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Abstract—The accuracy of measurement-driven mobile cover-
age maps depends on the quality, density and pattern of the
signal strength observations. Thus, identifying an efficient mea-
surement data collection methodology is essential, especially when
considering the cost associated with the measurement collection
approaches (e.g., drive tests, crowd approaches). We propose
ZipWeave, a novel measurement data collection and fusion
framework for building efficient and reliable measurement-based
mobile coverage maps. ZipWeave incorporates a novel non-
uniform sampling strategy to achieve reliable coverage maps
with reduced sample size. Assuming prior knowledge of the
propagation characteristics of the region of interest, we first
examine the potential gains of this non-uniform sampling strategy
in different cases via a measurement-based statistical analysis
methodology; this involves irregular spatial tessellation of the
region of interest into sub-regions with internally similar radio
propagation characteristics and sampling based on these sub-
regions. We then present a practical form of ZipWeave non-
uniform sampling strategy that can be used even without any
prior information. In all our evaluations, we show that the
ZipWeave non-uniform sampling approach reduces the samples
by half compared to the common systematic-random sampling,
while maintaining similar accuracy. Moreover, we show that the
other key feature of ZipWeave to combine high-quality con-
trolled measurements (that present limited geographic footprint
similar to drive tests) with crowdsourced measurements (that
cover a wider footprint) leads to more reliable mobile coverage
maps overall.

I. INTRODUCTION

The society’s increased reliance on Mobile Broadband
(MBB) networks has made provisioning ubiquitous coverage
the highest priority for mobile network operators, before
focusing on performance and user quality of experience (QoE).
Building and analyzing mobile coverage maps is the typical
approach to assess the availability of different MBB technolo-
gies (e.g., 3G, 4G/LTE) in different areas and to compare
different operators. It is common for operators themselves
(and sometimes indirectly through regulators) to provide such
coverage maps. Their approach for generating the maps re-
lies on the traditional approach of using analytical models
adjusted/corrected with observations operators obtain via drive
testing in select areas [1]. Recently, third parties have also
started to provide public crowdsourced coverage maps based
on measurements they collect from end-users choosing to run
measurement apps on their devices (e.g., OpenSignal [2]).

Regardless of the underlying approach for generating cov-
erage maps, the result should closely reflect the actual user-

experienced coverage. To this end, the use of real-world obser-
vations (measurements) plays a vital role. However, obtaining
measurements across time and space comes with a cost. Drive
testing campaigns are expensive in terms of time and labor,
even though they lead to detailed and reliable measurements
in specific places at exact times. Consequently, drive tests are
sparingly employed, causing mismatch between actual cover-
age and predictions obtained from models. To cost-effectively
overcome this issue from operators’ perspective, 3GPP has
recently standardized a feature called Minimization of Drive
Tests (MDT) [3] that leverages radio layer measurements
collected by end-user devices. MDT mimics crowdsourced
measurements (a la OpenSignal and MobiPerf [4]), but is yet
to be widely adopted in practice. One of the impediments is
the need for the MDT reports to include device and network
usage context information that might have a significant impact
on user-perceived performance (e.g., [5]). However, this infor-
mation is beyond the scope of the MDT specification. Further-
more, concerns about measurement related overhead (device
battery consumption, bandwidth used for conducting/reporting
measurements) limits user participation in such crowdsourced
measurement campaigns and so do privacy concerns. Experi-
menters need to offer suitable incentives to address these issues
and pay the cost for obtaining the measurements. Thus, being
efficient in terms of the number of measurements, while being
able to produce reliable coverage maps, is essential.

With the above in mind, we present ZipWeave, a novel mea-
surement data collection and fusion framework that aims to
build efficient and reliable measurement-based mobile cover-
age maps. ZipWeave builds upon two key ideas. First one – the
“Zip” part – introduces a non-uniform sampling strategy where
we divide the region of interest into sub-regions, with each
sub-region having similar radio propagation characteristics.
This exposes the opportunity to reduce the sampling (measure-
ments/observations) density in larger sub-regions, which we in
turn exploit to produce a reliable coverage map for the whole
region with a small number of measurements. In recent years,
coverage prediction using geostatistical techniques (mostly
different variants of Kriging) has emerged as an effective
approach for generating coverage maps when we have access
to measurements from the region of interest (e.g., [6–8]). So
far, these studies have only been limited to simple sampling
schemes (i.e., where to collect measurements), such as random
and systematic sampling strategies.
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The second idea – the “Weave” part – relies on the ob-
servation that different measurement data sources (e.g., from
drive tests or crowdsourcing approaches) have complementary
aspects which we can harness and combine to produce more
reliable coverage maps. Drive test measurement data, although
more reliable as it is collected in a controlled manner, is
inherently limited in its geographical span (e.g., limited to
roads and streets). The crowdsourcing paradigm presents rela-
tively less control over the measurements and their reliability,
given the many confounding contextual factors involved, but
offers a wider spatial footprint (including indoors). To the
best of our knowledge, this is the first paper attempting to
combine compatible measurement data from different sources
to increase the overall reliability of coverage maps.

Specifically, this paper makes the following contributions:

• First, in Section IV, we introduce the key idea of non-
uniform sampling strategy underlying ZipWeave . Using mea-
surement based statistical analysis, we examine its potential
for reducing the number of measurements, while maintaining
reliability of the coverage map. Essentially, given a-priori
knowledge on the propagation characteristics across a region
of interest, we divide the whole region into irregularly shaped
tessellations, such that each sub-region has similar radio prop-
agation characteristics. Then, by sampling over these different
sized sub-regions, we show it is possible to greatly reduce the
sample size required for accurate coverage prediction com-
pared to the common systematic-random sampling approach.
• Second, in Section V, we describe how to realize in
practice the ZipWeave non-uniform sampling approach, by
choosing locations to sample even when there may be no
prior knowledge about the region of interest. Broadly speaking,
for each sub-region, we identify the level of uncertainty for
coverage prediction, and adjust the density of the sampling
accordingly. Compared with the commonly used systematic-
random sampling, the non-uniform sampling approach we
propose proves to maintain similar reliability of the coverage
map with only half of the sample size.
• Finally, in (Section VI) we focus on the “Weave” part of
ZipWeave and explore the possibility of increasing the overall
reliability of the coverage map by combining measurement
data from different sources (namely, controlled drive-test-like
measurements and crowdsourced measurements).

II. BACKGROUND AND RELATED WORK

The state of the art approach for generating cellular coverage
maps using field measurements of signal strength integrates
two components: (i) sampling strategy design, which involves
defining a method for collecting a representative and unbiased
set of measurements; and (ii) a robust method for predicting
(interpolating) values at unobserved locations based on the
collected measurements [1]. With regards to the latter, sev-
eral spatial interpolation methods exist, with Kriging-based
methods found to be generally most effective. Kriging [9] is
a minimum-mean-squared-error method for spatial prediction
that optimally estimates data at a point based on regression of

observed surrounding values of that point weighted according
to the spatial correlation of the field under study. Among the
various Kriging methods, Ordinary Kriging is a robust method
for coverage predictions [6–8, 10].

However, devising a spatial sampling strategy for collecting
the measurements necessary to generate reliable coverage
maps is more challenging. Although Tobler’s First Law of
Geography [11] suggests that it is redundant to sample nearby
locations, the level of correlation of the mobile network signal
strength varies across space, which makes the choice of mea-
surement locations harder. The sampling strategy for coverage
map generation has surprisingly received little attention so far.
An exception is [12], which is susceptible to local optima as
it takes a sequential approach (see below).

In general, spatial sampling design (the first component
mentioned above) follows a two phase process. The first phase
sampling aims to provide a primary sense of the region of
interest. In our context, this means identifying parts of the
region where variation in signal strength in nearby locations
is high. The second phase sampling then aims to complement
the first phase set of measurements with additional samples
from the regions we identified to have high variation in signal
strength readings.

For the first phase sampling, different sampling approaches
(e.g., regular/systematic, stratified, random and clustered
schemes) offer different degrees of efficiency [13]. In previ-
ous work (e.g., [14], [7]), a combination of systematic and
nested clustered-sampling scheme was preferred to guaran-
tee a coverage over the entire study region, as well as to
have a better estimate of locations having variations at small
distances. We use the systematic-random approach for first
phase sampling which is qualitatively similar to the systematic-
clustered scheme; we elaborate our approach in Sec. V

The second phase sampling, which aims to boost the accu-
racy of the coverage map within the region of interest, could
take one of two different approaches for collecting additional
samples: Sequential, where new samples are collected one at a
time [12]; or Simultaneous, where the whole set of additional
samples are collected at the same time [14]. Both cases aim
to optimize an objective function such as minimizing Mean
Kriging Variance [15].

III. DATASETS

For the purpose of this study, we use real-world measure-
ment datasets that following two main approaches: running
controlled mobile measurements over public transport vehicles
(hereinafter, the controlled dataset) and crowdsourcing mea-
surements from real mobile customers using the OpenSignal
Android app (hereinafter, the crowd dataset). All these datasets
are collected during the month of August 2015 in two different
European cities, namely Oslo and Edinburgh.

A. Controlled datasets

We build the controlled datasets using two different methods
(in the two different cities), as follows.
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1. We deploy dedicated hardware devices in public transport
vehicles in Oslo as part of the NorNet Edge measurement
platform1 for experimentation with MBB in the wild and
under mobility conditions. In our case, the measurement
devices are single board computers running a standard Linux
distribution that connect to two MBB operators in the same
time, namely Telenor and Telia in Norway [16]. The device
connects via Huawei E392-u12 modems using commercial-
grade MBB subscriptions that are available to end-users in the
market. Along with the measurement results, each modem also
provides context information, including the GPS coordinates
with a 10 sec frequency and the signal strength. For the
signal strength readings, the node pushes information to the
back-end measurement server upon each update in the values.
Also, every minute, the back-end server pulls the information
from the measurement nodes. We further filter the spatial
dataset (hereinafter, the controlled train dataset) for one of the
operators and focus on monitoring the 4G/LTE signal strength
by logging the RSRQ in dBm along the routes within Oslo.

2. We access hardware devices already operating aboard
pubic transport buses, whose main purpose is providing Inter-
net connectivity to the passengers. The operators of the public
transport network collect basic metadata from these devices
to monitor the services MBB operators deliver to them. We
collaborate with Lothian Buses in Edinburgh to collect this
dataset from several of their passenger buses (hereinafter, the
controlled bus dataset). In total, we collect data from over
85 buses covering the entire city area. The dataset consists of
signal strength and GPS readings with a granularity of 1 sec.
We further work with the spatial dataset corresponding to a
single MBB operator in Edinburgh and monitor the status of
4G/LTE connectivity by logging signal strength values.

Note that both the above-mentioned controlled datasets
mimic drive-test measurement results as they are collected
with custom measurement platforms and over pre-defined
routes.

B. Crowd datasets

The crowd dataset taps into the popularity of smartphones
and relies on MBB end-users to run specific applications
aimed to monitor the status of their connection. Our data is
crowdsourced by users of the OpenSignal app, which monitors
the coverage and performance of their mobile connection.

We access the crowd datasets corresponding to the same
geographical areas and the same time period as the controlled
datasets (i.e., Oslo and Edinburgh in August 2015). To be
comparable to the controlled datasets, the crowd data consists
of signal strength readings tagged with GPS coordinates for
the same 4G/LTE operators. However, unlike the controlled
data, the crowdsourced measurements inherently cover a much
wider geographical region and have some inherent level of
uncertainty and noise concerning the contextual information,
thus lack the level of measurement control that drive testing
approach offers.

1We collaborate with NSB in Norway to deploy measurement nodes aboard
their intercity passenger trains.

IV. ZIPWEAVE NON-UNIFORM SAMPLING: RATIONALE
AND POTENTIAL EFFICIENCY GAINS

Due to terrain differences, we observe that not every part
of a region needs the same sampling density. For example,
as shown in Fig. 1a, in open places such as fields or parks
the propagation path loss values do not vary much. Thus,
a small number of measurement samples are sufficient to
accurately interpolate and predict the coverage at unobserved
locations. However, this is not the case with crowded areas
where buildings may hinder unobstructed propagation of radio
signals. The deflection, reflection and absorption of signals
may lead to great variations in signal quality at even very small
distances, for example, in city center areas (see Fig. 1b).

The key idea behind ZipWeave non-uniform sampling ap-
proach is to exploit the similarity/differences in radio prop-
agation characteristics in different sub-areas of a region in
order to build reliable coverage maps with reduced number of
measurements. To achieve this, we first characterize the whole
region of interest by identifying geographical patches / road
segments that are similar in signal strength values. This results
in large sub-regions/segments at places with small variation in
signal strength and small sub-regions/segments where nearby
locations suffer from abrupt changes in signal quality. We then
vary the sampling density across these sub-regions/segments.
Such an approach provides similar coverage map prediction
accuracy to its uniform (systematic-random) sampling coun-
terpart, but with a much smaller sampling size. In this section,
we demonstrate the potential savings with the ZipWeave non-
uniform sampling approach (over the commonly used uniform
sampling) via measurement based statistical analysis consid-
ering different cases: coverage map generation over a wide
geographic area with controlled/crowdsourced measurements;
and coverage along drive paths. We leave the discussion on
how to realize ZipWeave non-uniform sampling in practice to
the next section.

A. Coverage Map for a Geographical Area

First, we explore the benefit of ZipWeave non-uniform
sampling approach for the case of coverage map for a wide
geographical area.

1) Controlled Measurements:
a) Full Enumeration Dataset: To assess the efficiency

of the ZipWeave approach in this case, we will need for
analysis what we refer to as a full enumeration dataset, which
represents a very dense collection of measurements across
the area of interest. However, it is (close to) impossible to
obtain a full set of coverage measurements at all spatial
locations within the geographical domain of interest. In order
to generate/mimic such a dataset, we use the controlled bus
dataset from Edinburgh and we identify a sub-area where
we previously collected a very dense controlled set of mea-
surements along the roads public transport buses traverse
(Fig. 2a). We use these observations to interpolate/predict the
signal strength values at 20,000 unobserved grid locations
within this same area. We define these grid locations by
segmenting the Edinburgh sub-area in 35mx35m grid cells.
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(a) An open space area in Edinburgh. (b) An area with tall buildings in Edinburgh.
Fig. 1: Signal strength variations in different areas. In open space (1a), the signal strength variation is small, ranging between
[-9,-13] dBm. In areas with tall buildings (1b), the signal strength variation is much higher, ranging between [-4, -13] dBm.

(a) Input Dataset: Controlled Edinburgh Bus Dataset on route. (b) Full Enumeration Dataset: Heatmap of Kriging predictions.
Fig. 2: Full Enumeration Dataset (b) generated by predicting the signal strength at 20,000 unobserved grid locations using
Kriging and the Input Dataset in (a). We use the full enumeration dataset to assess the benefit with ZipWeave non-uniform
sampling approach for the case of coverage map generation over a wide geographical area.

The collection of 20,000 signal strength values at these grid
locations represents the full enumeration dataset (Fig. 2b).
We confine our subsequent analysis to this geographical sub-
domain for which we generated the full enumeration of signal
strength readings. This, however, does not affect the nature
of the results since this geographical restriction arises from
the limitation in the geographic span of the controlled dataset
measurement locations.

b) Irregular Spatial Tessellation: We identify the geo-
graphical areas with similar signal strength observations in
our analysis as follows.

Data Clustering with Spatial Continuity. For non-uniform
tessellation, the first step is to apply an unsupervised hier-
archical clustering algorithm (i.e., HCLUST) on the signal
strength values within the full enumeration dataset described
above. The results show that two geographically separate
clumps can be members of the same cluster since we do
not run clustering on the basis of GPS locations. In order
to guarantee spatial continuity within the same cluster, we
then split the portions of the same cluster grouped at different
geographical locations into distinct stand-alone clusters using
the Connected Component Labeling (CCL) algorithm. This
technique is specific to image processing by scanning an
image pixel-by-pixel in order to identify regions of adjacent
pixels that have similar color values. Applying CCL to the
hierarchical clustering output resulted in 165 different clusters.

Spatial Tessellation. Many of the 165 clusters CCL pro-
duced are, however, very small and often contained only a
single observation. This happens because the signal strength at
those locations is very different from its surrounding locations.

Fig. 3: Final Irregular Spatial Tessellation (reflecting the basis
of ZipWeave non-uniform sampling) in an area (after applying
HCLUST + CCL + KNN, we obtain 24 clusters).
Such small clusters do not provide enough choice for further
applying the spatial sampling plan. In order to handle this
problem, we use the K-Nearest Neighbor (KNN) algorithm for
appending tiny clusters with less than 30 members to the near-
est large cluster. This not only reduces the number of clusters,
but also confines the abrupt variations in signal strength inside
a cluster (and, subsequently, corresponding geographical area).
Figure 3 shows the final irregular tessellation of the area of
analysis after applying KNN for merging tiny clusters into big
clusters (resulting into 24 clusters).

c) Results: To evaluate the benefit of the ZipWeave
non-uniform sampling approach, we compare the coverage
prediction accuracy with samples from the irregular cluster-
based tessellation (ZipWeave ) with the one we obtain when
using samples from the uniform tiling of the same geographic
domain. For this, we use a calibration-validation approach
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TABLE I: Signal strength prediction error (MAPE) using
the systematic-random sampling plan (in the left) and using
ZipWeave non-uniform sampling (in the right) on the con-
trolled bus dataset from Edinburgh.

Systematic-random Sampling ZipWeave
Sample Size MAPE Sample Size MAPE
360 1.00 480 0.74
560 0.98 480 0.77
640 0.85 480 0.76
900 0.77 480 0.76

TABLE II: Signal strength prediction error (MAPE) using
the systematic-random sampling plan (in the left) and using
ZipWeave non-uniform sampling (in the right) on the crowd
dataset from Oslo.

Systematic-random Sampling ZipWeave
Sample Size MAPE Sample Size MAPE
500 (25 tiles) 0.31 500 (25 clusters) 0.26
600 (30 tiles) 0.32 500 (25 clusters) 0.27
720 (36 tiles) 0.31 500 (25 clusters) 0.27
840 (42 tiles) 0.31 500 (25 clusters) 0.26

and use the full enumeration dataset as ground truth. First,
we separate 25% of the 20,000 regularly spaced locations in
the full enumeration dataset as validation points. From the
remaining 15,000 points, we select for training 20 samples
from each non-uniform sub-area (for ZipWeave ) and 20
samples from each uniform tile, respectively (Fig. 4). In both
cases, we use the chosen samples from each cluster or tile to
be able to make a prediction at the validation points that fall
inside its bounded region. We repeat this exercise four times.
In the case of systematic sampling, we gradually reduce the
size of tiles and record the Kriging result. In the case of the
irregular spatial tessellation (ZipWeave ), we select 20 different
samples per sub-area at each repetition. In Table I, we show
the results of ZipWeave non-uniform sampling plan relative
to the case when we use systematic sampling. Overall, we
observe that ZipWeave approach achieves similar prediction
accuracy to the systematic-random sampling based approach,
with only half of the sample size (last row in Table I).

2) Crowdsourced Measurements: We now consider the case
of generating the coverage map of a geographical area with
crowdsourced measurements. For analysis in this case, to
realize ZipWeave non-uniform sampling approach, we follow
the same steps for irregular spatial tesselation as described
in the above subsection but using the crowdsourced measure-
ment dataset (for Oslo). We repeat the experiment as before
for different sampling sizes and find that also in this case
ZipWeave non-uniform sampling outperforms the commonly
used systematic-random sampling approach (Table II).

B. Coverage Map for a Route

We now analyze the effectiveness of the ZipWeave non-
uniform sampling approach for the case of predicting the
coverage along a drive route, using the controlled bus dataset
from Edinburgh.

a) Irregular Spatial Tessellation: Though the same steps
as described earlier in Sect. IV-A1 broadly apply in this
case, given the intrinsic differences in the nature of the

coverage map to be generated, we apply a different set of
techniques which are more effective for measurement data that
follows spatial linear pattern. This is because, for instance,
the connected component labeling technique is limited in its
applicability to grid-based structures and it is not applicable
for extracting the geographical boundaries of road segments
with similar signal quality. Also, in this case, input dataset
itself serves as the full enumeration dataset due to the high
granularity of signal strength readings along the analyzed
route.

Sample Clustering and Spatial Continuity. We first apply
constrained clustering for identifying the route segments with
similarities in the signal strength readings. Constrained clus-
tering is a semi-supervised clustering algorithm that takes
advantage of the pair-wise relations among data points for
grouping them into separate clusters. Pair-wise relations are
of two types, namely must-link (indicating that two samples
should be assigned to same cluster) and cannot-link (indicating
the opposite). Exploiting the spatial auto-correlation of the
signal strength variable, constrained clustering can group the
coverage measurements such that members of same cluster
are both similar in signal strength quality and are geograph-
ically adjacent, thus achieving the spatial continuity goal.
For measurements over drive routes, this grouping results in
tiny clusters where there are abrupt changes in the signal
quality at nearby locations and larger clusters (road segments)
where signal reception is similar. Constrained clustering can
be parameterized with signal strength similarity threshold –
a lower threshold results in more homogeneous intra-cluster
members but with a high number of small-sized clusters and
vice versa. For the dataset used in the analysis, we empirically
determine the right threshold setting to be equal to difference
of up to 6 Arbitrary Signal Unit (ASU), which generated 365
clusters with most of them having very few members.

Spatial Tessellation. As with the earlier cases, we merge the
geographically close tiny clusters (i.e. clusters with few mem-
bers) irrespective of their signal quality using Density Based
Spatial Clustering of Applications with Noise (DBSCAN).
DBSCAN extracts arbitrary-shaped clusters from points in
space that are closely packed together. It requires specification
of the minimum number of neighbors that a data point should
have within a particular radius so that to term this neighbor-
hood as a cluster; we set the radius of the neighborhood to
be 50 meters and the minimum number of neighbors to be
5. The resulting re-clustering (Fig. 5) reduced the number
of cluster from 365 down to 38, 13 of which are produced
by DBSCAN while the rest are large clusters generated by
constrained clustering.

b) Results: Table III compares prediction accuracy with
ZipWeave non-uniform sampling and systematic-random sam-
pling for different sample sizes for the dataset shown in Fig. 2
(a). It must be noted that the number of samples retrieved from
each cluster and tile are equal in size, namely 20 samples.
For systematic-random sampling, we decrease the tile size in
each repetition and we only filter the tiles having at least 20
samples. In both the clustering and tile based approaches, we
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(a) ZipWeave non-uniform Sampling. (b) Systematic-random Sampling.
Fig. 4: Calibration set (sample) size chosen by (a) ZipWeave non-uniform sampling and (b) Systematic-random sampling
approaches for the same prediction accuracy (MAPE). We can visually confirm the difference on the sample sizes.

Fig. 5: Final irregular tessellation (reflecting the basis of
ZipWeave non-uniform sampling) on routes (after applying
Constrained Clustering + DBSCAN, we obtain 38 route seg-
ments).

TABLE III: Signal strength prediction error (MAPE) using
systematic-random sampling (in the left) and ZipWeave non-
uniform sampling on a route (in the right) on the controlled
bus dataset from Edinburgh.

Systematic-random Sampling ZipWeave
Sample Size MAPE Sample Size MAPE
660 2.64 600 2.07
720 2.44 600 1.84
980 2.26 600 1.89
1,100 2.24 600 1.85

apply Kriging with leave-one-out cross validation (LOOCV)
per cluster and tile respectively.

The differences in signal strength quality within a same
DBSCAN based cluster makes it obvious that samples from
such a cluster cannot predict well the unobserved locations
of its cluster. From multiple tests we run on datasets from
different buses operating in Edinburgh (not stated here), the
overall prediction accuracy decreases when DBSCAN-based
clusters are also considered for sampling along with the
constrained-based clusters so that to predict signal quality in
the rest of their cluster locations. Even with this decrease, non-
uniform sampling still outperforms systematic-random sam-
pling approach in terms of coverage prediction accuracy. This
improvement (shown by results of Table III) confirms that non-
uniform cluster-based sampling produces better coverage maps
due to factoring in the varying sampling density requirement
of the terrain under consideration.

V. ZIPWEAVE NON-UNIFORM SAMPLING IN PRACTICE

A good spatial sampling strategy design recognizes the
heterogeneity in the mobile coverage and tries to account for
it by choosing the sampling locations driven by a suitable
criterion/metric that helps boost the accuracy of the empirical
coverage maps. Analysis in the last section confirmed the
opportunity for efficient coverage map generation via non-
uniform sampling exploiting the sub-regions with similar
radio propagation characteristics but without regard to prac-
tical constraints (e.g., assuming access to full enumeration
dataset). In this section, we consider the realistic scenario
where the entity interested in generating empirical mobile
coverage maps may not have a-priori information about the
coverage characteristics of the region in question. Targeting
this scenario, we propose a simple and practical non-uniform
spatial sampling methodology to identify the locations where
the measurements are most needed. Our sampling optimization
is aimed at reducing the measurement cost with no adverse
impact on the prediction accuracy. This is because collecting
drive test measurements is known to be labor- and cost-
intensive. Similarly, for crowdsourced measurements, not all
measurement readings may raise accuracy but instead deplete
battery life and impact the data quota of the MBB customer.

Following common practice, we propose a two-phase sam-
pling design. For the first phase, we use systematic-random
sampling. We divide the area into equally sized tiles and
randomly select the same (few) number of samples from
each tile. For the second phase, a naive approach is simply
to repeat another round of systematic random sampling per
tile but it foregoes the opportunity to optimize the overall
sample size needed for producing a reliable coverage map.
So we need a more sophisticated approach that leverages the
insights from the analysis in the previous section. To that
end, we first discuss the criterion that appears to be most
promising for deciding representative sampling locations. We
then investigate a non-uniform sampling strategy based on the
selected criterion.

A. Metric to Guide Second Phase Sample Selection

For interpolation, Kriging exploits autocorrelation—that is,
the statistical relationships among the measured points. Be-
cause of this, it not only produces a prediction surface, but
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also provides some measure of the accuracy of the predictions
in the form of Kriging Variance (KV). KV is a common metric
for determining where to sample more [15]. However, KV is a
global measure of variance as it is based on the configuration
of the data and of the variogram, and does not reflect the
local variance. Hence, it is homoescedastic and may prove
untrustworthy when there is a lack of stationarity accross the
region of interest [17]. Interpolation Variance (IV) (also termed
as Local Error Variance) [17] is an alternative to KV and has
some correlation with the absolute prediction error which KV
lacks.

We evaluate the effectiveness of these metrics using two
different datasets: the crowd dataset from Oslo and the con-
trolled dataset from Edinburgh. For each dataset, we perform
systematic-random sampling to have first phase samples. We
then compare two cases corresponding respectively to the use
of KV and IV metrics to select the tiles that need more
sampling to increase the accuracy of the coverage map. To
assess the relationship between KV/IV and prediction error, we
can leverage the ground-truth measurements from the datasets
at the predicted locations. Results shown in Fig. 6 indicate that
neither KV nor IV exhibit good correlation with prediction
error in our context of coverage prediction and mapping.

To overcome the ineffectiveness of commonly used metrics
(KV and IV) for guiding second phase sample selection, we
propose to use as indicator for prediction accuracy the Kriging
absolute prediction error itself. This metric, however, needs
prior knowledge about the actual signal strength values at
the predicted locations to calculate the prediction error. We
therefore employ the LOOCV approach for Kriging perfor-
mance evaluation using first phase samples. The prediction
errors we obtain form the basis for driving subsequent phase
of sampling, as we describe in more detail below.

B. ZipWeave Non-Uniform Sampling Strategy

Creating an optimal sampling design requires finding the
right balance between the accuracy of prediction (requiring
more samples) and the cost of sampling (limiting the number
of samples and corresponding costs of gathering them). As
already demonstrated in the previous section, given the terrain
and urban landscape differences, not every part of the region of
interest needs similar sampling density2. Thus, to accommo-
date the spatial heterogeneity of cellular coverage, we propose
to employ for second phase sampling a non-uniform sampling
approach that exploits the notion of probability raster used
by Balanced Sampling [18]. The probability raster is a vector
with size equal to the number of sub-areas within the region
of interest such that each value indicates the importance of a
sub-area with respect to the sampling objective.

The essential idea behind non-uniform sampling is to iden-
tify sub-regions that have a high level of uncertainty for
coverage prediction and increase the density of sampling in
those sub-regions to implicitly increase the accuracy of the

2Note however that sparse systematic random sampling is helpful when
starting to sample (first phase) to get a sense of the region of interest in terms
of ability to accurately predict coverage.

TABLE IV: Signal strength prediction error when considering
systematic-random sampling (in the left) and ZipWeave ’s
non-uniform sampling using a MAPE-proportional probability
raster (in the right).

Systematic-Random Sampling ZipWeave Non-Uniform Sampling
Sample Size MAPE Sample Size MAPE
880 1.19 880 1.19
1,580 1.15 1,193 1.13
2,257 1.10 1,427 1.09
2,917 1.09 1,737 1.07
3,574 1.08 1,967 1.04

coverage map. In non-uniform sampling, we map a probability
raster to sub-regions of the overall region of interest; we
assume sub-regions to be same sized tiles for ease of practical
realization. The values in the probability raster correspond to
the Mean Absolute Prediction Error (MAPE) resulted from
applying Kriging with LOOCV per tile. Further we set to zero
the probability raster values of the tiles with MAPE lower
than average MAPE of all the tiles. MAPEs of the remaining
tiles are normalized such that probability raster sums up to
1. The number of samples drawn from each tile in the next
phase is proportional to their value in the probability raster.
This approach results in non-uniform samples per tile unlike
the systematic sampling where equal number of samples are
retrieved from each tile per sample phase. The non-uniform
sampling approach thus leads to reduced costs and/or increased
coverage map accuracy by targeting the areas with higher need
for subsequent sampling.

C. Evaluation

We now evaluate ZipWeave non-uniform sampling strategy
by applying Ordinary Kriging on the sampled crowd dataset
from Oslo3. To quantify accuracy of the resulting coverage
map in each case, we evaluate the Mean Absolute Prediction
Error (MAPE) for the Ordinary Kriging based spatial inter-
polation of coverage. We compare the use of non-uniform
sampling in the second phase with that of using systematic-
random sampling by contrasting the coverage interpolation
results. Recall that we use systematic-random sampling for
first phase sampling in both plans.

We consider 50 Km x 50 Km square area spanning Oslo
and divide it into 1 Km x 1 Km sized tiles forming individual
sub-regions. From the Oslo crowd dataset, we randomly pick
20 samples per tile to start with as part of systematic-random
sampling in the first phase. For the baseline approach, we
use the same kind of systematic-random sampling for the
second phase, i.e., we attempt to randomly select 20 additional
samples per tile in the second phase (all available samples in
a tile are used when there are fewer than 20 unused remaining
samples in the dataset). For ZipWeave (non-uniform sampling),
we build the probability raster in the second phase based
on Kriging prediction errors computed using LOOCV with
samples from the first phase. The sample size per tile in second

3Although we present results with the crowd dataset from Oslo to showcase
the benefits of non-uniform sampling, similar results apply for the other
controlled and crowd datasets.
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(a) Oslo Crowd Dataset. (b) Edinburgh Controlled Dataset.
Fig. 6: Poor correlation of KV and IV with Absolute Prediction Error of predicted signal strength.

phase is proportional to per tile value in the probability raster
(or equivalently MAPE).

In Table IV, we present the average prediction errors,
across the whole region, while using both the non-uniform
and systematic-random sampling schemes. We observe that
the accuracy of the coverage prediction is similar or better in
all phases with non-uniform sampling scheme. Even more,
the results show that by using non-uniform sampling, we
can achieve equivalent prediction accuracy compared to the
baseline approach with only about half the sample size.
These results match those from the analysis in the previous
section, demonstrating that the practical form of ZipWeave
non-uniform sampling described in this section is able to
achieve expected gains in sampling efficiency.

VI. ZIPWEAVE: FUSING DATA FROM DIFFERENT SOURCES

Availability of both crowdsourced and controlled measure-
ments at certain regions brings forth the question of their com-
bined usage for coverage prediction. The wider geographical
span of crowdsourced measurements and greater reliability of
controlled measurements suggests that utilizing both datasets
can raise accuracy of coverage prediction in a region. With this
in mind, the focus of the weaving part of ZipWeave is on the
fusion of different type of datasources from same region. To
this end, we use both the crowd and the controlled datasets we
collect in Oslo and compare the coverage prediction accuracy
in the same spatial domain when using as input the two
datasets separately and then their union. For both datasets,
the network technology mode is the same (i.e., 4G/LTE) and
the unit of signal strength matches (RSRQ in dBm).

In order to evaluate the accuracy of prediction with regard
to both the datasets, we select the crowdsourced measure-
ments only from the area near the measurement routes in
the controlled train dataset. We further focus our analysis on
the geographical domain where both measurement approaches
have significant amount of samples. We divide the route into
tiles and only consider the tiles where both the crowd and
controlled data are present. This sums up 22 such tiles. Further,
to ensure equal representation of each tile, we retrieve equal
proportion of calibration and validation samples from each
of the tiles. We consider 3 different calibration set configura-
tions, namely crowd training data only (approximately 1,000

TABLE V: Absolute prediction errors after using Ordinary
Kriging on three different configurations of the calibra-
tion/validation dataset.

Test No. Crowdsourced Controlled Datasets Union
1 2.59 2.45 2.28
2 2.45 2.83 2.25
3 2.53 2.57 2.25

samples), controlled training data only (approximately 1,000
samples) and containing equal representation from crowd and
controlled datasets (i.e., approximately 500 form each). The
validation also contains samples from both the datasets with
equal representation (i.e., 500 from each). We then apply Krig-
ing on validation samples by using crowdsourced calibration
samples, controlled calibration samples and the calibration set
which has representation of both. We perform three repetitions
of the test by reselecting the samples in all the above cases and
performing interpolation. The results we present in Table V
reveal that, in all the three tests, the combination of both the
datasets outperforms the cases when we use a single data
source. The improvement is, however, marginal because the
range of signal strength values from the datasets is both narrow
and similar (i.e with first quartile -6dBm and third quartile -
9dBm). Also, we confine our analysis to a limited geographical
domain in Oslo because of the limitations of the controlled
dataset in that location4.

Once the efficiency of using combination of the datasets
is obvious, we evaluate the non-uniform sampling strategy
against the systematic-random one for boosting the cover-
age map accuracy. To this end, we first combine both the
crowdsourced and controlled datasets into one union dataset.
Then, we retrieve at most 30 samples from each of the 22
tiles by choosing 547 samples in total for the first phase
of samples. After applying interpolation with cross-validation
on each tile separately we move to the second phase of
samples. For systematic-random sampling we again retrieve
equal number of samples (i.e. at most 30) from each of the
tiles, thus making the total sample size equal to 968 datapoints.
For the ZipWeave non-uniform sampling plan, as described in
the previous section, we exploit the first-phase mean absolute
prediction error metric of each tile and generate probability

4We could not this exercise using the datasets from Edinburgh due to
incompatibility in the signal strength parameters in the two datasets.
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TABLE VI: Absolute prediction errors, after using Ordinary
Kriging four different times with systematic-random and non-
uniform sampling plans.

Test No. Systematic-
Random
Sampling
Phase 1

Systematic-
Random
Sampling
Phase 2

Non-Uniform
Sampling
Phase 2

1 2.02 (547) 1.99 (968) 1.94 (650)
2 1.98 (547) 1.92 (968) 1.89 (631)
3 2.06 (547) 2.02 (968) 1.98 (669)
4 2.09 (547) 2.05 (968) 1.98 (677)

raster on this information to point out the tiles where more
drilling might decrease the overall prediction errors. We repeat
this test four times with different initial and additional sample
sets. Table VI summarizes the results of the four different
coverage tests. In all the four tests, we observe that non-
uniform sampling results in better accuracy with fewer samples
than its systematic sampling counterpart, demonstrating the
effectiveness of ZipWeave in its full form.

VII. CONCLUSIONS

In this paper, we have proposed ZipWeave, a framework
for efficient and reliable mobile coverage map generation.
ZipWeave employs non-uniform sampling to reduce the num-
ber of measurements while not compromising coverage pre-
diction accuracy, essentially by exploiting the similarity in
radio propagation characteristics within sub-regions of the area
of interest. It also aims to take advantage of the synergy of
different types of measurement data that may be available in
a given region by fusing them in coverage map generation
process.

Our extensive measurement based statistical analysis has
shown that non-uniform sampling on the basis of clusters
and segments having similar signal quality produces better
prediction accuracy with almost half the samples required by
the commonly used systematic-random sampling scheme. We
also obtain similar gains with a practical form of ZipWeave
non-uniform sampling strategy that does not assume any prior
information of the region of interest. The other aspect of
ZipWeave to complement the reliability of controlled, drive-
test like, measurements with the crowdsourced measurements
with a wider geographical spread is shown to result in a more
reliable coverage map.

One key aspect for future work is to accommodate the
time dimension in the ZipWeave framework, i.e., to examine
the evolution of the measurement-based coverage map over
time during the course of day/week and across longer periods
accounting for infrastructure/environment changes. Another
avenue for future work is to examine the potential for gen-
erating more accurate coverage maps from knowledge of
infrastructure locations (cell towers).
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