entries 32 entries
L2 access queue = 8 entries 32 entries 32 entries

L2 data port + 32 bytes 128 bytes 32 bytes
Flit size (crossbar) + 32+32 bytes 128+128 bytes 16+48 bytes

L2 banks + 12 banks 48 banks 12 banks
(c) L1 Cache

L1 miss queue = 8 entries 32 entries 32 entries
MSHR (L1D) = 32 entries 128 entries 48 entries

Memory pipeline width = 10 40 40

increase the peak throughput of DRAM, we increase the bus
width of each DRAM chip.

B. L2 cache

To prevent throttling of L2 cache due to back pressure from
DRAM, we increase the L2 miss queue size to allow more L2
misses to be buffered in the access path to DRAM. Similarly,
we increase the size of the L2 response queue to mitigate the
back pressure from the response network. To reduce structural
hazards due to cache resources, we increase the MSHRs. Stalls
due to lack of non-replaceable cache lines can be resolved by
increasing the capacity or associativity of L2 cache. However,
such parameters reduce the miss traffic to the lower level
thereby altering the bandwidth demand. Since we focus on
performance of the memory system given a fixed bandwidth
demand, we do not alter these parameters as it leads to an
unfair comparison in the context of bandwidth bottlenecks.
Instead, we increase the L2 access queue size to allow more
requests to be buffered at a stalled L2, avoiding back pressure
to L1 cache. Therefore, all the above parameters allow L2 (and
higher levels) to operate closer to the peak throughput. Finally,
to increase the peak throughput of L2, we increase the L2 data
port width, crossbar flit size and L2 banks. We also note that
other design parameters such as L2 and crossbar frequencies
also achieve the goal of mitigating congestion. However, we
restrict ourselves to representative parameters that demonstrate
the effect of increasing the L2 bandwidth.

C. L1 cache

We reduce the impact of back pressure from L2 cache
by increasing the L1 miss queue size. We also increase the
MSHRs to reduce the structural hazards. Similar to L2, we do
not increase the capacity and associativity of the L1 cache to
mitigate cache line contention. Instead, we increase the width
of the memory pipeline on the core to allow the load-store unit
to buffer more pending cache requests. The above parameters
prevent the core from throttling, thereby allowing it to operate
closer to the peak throughput.

VI. DESIGN SPACE EXPLORATION

In this section, we evaluate the design space by scaling
the bandwidth of different levels of the memory hierarchy

through the architectural knobs listed in Table III. As a typical
HBM [5] provides up to 4× bandwidth compared to GDDR5
DRAM, we evaluate similar factor of scaling in other levels
of the memory.

A. Results

In Fig. 10, we demonstrate the results obtained by scaling
the design parameters by a factor of 4×. We begin by
discussing the performance improvement by increasing the
bandwidth in independent levels of the memory hierarchy.
Later, we discuss the combined effects of increasing the
bandwidth across adjacent memory levels, followed by scaling
the bandwidth across the entire memory hierarchy.

1) L1 cache: On increasing the L1 resources, we see an
average performance improvement of 4%. We observe the
maximum speedup of 240% for sc followed by a speedup of
16% for c f d. The reason for the observed speedup lies in the
fact that increased resources reduce the structural hazards on
L1 cache. This results in better overlap of memory operations
with computation and lower latencies of cache hits, as we have
illustrated in Fig. 6.

On the other hand, we notice that for some other bench-
marks, the performance drops on increasing the L1 resources.
For instance, mm and ii suffer a slowdown of 33% and
25% respectively. This is because on one hand, increasing
the L1 resources allows the L1 cache to operate at peak
throughput, at the same time it also leads to higher congestion
between L1 and L2, as the increased bandwidth demand of
L1 is not matched by the bandwidth provided by L2. Since
higher congestion causes greater interleaving of requests from
different cores, requests from the same core (and therefore
same warps) get more sparse in the memory system thereby
delaying the tail request of a warp. Since a core can resume
execution only on receiving all the memory requests generated
by a warp, it causes significantly higher stalls as none of
the cores can resume execution any earlier than baseline.
Additionally, we also notice a significantly higher L2 miss
rate for applications showing slowdown. For instance, the L2
miss rate increases from 16% to 58% for mm and from 15%
to 62% for ii. This is also due to higher interleaving of request
streams from different cores that exhibit low inter-core locality
thereby causing cache thrashing and destroying the intra-core
locality in the L2 cache.

We verify the above behavior on a real GTX 480 GPU by
increasing the core frequency for representative benchmarks
and note a performance degradation of up to 10%, as shown
in Fig. 11. Increasing the core frequency is analogous to
increasing the L1 cache resources as it increases the request
rate (or bandwidth demand) from L1 to L2. Interestingly,
performance improves on reducing the core frequency as the
reduced bandwidth demand by L1 resonates well with the
bandwidth offered by L2.

2) L2 cache: By scaling the L2 cache resources, we observe
an average performance improvement of 59%. We observe the
maximum speedup of 266% for mm, which is also the most
bandwidth-sensitive application. A significant performance im-
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Fig. 10. IPC gain with 4× design-point scaling of bandwidth resources in L1, L2, DRAM and synergistically across different levels.

provement by scaling the L2 parameters signifies the criticality
of the L2 bandwidth to the overall system performance.

3) Off-chip memory: Upon increasing the DRAM band-
width, we observe an average performance improvement of
11%. We observe the maximum speedup of 61% for lbm
followed by a speedup of 60% for nn. Note that the improved
DRAM bandwidth matches the bandwidth offered by High
Bandwidth Memory (HBM) and is representative of HBM
performance. We note that the average improvement is in close
proximity to the performance improvement of 15% obtained
on a memory system with baseline cache hierarchy and an
infinite bandwidth DRAM (average PDRAM). However, it is
considerably less than the performance improvement achieved
on increasing the L2 cache bandwidth.

4) L1 and L2 cache: Upon synergistically increasing the
bandwidth of the cache hierarchy, we observe an average
performance improvement of 69%. We note that it is higher
than the sum of gains obtained by improving the bandwidth
in both cache levels independently, i.e., 4% from L1 and
59% from L2. We observe in mm that even though increasing
the L1 bandwidth alone resulted in performance degradation
of 33%, increasing the L1 bandwidth with L2 results in
a performance improvement of 276% which is even higher
than 266% obtained by increasing the L2 bandwidth alone.
A similar effect is seen in ss. We can therefore conclude
that despite a slowdown on increasing the structural resources
at L1, synergistic scaling of L1 and L2 results in a much
higher performance improvement, which is greater than the
standalone improvement of L2. We also observe that the
average speedup by mitigating the bandwidth bottleneck in the
cache hierarchy (69%) is significantly better than the speedup
obtained by a memory system with baseline cache hierarchy
and an HBM DRAM (11%).

We note an exception for ii, where combined scaling of L1
and L2 led to a lower speedup when compared to standalone
scaling of L2 cache. However, we verify in our experiments
that on further increasing the L2 bandwidth, synergistic scaling
starts giving better results. This indicates that for ii, the
increased L2 bandwidth in Fig. 10 is not yet sufficient for
the increased bandwidth demand of L1.

5) L2 and off-chip memory: We observe an average perfor-
mance improvement of 76% upon increasing the bandwidth
at both L2 and DRAM. It is worth noting that it is in close
proximity to the average speedup obtained by synergistically
scaling the L1 and L2 bandwidth (69%).

6) All memory levels: We observe an average performance
improvement of 90% on increasing the bandwidth of the cache
hierarchy as well as the off-chip memory.

7) Summary: We conducted a limited design space ex-
ploration on architectural parameters relevant to the memory
bandwidth in GPUs. We observed an average speedup of 4%,
59% and 11% on increasing the bandwidth of L1, L2 and
DRAM alone. We further observed an average speedup of 69%
and 76% on increasing the combined bandwidth of L1-L2 and
L2-DRAM. Finally, we observed an average speedup of 90%
on increasing the bandwidth of the entire memory system.
Therefore, we demonstrate the criticality of cache hierarchy
in mitigating congestion. We also demonstrate that synergistic
scaling yields better results than increasing the bandwidth
of the memory levels independently. And finally, we show
that mitigating congestion in the cache hierarchy exceeds the
benefit obtained by a memory system with HBM DRAM.

VII. COST-BENEFIT ANALYSIS

In Section V, we classified the architectural design space
into two categories: Type ‘=’ and Type ‘+’. Later, we evalu-
ated the effect of scaling these parameters by a factor of 4×.
However, such a scaling across all parameters is typically not
practical due to cost overheads. Therefore, we qualitatively
analyze the cost versus benefit associated with the parameters
in the design space and arrive at a cost-effective configuration
to scale the bandwidth across the memory hierarchy. We sum-
marize the cost-effective configuration parameters in Table III.

A. Cost-effective design space

Type ‘=’ parameters listed in Table III typically include
buffers and MSHRs, and enable the memory levels to operate
closer to the peak throughput. Buffers are simple structures and
present minimal overhead in scaling. However, MSHRs are
fully associative arrays and indexing high number of requests
can be expensive. Since we have already observed in Fig. 8 that
L2 seldom stalls due to MSHR contention, we only consider
increasing MSHRs in the L1 cache.

Type ‘+’ parameters in the cache hierarchy such as crossbar
flit size, L2 data port width and L2 banks are more complex
than simple buffers and MSHRs, and therefore incur consid-
erable cost in scaling. As shown in Fig. 8, L2 data port only
contributes to 12% of total L2 stalls on average. Due to its low
contribution to the overall L2 stalls, we do not consider it for
scaling. On the other hand, back pressure from interconnection
network contributes to 42% of L2 stalls on average. While
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both L2 banks and flit size improve interconnect bandwidth
and resolve such stalls, we do not consider increasing the L2
banks. This is because each L2 bank has an independent port to
the crossbar and therefore, increasing the L2 banks would lead
to higher number of routers in the crossbar, in turn increasing
the router area. In addition, router at the cores would now
need to arbitrate over higher number of destinations, increasing
the energy demands of the crossbar. Instead, we only increase
the flit size of the crossbar as it increases the point-to-point
bandwidth without significantly increasing the router area or
arbitration energy.

B. Asymmetric Crossbar

The baseline crossbar offers a uniform flit size of 32
bytes for all nodes between core-to-L2 as well as L2-to-
core. However, the bandwidth demand of the reply network
(L2-to-core) is higher than that of the request network (core-
to-L2). This is because the majority of request packets are
load requests that amount to only 8 byte packets, whereas the
majority of reply packets are load responses that amount to
128 byte cache lines. Although write requests in the request
network present a higher bandwidth demand, such requests
are relatively infrequent and the latency for such requests is
not in the critical path of system performance. Therefore, we
consider an asymmetric crossbar with lower request bandwidth
(16 bytes) and higher reply bandwidth (48 bytes), henceforth
referred to as the 16+48 crossbar configuration. Note that we
do not increase the net area of the crossbar as the total number
of point-to-point wires in the 16+48 crossbar are same as
the baseline 32+32 crossbar. We also discuss other crossbar
configurations such as 16+68 and 32+52 with minor cost
overheads over the baseline architecture.

C. Results with cost-effective configuration

As shown in Fig. 12, for the 16+48 cost-effective con-
figuration summarized in Table III, we observe an average
performance improvement of 23.4%. It exceeds the average
performance improvement of 11% with HBM. We note an
exception for lavaMD which shows a performance drop of
37%. This is because lavaMD is limited at L1 by the L2 back
pressure (Fig. 9) which gets aggravated due to reduced flit size
in the request network. Even increasing the interconnect reply
bandwidth does not cause much benefit as it is limited at L2 by

the data port width (Fig. 8). Additionally, in our experiments
we note that a standalone asymmetric crossbar without scaling
other L1 and L2 parameters result in a lower speedup of
15.5%, thus emphasizing the importance of synergistic scaling.

We also evaluate 16+68 and 32+52 cost-effective configu-
rations and observe a performance improvement of 29% and
25.7% respectively. While both the above crossbar config-
urations have equal point-to-point connections in total, we
notice higher reward in investing more bandwidth in the reply
network due to its higher bandwidth demand.

Overhead: We use GPUWattch [12] to estimate the area
of our proposed architecture. We first compute the additional
storage required in the cost-effective configuration for buffers
and MSHRs. We assume each buffer entry to be 128 byte
wide, while each miss queue and MSHR entry to be 8 byte
wide. This results in a net storage overhead of 94 KB and
amounts to an area overhead of 7.48 mm2 at 40 nm technology,
computed using existing values in GPUWattch. This amounts
to an overall increase in the die area by around 1.1% with
respect to baseline processor architecture area of 700 mm2.
We do not report power overhead as it is minimal and within
the error margin of the simulator.

The baseline 32+32 interconnection network occupies a
total area of 27 mm2, while the wires contribute to 11.6 mm2.
Therefore, on increasing the point-to-point connections by 20
bytes in 16+68 and 32+52 crossbar, we incur an additional
overhead of 3.62 mm2. Therefore, along with overhead of
buffers and MSHRs, the above two configurations result in
a net area overhead of around 1.6%.

VIII. RELATED WORK

Several prior schemes have been proposed for GPUs to
reduce the performance impact of bandwidth bottlenecks. Kim
et al. [17] proposed pre-execution of independent instructions
in a warp to minimize the impact of data and structural depen-
dencies. Similarly, Sethia et al. [2] proposed a re-execution
queue to reduce the L1 cache hit latencies in presence of
structural hazards. These schemes are orthogonal to our work
as we aim to reduce the hazards itself, instead of circumventing
them, and focus on the bandwidth bottlenecks across the
entire memory hierarchy. Other proposals aim to maximize
cache utilization to reduce the off-chip bandwidth demand by
maximizing locality and using efficient scheduling policies [1].



In contrast, we analyze the bandwidth bottlenecks given a
fixed bandwidth demand. Zhao et al. [18] propose a ring-based
on-chip network to improve response bandwidth. Ziabari et
al. [19] propose an asymmetric NoC architecture to improve
energy efficiency by scaling down bandwidth of the request
network. On the other hand, we aim to mitigate congestion by
scaling up the bandwidth of the response network, in tandem
with other cache resources such as MSHRs and buffers across
different memory levels.

Analytical models have also been proposed to estimate the
optimum cache levels [16] and DRAM parameters [20]. In
contrast, we investigate the finer parameters such as MSHRs,
cache banks, etc., that lead to congestion in a given memory
hierarchy and propose several knobs to improve performance
while keeping the cache capacity and levels constant. O‘Neil et
al. [10] perform sensitivity studies to interconnect and DRAM
bandwidths in GPU, whereas we perform an exhaustive anal-
ysis of the bottlenecks across the memory hierarchy and moti-
vate the cost-effective design space based on the insights about
the stalls in the memory hierarchy. Alsop et al. [21] propose
a GPU stall inspector to identify source of stalls in closely
coupled heterogeneous CPU-GPU architectures whereas we
focus on the bandwidth bottlenecks in discrete GPUs.

IX. CONCLUSION

In this work, we demonstrate the bandwidth limitations
posed by the memory hierarchy in GPUs. We observe that
the bandwidth bottleneck is distributed across the memory
hierarchy and is not limited to the off-chip memory. The
bandwidth bottlenecks lead to high congestion in the memory
hierarchy, in turn leading to high latencies that appear in the
critical path. We characterize the stalls across the memory
hierarchy and isolate the causes of congestion at each memory
level. As a result, we identify the parameters to enable different
levels of the memory hierarchy to operate at peak throughput
or increase the peak throughput between adjacent memory
levels. Using these architectural knobs, we conduct a design
space exploration and show that increasing the bandwidth in
isolation at specific levels of the memory hierarchy can be
sub-optimal, and can even lead to performance degradation.
We also show that the performance improvement obtained by
synergistically improving the bandwidth of the cache hierarchy
surpasses the speedup achieved by a memory system with
baseline cache hierarchy and HBM DRAM. Using the insights
developed in this paper, we perform a cost-benefit analysis
and identify cost-effective configurations of the memory hi-
erarchy to best mitigate the bandwidth bottlenecks. Our cost-
effective configuration comprises of an asymmetric crossbar
alongside architectural optimizations to allow L1 and L2 to
operate closer to the peak throughput. We show that our final
configuration achieves a performance improvement of 29% on
average with a minimal area overhead of 1.6%.

REFERENCES

[1] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45,
(Washington, DC, USA), pp. 72–83, IEEE Computer Society, 2012.

[2] A. Sethia, D. Jamshidi, and S. Mahlke, “Mascar: Speeding up GPU
warps by reducing memory pitstops,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pp. 174–185, Feb 2015.

[3] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in IEEE 16th International Symposium on High-Performance
Computer Architecture (HPCA), pp. 1–12, Jan 2010.

[4] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Systems,”
in Proceedings of the 35th Annual International Symposium on Com-
puter Architecture, ISCA ’08, (Washington, DC, USA), pp. 63–74, IEEE
Computer Society, 2008.

[5] “HYNIX HBM.” https://www.skhynix.com/eng/product/dramHBM.jsp.
[6] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative Caching for

GPUs,” ACM Trans. Archit. Code Optim., vol. 13, Dec. 2016.
[7] Nvidia Corporation, “NVIDIA’s Next Generation CUDA Compute Ar-

chitecture: Fermi,” tech. rep., Nvidia Corporation, 2009.
[8] “GPGPU-Sim Manual.” http://gpgpu-sim.org/manual.
[9] M. Abdel-Majeed and M. Annavaram, “Warped Register File: A Power

Efficient Register File for GPGPUs,” in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer
Architecture, HPCA ’13, (Washington, DC, USA), pp. 412–423, IEEE
Computer Society, 2013.

[10] M. A. O’Neil and M. Burtscher, “Microarchitectural performance char-
acterization of irregular GPU kernels,” in IISWC, pp. 130–139, Oct 2014.

[11] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator.,” in
ISPASS, pp. 163–174, IEEE, 2009.

[12] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in Proceedings of the 40th Annual International Sym-
posium on Computer Architecture, ISCA ’13, (New York, NY, USA),
pp. 487–498, ACM, 2013.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization, IISWC ’09, (Washington, DC, USA),
pp. 44–54, IEEE Computer Society, 2009.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
A MapReduce Framework on Graphics Processors,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, (New York, NY, USA), pp. 260–
269, ACM, 2008.

[15] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu,
and W.-M. W. Hwu, “Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing,” Tech. Rep. IMPACT-12-01,
University of Illinois at Urbana-Champaign, Urbana, Mar. 2012.

[16] G. Sun, C. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y. K. Chen,
“Moguls: A model to explore the memory hierarchy for bandwidth
improvements,” in 38th Annual International Symposium on Computer
Architecture (ISCA), 2011, pp. 377–388, June 2011.

[17] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram,
“Warped-preexecution: A GPU pre-execution approach for improving
latency hiding,” in 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 163–175, March 2016.

[18] X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang, “A heterogeneous
low-cost and low-latency ring-chain network for gpgpus,” in 2016 IEEE
34th International Conference on Computer Design (ICCD), pp. 472–
479, Oct 2016.

[19] A. K. Ziabari, J. L. Abellán, Y. Ma, A. Joshi, and D. Kaeli, “Asym-
metric NoC Architectures for GPU Systems,” in Proceedings of the 9th
International Symposium on Networks-on-Chip, NOCS ’15, (New York,
NY, USA), pp. 25:1–25:8, ACM, 2015.

[20] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,
“ANATOMY: An Analytical Model of Memory System Performance,” in
The 2014 ACM International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’14, (New York, NY, USA),
pp. 505–517, ACM, 2014.

[21] J. Alsop, M. D. Sinclair, R. Komuravelli, and S. V. Adve, “GSI: A GPU
Stall Inspector to Characterize the Source of Memory Stalls for Tightly
Coupled GPUs,” in IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2016.


