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A FIM-based Long-Term in-vial Monitoring System
for Drosophila Larvae

Dimitri Berh‡, Benjamin Risse‡, Member, IEEE, Tim Michels, Nils Otto, Xiaoyi Jiang⇤, Senior Member, IEEE,
Christian Klämbt

Abstract—Drosophila larvae are an insightful model and the
automated analysis of their behaviour is an integral readout in
behavioural biology. Current tracking systems, however, entail a
disturbance of the animals, are labour-intensive, and cannot be
easily used for long-term monitoring purposes. Here we present
a novel monitoring system for Drosophila larvae which allows us
to analyse the animals in cylindrical culture vials. By utilizing
frustrated total internal reflection in combination with a multi-
camera/microcomputer setup we image the complete housing vial
surface and thus the larvae for days. We introduce a calibration
scheme to stitch the images from the multi-camera system and
unfold arbitrary cylindrical surfaces to support different vials.
As a result, imaging and analysis of a whole population can be
done implicitly. For the first time, this allows to extract long-term
activity quantities of larvae without disturbing the animals. We
demonstrate the capabilities of this new setup by automatically
quantifying the activity of multiple larvae moving in a vial. The
accuracy of the system and the spatio-temporal resolution is
sufficient to obtain motion trajectories and higher level features
like body bending. This new setup can be used for in-vial activity
monitoring and behavioural analysis and is capable of gathering
millions of data points without both disturbing the animals and
additional labour time. In total we have analysed 107, 671 frames
resulting in 8, 650 trajectories, which are longer than 30 seconds,
and obtained more than 4.2⇥ 106 measurements.

Index Terms—Drosophila Larvae, FIM, FTIR, Imaging Tech-
nique, Locomotion Analysis, Long-Term, Microcomputer, Multi-
camera, Unfolding, Stitching

I. INTRODUCTION

THE importance of behavioural studies of model or-
ganisms has significantly increased in recent biologi-

cal research. Complex experimental constructions and high-
throughput experiments are only achievable by computer-aided
image acquisition and analysis techniques [1]–[11].

To obtain meaningful interpretation and understanding of
the behavioural phenotype of an animal, experiments usually
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Fig. 1. Overview of the proposed setup. (a) We use microcomputers and
micro-cameras to monitor Drosophila melanogaster larvae in cylindrical
rearing vials for days by utilizing the frustrated total internal reflection effect.
The microcomputers are synchronized, act as autonomous devices, and are
connected in a client-server-architecture to a central server. Preprocessed
images from the microcomputers are stitched together and further processed
on the server. (b) Custom-made vial with the main components such as the
inner cylinder and the food bowl. For details see text.

have to be repeated multiple times under the same environ-
mental conditions. Most importantly, the animals have to be
taken out of their rearing habitat, cleaned (i.e. by removing
dirt and other artefacts), and are afterwards placed in a new
environment. These steps may disturb the animals and thereby
lead to falsified behaviour output. Moreover, these steps are
time-consuming and repetitive for the experimenter.

In current research concerning social interactions, day
rhythm, or age related deficits, long-term automatic monitor-
ing and behaviour analysis of freely moving animals is of
main interest. This concerns mice [12]–[14], Caenorhabditis
elegans [15]–[17], as well as Drosophila flies [18]–[22]. How-
ever, to the best of our knowledge there is no system available
for monitoring the behaviour of Drosophila at the larval states
in culture vials for a long time period.

A. Related Work
To analyse a large number of genotypes in a high-throughput

manner animals have to be monitored for a long time period.
Jhuang et al. [12] have suggested an approach for moni-
toring freely moving mice. Here an algorithm was trained
with manually annotated image examples of behaviours of
interest of home-caged mice. This trained system was then
used to automatically annotate behaviours of interest in new
recordings containing hours of material for one freely moving
mouse in a cage. Ohayon et al. [13] have proposed a method
for automated multi-day tracking of freely moving mice. Each
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mouse was marked by a unique fur pattern using hair bleach
and an image classifier was trained based on samples of the
unique patterns of each mouse. Weissbrod et al. [14] have
presented another automated long-term tracking and social
behaviour analysis system. By combining video and radio
frequency techniques (RFID) the system is able to obtain be-
havioural profiles of both individuals and groups. In practice,
mice with two implanted RFID microchips were placed in a
testing enclosure which was equipped with a custom-made
array of circular RFID receivers horizontally placed beneath
the arena floor. Additionally the position of the animals was
recorded by a video camera.

Simonetta et al. [15] have proposed a new method for long-
term recordings of Caenorhabditis elegans based on infrared
microbeam scattering. The measurement technique utilizes an
infrared light source which is mounted beneath the tracking
stage. The light crosses a plate with an array of 100µm wide
micro holes before it can pass through the worm culture
receptacle and finally gets measured by a phototransistor. Yu et
al. [16] have described a new automated monitoring technique
for multiple worms of any development stage for several days.
In practice, an array of plano-concave glass wells containing
one worm (or a pair for mating experiments) was illuminated
using dark field illumination and recording was done by a
camera mounted on top of the array.

Besides the aforementioned model organisms, Drosophila
is widely used. Several automated activity monitoring and
locomotion analysis studies are related to Drosophila flies.
Among all setups, the commercially available TriKinetics [23]
system is one of the most popular. . Here a single fly is placed
in a closed glass tube with food and air supply. Each tube
is crossed by up to 16 infrared light beams and a detector
records how often the fly interrupts one of the beams in a
user defined time period by walking through it. Gilestro [21]
has suggested an improvement of the aforementioned setup
for analysing sleep behaviour in Drosophila melanogaster.
Instead of using separate infrared emitter-detector pairs, a
commercially available video camera was used to video-record
multiple arenas of different shapes enclosing one fly for days.
Dankert et al. [18] have introduced a method for automatically
measuring aggression and courtship. They have used a setup
with up to 4 double arenas, where one pair of flies was
enclosed per arena. Inan et al. [20] have introduced a setup to
image Drosophila flies in a petri dish which was illuminated
from below by a uniform light source. A miniature, low-cost
CMOS video camera was used to obtain a video stream which
was further processed to extract the average light changes.

All of the previously mentioned methods and setups have
several drawbacks when it comes to monitoring Drosophila
larvae in habitats such as cylindrical culture vials, since
it is not possible to use bleaching or RFID. Furthermore,
monitoring only one or two larvae in one enclosure is not
desirable if community behaviour is of interest.

Recently we have introduced an imaging technique for
small animals, called FIM (FTIR-based Imaging Method) [24].
This technique utilizes frustrated total internal reflection
(FTIR) to measure the contact surface of the animals on the
substrate. The acquired images have an unsurpassed fore-

ground/background contrast. In subsequent studies we have
shown that FIM in combination with the associated software
FIMTrack is suitable for a wide range of biological applica-
tions as well as a wide range of organisms [24]–[29].

Here, we propose an evolution of our previous work by ex-
tending our FIM setup into an automatic FIM-based long-term
monitoring system to minimize the aforementioned influences
and to speed up the experiments. An overview of our setup is
sketched in Fig. 1. Additionally Fig. 2b and Fig. 2c give an
impression of the current design. The utilization of the FTIR
effect in combination with micro-cameras and microcomputers
allows the experimenter to monitor third instar larvae in
culture vials over several hours up to days without disturbing
them. Furthermore, the time-consuming task of preparing each
individual run of the experiment is reduced to a minimum.
Our system is easy to use and since no specialized hardware
is employed, the system is inexpensive and scalable.

B. Organization

This paper is structured as follows. Section II gives a brief
overview of the components of the setup. In Section II-A the
hardware design in combination with the physical principle
of the FTIR effect is described whereas Section II-B provides
a more detailed overview of the software components. The
necessary algorithmic steps are described in Section III. Par-
ticularly the unfolding process of the images and the stitching
step are explained in Section III-B and Section III-C in
detail. The quality of the unfolding algorithm (Section IV-A),
the performance (Section IV-B), the contrast and the overall
image quality (Section IV-C), and first monitoring results
(Section IV-E) are examined in the next section. A discussion
and a final conclusion are given in Section V and Section VI.

II. SYSTEM OVERVIEW

A. Hardware

Usually animals like Drosophila larvae are reared in so-
called culture vials which normally have a cylindrical shape.
The material of such vials varies from plastic over acrylic glass
to glass. We use custom vials made out of borosilicate glass.
In [24], [27] it was shown that those materials are suitable
for the frustrated total internal reflection (FTIR) effect. Here
we will provide a short summary of the physical principles
facilitating this effect (Fig. 2a).

Given the approximated refractive indices of air n
air

⇡
1.00 and borosilicate glass n

glass

⇡ 1.52 [30] the critical
angle at the glass/air boundary according to Snell’s law is
given by ⇥ = arcsin

⇣
n

air

n

glass

⌘
= arcsin

�
1.00
1.52

�
⇡ 41.14�. All

infrared (IR) light rays with angles of incidence above ⇥ are
completely reflected at the glass/air boundary since n

glass

>
n
air

, which facilitates the total internal reflection effect. In our
setup the light rays are directed into the borosilicate glass at the
cylinder’s bottom edge. When a larva is touching the vial wall,
the IR light can enter the semi-translucent animal body and
gets scattered by larva’s tissue. Among others, the scattering
process produces light rays with angles of incidence below
the critical angle ⇥. These rays of light are not completely
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Fig. 2. Proposed setup. (a) Sketch of the frustrated total internal reflection effect in a culture vial. (b) Top view of the current prototype with 5 cameras, vial
mounting and the vial. The food bowl and the inner cylinder are indicated. IR-LEDs are placed in the vial mounting in order to direct the light into the glass
vial from underneath. (c) All electronic components are placed underneath. For details see text.
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Fig. 3. Challenges in our hardware setup: (a) Sketch of the ghost problem. The larva facing camera A is clearly visible in the associated image. Since IR
light can pass through the larval body, the larva is also visible in cameras B and C. This signal is usually less bright than the scattered light. (b) Real life
example of the ghosts. The ghosts of the larvae marked by red and yellow circles on the left side are marked with the same colours on the right side. (c)
Glowing food: Since the food (red area) is touching the vial wall it induces the FTIR effect. Thus, IR light gets scattered and illuminates the vial from inside.

reflected any more. They are frustrated and can pass through
the glass leading to the FTIR effect. This light is captured by
surrounding cameras. Therefore the captured images show a
hight contrast since only light scattered by larvae is visible.

To induce the FTIR effect 12 IR LEDs (Osram Components
SFH 4350) with a dominant wavelength of 860nm are mounted
at the bottom of the vial and connected to a custom-made
circuit board. To precisely adjust the intensity of the LEDs ad-
ditionally an Arduino Uno microcontroller (MC) is connected
to the circuit in combination with a control knob allowing
to adjust the intensity of the IR LEDs without plugging the
MC into a computer. The experimenter can easily turn the
LEDs on and off as well as control their intensity between 0%
and 100%. The MC translates the chosen intensity by setting
the pulse-width modulation (PWM) to a value in the range
of [0, 255], where 0 means no power and 255 indicates the
maximum power the LEDs are able to provide.

To monitor the whole cylindrical surface of a vial a multi-
camera setup is used. For a modular and flexible setup, each
of the cameras (Raspberry Pi HD NoIR v1.3 with 5MP) is
connected to a standalone microcomputer (Raspberry Pi B+
with a Broadcom BCM2835 700MHz ARM11 CPU, 512 MB
SDRAM, and a 10/100 Mbit/s Ethernet connection) and is
mounted on a guide rail approximately 17cm away from the
centre of the vial mounting. Furthermore, the cameras and
microcomputers act as autonomous devices. Based on this
design, it is possible to replace and configure each camera and
microcomputer separately. The cameras and microcomputers

are connected to a central server (Dell Optiplex 9020 with an
Intel Core i7-4790 3.60GHz CPU, 16 GB DDR3-1600 RAM)
in a client-server-architecture using an 8-Port Gigabit Switch
(TEG-S80g).

Since the animals are semi translucent the IR light can
partially pass through the animals’ body and since a multi-
camera setup is used where the cameras are placed around
the vial, the IR light transmitted through the larval body is
captured by cameras which are imaging the dorsal part of the
larvae. This signal leads to so-called ghosts: A single larva
is visible multiple times resulting in an increased number
of recorded animals in the tracking area. This is sketched
in Fig. 3a and a real life example is given in Fig. 3b. To
remove the ghosts we physically avoid the signal from all
larvae not facing the camera ventrally by inserting an inner
cylinder which is made of an opaque material as a light barrier
(Fig. 2b, results can be found in Section IV-D). Furthermore,
food for the larvae is usually directly contained within the
culture vials. However, this causes another challenge: if the
food is touching the vial wall, the FTIR effect occurs at the
glass/food boundary. Thus, the IR light gets scattered and
illuminates the inner part of the cylinder leading to a decrease
of the foreground/background contrast (Fig. 3c). To prohibit
this effect we have designed a food bowl made of an opaque
materiel (Fig. 2b) which is mounted underneath the inner
cylinder in order to uncouple the food and the IR light.

In theory, all vials with adequate optical properties can
be used since our unfolding approach is not relying on any
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specific vial diameter (see Section III). However, the diameter
of the food bowl must be adjusted accordingly to be inserted
into the cylinder. To optimize the fly handling protocol we
utilized a custom-made vial which is open on both sides. This
allows for an easy removal of the flies after oviposition so that
the food bowl contains the eggs (Fig. 1b). The inner cylinder
is inserted from the top and the vial can be mounted as shown
in Fig. 2b.

B. Runtime Environment
Both the client and the server are implemented in C++

utilizing the OpenCV library (v2.4). To be able to access the
camera connected to the Raspberry Pi directly on the hardware
level the Multi-Media Abstraction Layer API provided by
Broadcom Europe Ltd. and redistributed by the Raspberry
Pi (Trading) Ltd. is used [31]. Moreover, the server employs
the Qt (v5.5) framework for the graphical user interface. For
communication purposes between the clients and the server
we use a custom-tailored network protocol which allows the
experimenter to adjust all relevant camera parameters as well
as to start or stop the image acquisition and transmission
process directly from the server as a central node. Additionally,
camera synchronization is implemented on the software level
using the aforementioned network communication protocol.

Through utilization of the FTIR effect the produced im-
ages have bright objects as foreground and an almost black
background. Therefore a grey level image will be sufficient to
encode all relevant informations. To reduce computation time
on the clients and to speed up the transmission process from
the clients to the central server we capture the images in the
YUV format and discard the U and V components to get a one-
channel grey level image, since the Y component is sufficient
for describing the brightness of the image.

III. METHODS

The curved geometry of the cylindrical culture vial causes
perspective distortions in the images. In order to provide an
accurate analysis of small animals like Drosophila larvae, an
exact unfolding of the vial surface is crucial prior to further
analysis. Additionally, due to the use of a multi-camera setup,
a stitching of the individual images from each camera is
desirable to provide an overall view of the surface. The process
results in three main steps, namely keypoint detection and
sorting, unfolding of a cylindrical surface and image stitching.
It should be noted, that these steps have to be done only
once. After performing these steps the experimenter is able
to remove the calibration pattern and to insert the food bowl
together with the inner cylinder without moving the vial.

A. Keypoint Detection and Sorting
To precisely image and analyse animals in a cylindrical

vial the first step is to establish correspondences between the
three dimensional geometry of the cylinder and the camera
images. Therefore, keypoint detection is performed by using
a checkerboard pattern (Fig. 4) in combination with a corner
detector. Since the vial wall has a certain thickness we place

Fig. 4. Checkerboard pattern for keypoint detection and stitching. The circles
on the pattern are important to provide a unique pattern for the image stitching
step in Section III-C.

the checkerboard pattern on the inner side of the vial in order
to consider the same surface the larvae will crawl on and thus
to achieve a higher accuracy.

Currently the checkerboard corner detector implemented in
OpenCV is used. Additionally, the user has the possibility to
remove false or to add missing keypoint detections.

To be able to establish correspondences between the key-
points in the images and the markers on the cylinder it is
necessary to ensure a specific order of these keypoints. Given
a set of keypoints K on the image plane (Fig. 5a), we first
identify the four outer corners k1, . . . , k4 by utilizing the fact
that for every other point k 2 K it is possible to find neighbour
points `1, `2 2 K where \`1k`2 ⇡ 180

�. Thus, for every
detected keypoint k we search for points `1, `2 such that

|\`1k`2 � 180

�| < t
↵

(1)

where `1, `2, k have to be pairwise different. The value t
↵

is a threshold defining the maximum turning angle between
the line segments `1k and k`2 so that the points `1, k, `2
are interpreted as approximately lying on a straight line. A
keypoint k is one of the four outer corner points if no points
`1, `2 satisfying (1) can be found.

At the end of this step we arrange the four outer corners
k1, . . . , k4 in a clockwise order around their geometric mid-
point given by k1+k2+k3+k4

4 . The final order of the four outer
corners is illustrated in Fig. 5a.

Next, we compute two sets of keypoints A,B ⇢ K. The
set A contains all keypoints lying approximately on the line
connecting k1 and k4 including k1 and k4 and B contains all
keypoints lying approximately on the line connecting k2 and
k3 including k2 and k3, respectively. Keypoints in A and B
are sorted according to the y-coordinate. Fig. 5b illustrates the
first sorting step.

Afterwards all previous mentioned steps including finding
the outer four corners k1, . . . , k4 are performed on the set
K\{A [ B} recursively as long as there are at least two
keypoint columns left. Otherwise the remaining keypoints are
sorted according to the y-coordinate without searching for
the four outer corners k1, . . . , k4. Once the recursion ends all
sorted keypoint subsets are merged.

B. Unfolding of Cylindrical Surface
Several algorithms deal with the subject of unfolding a

cylindrical surface [32], [33]. Since our setup is compact,
static, and it is possible to use a calibration pattern easily
we introduce a more suitable and simplified method.
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(a) (b) (c)

Fig. 5. Illustration of the keypoint sorting algorithm. The unfolding process is
constrained to a more central area since the distortion gets worse at the visible
edges of the vial. (a) Unsorted detected keypoints. The four outer corner points
k1, . . . k4 are marked. (b) Keypoint indices after performing the first sorting
step. The sets A,B are marked by keypoint identifier written in green. (c) Last
step of the sorting algorithm. The identifiers of sorted keypoints are written
in green and keypoints already sorted in previous steps are faded out.

A right circular cylinder surface M ⇢ R3 with radius r and
height h located at the origin can be parametrized by

M = {(r · cos(�), r · sin(�), z) | � 2 [0, 2⇡], z 2 [0, h]} (2)

Using a rotation matrix A 2 SO (3) and a translation vector
b 2 R3 a point on any arbitrary right circular cylinder surface
can be expressed by

Ap+ b, p 2 M (3)

If the parameters A, b and the focal length of the camera f
are known, the projection q = (x, y, 0) of the point Ap + b
can be obtained by solving the equation

q = c+ t · (Ap+ b� c) (4)

where c = (0, 0,�f) is the camera centre (Fig. 6). A priori
the parameters A, b and f are unknown. However, (4) can be
rewritten as

x = 0 + t(a11r cos(�) + a12r sin(�) + a13z + b1 � 0)

y = 0 + t(a21r cos(�) + a22r sin(�) + a23z + b2 � 0)

0 = �f + t(a31r cos(�) + a32r sin(�) + a33z + b3 + f)

) 0 = fa11r cos(�) + fa12r sin(�) + fa13z + fb1

� a31r cos(�)x� a32r sin(�)x� a33zx� b3x� fx

^ 0 = fa21r cos(�) + fa22r sin(�) + fa23z + fb2

� a31r cos(�)y � a32r sin(�)y � a33zy � b3y � fy

)
⇣

↵ � z 0 0 0 �↵x ��x �zx 1 0 �x �x

0 0 0 ↵ � z �↵y ��y �zy 0 1 �y �y

⌘

| {z }
=:D

x,y,r,�,z

·v = 0

where v = (fa11, fa12, fa13, fa21, fa22, fa23, a31, a32, a33,
fb1, fb2, b3, f)

t and ↵ := r cos(�), � := r sin(�).
Since the geometry of the used cylinder and the checker-

board is known, the angle between two horizontally adjacent
corners is given by

2⇡ · sc
U

=

s
c

r

where U = 2⇡r is the perimeter of the cylinder and s
c

is
the real word square size of the used checkerboard pattern
(Fig. 6). Based on this knowledge it is possible to compute the
associated point in cylindrical coordinates for every detected
and sorted keypoint as depicted in Fig. 7. Without loss of
generality the two dimensional surface coordinate system of
the cylinder image can be placed at the corner k 2 K which is
the lowest and leftmost detected corner. Thus, for every point

Fig. 6. Projection of a point Ap+ b on a cylinder onto the image plane in a
standard pinhole camera model. Additionally, the properties of the coordinate
system defined by the square size s

c

of the checkerboard and radius r of the
cylinder are depicted.

(a) (b)

Fig. 7. Corresponding point computation based on a detected 4 ⇥ 5
checkerboard pattern. (a) The lowest left detected corner k 2 K is marked by
yellow. (b) For the point k

i

marked by blue we get n
i,c

= 2 and n
i,r

= 3.

k
i

2 K the corresponding point p
i

in cylindrical coordinates
is given by

p
i

=

⇣
r cos

⇣
n
i,c

· sc
r

⌘
, r sin

⇣
n
i,c

· sc
r

⌘
, n

i,r

· s
c

⌘

where p
i

2 M, n
i,c

is the number of detected keypoint
columns between k and k

i

, and n
i,r

is the number of detected
keypoint rows between k and k

i

, respectively.
Given at least 7 point correspondences such that point Ap

i

+

b, p
i

2 M on the cylindrical surface corresponds to point k
i

on
the image plane the following set of equations can be obtained

0

B@
D

x1,y1,r,�1,z1

D
x2,y2,r,�2,z2

...

1

CA · v =: Dv = 0

To get a least squares solution Singular Value Decomposi-
tion [34] on the normal equation DtDv = 0 can be used.

It should be noted that the least squares solution is obtained
without the constraint ATA = I and thus the resulting matrix
A is not necessarily in SO (3). However, the accuracy of the
algorithm is still sufficient (see Section IV-A).

In the next step we generate an arbitrarily sized rectangular
(�, h)-image I as depicted in Fig. 8 which is defined by both
the square size s in pixels and the size of the detected checker-
board pattern. For every point in I we are able to compute the
associated point on the cylindrical surface based on (2) and
(3). By applying (4) we can obtain the projection point q on
the image received from the camera. By bilinear interpolating
the position of q, the grey value of the corresponding point on
I is obtained. Fig. 8 illustrates the whole procedure.
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(a) (b) (c)

Fig. 8. Unfolding of a cylindrical surface. (a) Point coordinates (�, z) on
the (�, h)-image I during construction of the unfolded image. (b) The three
dimensional coordinate of the associated point on the cylindrical surface can
be computed utilizing (2) and (3) in combination with the known parameters
A and b. (c) Obtained image point q after projection of Ap+ b based on (4)
and interpolation.

Since the cameras and the cylinder are static and to decrease
the computation time of the unfolding step for each frame on
the clients a Lookup Table is used. This table has the same
size as I and contains for each point (�, z) 2 I the associated
projected point q.

C. Image Stitching
In contrast to image stitching algorithms for generating

a panoramic view, in our setup we compute a horizontal
and/or vertical offset and place the individual images from
each camera side-by-side in a specific order. For computing
the offsets we use the pattern given in Fig. 4. The different
distances of the circles lying on the same vertical line allow
an exact identification of the location of a single view with
respect to the overall pattern.

In a given unfolded subview we first search for circles
using Hough Transformation. By looking at the leftmost
two vertically aligned circle midpoints c1 = (x, y1) and
c2 = (x, y2) where y1 < y2 and by knowing the square size
s the relative positions of these midpoints in the subpattern
in square coordinates are given by c̃1 =

�
bx

s

c, by1

s

c
�

and
c̃2 =

�
bx

s

c, by2

s

c
�
, as depicted in Fig. 9. Additionally the

vertical distance in squares between these midpoints is given
by d

�
c̃1, c̃2

�
= c̃2

y

� c̃1
y

. Utilizing the fact that circle midpoints
with a distance of 4 are located at the first (i.e. the 0th) column
and that each additional circle midpoint pair has an offset of 3
squares to its predecessor in x-direction, the absolute column
of the view in relation to the whole checkerboard is given by
c
abs

=

�
d
�
c̃1, c̃2

�
� 4

�
· 3.

Next, we establish the absolute position of the subview
by computing the upper left and the bottom right square
index according to the global pattern. Since the base row
with the alternating black and white circle sequence of the
used checkerboard pattern is 13, the upper left square position
can be estimated by pul =

�
c
abs

� c̃2
x

, 13� c̃2
y

�
. Furthermore,

given the dimensions of the detected checkerboard in the
subview by n

x

and n
y

, we compute the bottom right square in
absolute coordinates by pbr =

�
pul
x

+ n
x

, pul
y

+ n
y

�
. Since the

positions of the cameras as well as of the cylinder are fixed
this procedure has to be done only once.
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Fig. 9. Position estimation of the red marked unfolded subview with a
dimension of n

x

= 4 and n
y

= 15. The absolute coordinates regarding
the checkerboard pattern given in Fig. 4 are written in black. The relative
coordinates are given in orange.

After the positions of the unfolded subviews are known, we
combine the overlapping regions by using alpha-blending.

IV. RESULTS

To demonstrate the quality and reliability of the proposed
setup four aspects have been evaluated. First, we have exam-
ined the results of the cylindrical unfolding. This section is
followed by an analysis of the performance of the system.
In a third step we examined the image quality of in-vial FIM
imaging. Finally we demonstrate the applicability of our setup
for both, long term activity monitoring as well as posture and
locomotion analysis.

A. Unfolding
To evaluate the performance of the unfolding algorithm we

have used 8 test images of a cylindrical vial with an inner
radius of 22.63cm, a height of 11.2cm and a wall thickness of
2.4mm in different orientations with a checkerboard placed at
the inner side of the vial. It should be noted that this system
is not limited to this radius or height. The unfolding routine
explained in Section III can be applied to arbitrary cylinder
dimensions.

Since the same unfolding algorithm will run on each mi-
crocomputer simultaneously and since all 5 cameras are equal
in terms of assemblage, we have used a randomly chosen
one for this analysis. The testing images have a resolution
of 992⇥ 1296 pixels and each of them is depicted in Fig. 10.

To evaluate the accuracy of the algorithm described in
Section III-A and Section III-B we have used the re-projection
error as an error metric. By knowing the parameters A, b, and
f , the projected point q

i

of a point p
i

2 M on the image plane
is given according to (4). Additionally, the associated detected
keypoint k

i

2 K as well as the interpolated point q̂
i

are known.
The re-projection error is thus given by e = d (k

i

, q̂
i

), where
d (k

i

, q̂
i

) denotes the Euclidean distance between the image
points k

i

and q̂
i

. Furthermore, the mean re-projection error
for all detected keypoints is given by

 
X

k

i

2K
d (k

i

, q̂
i

)

!
/ |K| (5)

where |K| denotes the number of corners present in K.
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Fig. 10. (a-h) Images used for evaluation of the unfolding algorithm. The
number of the images corresponds to the numbers used in Table I.

Each test was repeated 10 times. Table I summarizes the
results where the mean error calculated by (5) of the 10 trials
is shown. It can be seen that the mean error is always below
1 pixel. Compared to the approximate larva length of at least
15 pixels this accuracy is sufficient for our purpose.

TABLE I
MEAN NORMALIZED RE-PROJECTION ERROR OF THE TEST IMAGES.

Image Mean Re-Projection Error (in px)
1 0.5285
2 0.5700
3 0.5713
4 0.5395
5 0.6532
6 0.8781
7 0.5432
8 0.6027

B. Performance
The stitching process can be performed quickly on the cen-

tral server since all relevant parameters have to be calculated
only once. Thus, this step is not the crucial part regarding
the overall performance. To evaluate the performance of the
system we measured the processing time for one transmission,
i.e. we quantified the time of the following pipeline: First the
server requests the unfolded images from all 5 clients. The
clients then have to obtain new camera images in a certain
resolution and subsequently perform the unfolding algorithm.
Afterwards, the data is sent to the server. Once the server
receives the data from all 5 clients, the transmission process
is finished.

We have tested 6 different image resolutions, namely 544⇥
960, 768 ⇥ 1024, 992 ⇥ 1296, 1088 ⇥ 1920, 1920 ⇥ 1904,
and 2592 ⇥ 1936 in combination with 5 different square
sizes s 2 {20, 40, 60, 80, 100}, where s describes the size in
pixels of a square edge in the unfolded image. The unfolded
images had a size of 6s⇥16s. Each transmission process was
repeated 5000 times with a shutter speed of 100ms and the
mean processing time as well as the standard deviation were
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Fig. 11. Mean transmission processing time.

calculated. The results are summarized in Fig. 11 and clearly
show that the transmission time strongly depends on both the
image resolution and the square size. However, these factors
have different influences. Looking at the values for s = 20 it
can be seen that the resolution is not the dominant factor since
the transmission time for the resolutions 544⇥960, 768⇥1024,
992⇥1296, and 1088⇥1920 is almost the same (approximately
220ms). Here the unfolding and the transmission through the
network is the time-consuming part. For s = 40 and s = 60 the
transmission time looks like expected. For a lower resolution
and a lower s the process takes less time. Given a square size
of s = 80 a similar observation can be made in comparison to a
square size of s = 20. The processing time for the resolutions
544 ⇥ 960, 768 ⇥ 1024, and 992 ⇥ 1296 of approximately
500ms shows again that at this point the unfolding step is the
elaborate part of the transmission process which prohibits a
better performance of the system.

For our purpose a resolution of 992 ⇥ 1296 and a square
size in the range of 30-40 represents an adequate trade-off
between the accuracy and the performance of the system since
a temporal resolution between 2 and 3 frames per second (fps)
is sufficient for our purpose due to relatively slow movement
of the larvae, even when computing higher level features such
as body bending or area (see Section IV-E).

C. Contrast
A detailed comparison between images produced by the

FIM system and images acquired by conventional imaging
techniques has been given in [24]. Here we focused our
analysis primarily on the contrast of the images produced by
our setup. Fig. 12 provides an example of a Drosophila larva
recorded with PWM values of 20, 100 and 200.

In grey-level images the contrast is the difference in lumi-
nance which makes objects distinguishable. The common defi-
nitions of contrast are based on ratios like luminance difference

average luminance [35].
To measure the contrast we use grey-level histogram based
variance analysis. In particular, Otsu’s thresholding [36] is
used since its terminology and parameters are well-established.
Assuming bimodal grey-level distribution, the foreground and
background can be assumed as two distinguishable Gaussian
distributions with their maxima representing the mean fore-
ground and background intensity. Since Otsu’s method leads to
the optimal threshold k in a bimodal distribution, this threshold
can be used to separate the histograms as well as the associated
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Fig. 12. Single larva captured with three different PWM values
(20, 100, 200). The histograms below are the logarithmic grey value dis-
tributions of the associated images.
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Fig. 13. Images recorded with PWM values of 100 (a) and 200 (b). The
distributions of the background and the foreground are given in the associated
histograms. Additionally, the binary images obtained by applying Otsu’s
thresholding are shown.

images in foreground and background regions. Furthermore,
according to Otsu a measurement of separability is given by

⌘ =

�2
B

�2
W

+ �2
B

where �2
W

and �2
B

are the within-class variance and the
between-class variance, respectively. Fig. 13 shows two ex-
emplary images recorded with PWM values of 100 and 200

as well as the histograms and the final segmentation using
Otsu’s thresholding.

The fact that the area of the inner vial surface is much
higher than the total area covered by all visible larvae leads
to an unequal foreground/background pixel distribution. Since
a large, almost uniform, background is present, the average
luminance is approximately equal to the background lumi-
nance. In such cases the Weber contrast is commonly used
as a contrast quality measurement. The Weber contrast is part
of the Weber-Fechner law and is given for grey-level images
by

W
c

=

µ1 � µ0

µ0

where µ0 and µ1 are the mean luminances of the background
and foreground.

To analyse the quality of the images and to explore the
optimal PWM value range we acquired 5 images for each
PWM value in the set of {10, 20, 30, 40, . . . 240, 250}. The
results for the 5 images of each PWM value were averaged to
reduce the impact of image noise.

The curve depicted in Fig. 14a shows the relation between
the PWM value and the optimal segmentation threshold k
calculated by Otsu’s algorithm. The slope of the curve is
always positive and the changing rate of k is nearly a linear
function of the PWM value which indicates that a good
segmentation can be performed in a wide PWM range. This
statement is supported by looking at Otsu’s measurement of
separability ⌘. According to Otsu, ⌘ reaches its maximum
at the minimal within-class variance. Thus this measurement
can be used to find the optimal threshold and the optimal
PWM value by plotting ⌘ against the PWM value. As illus-
trated in Fig. 14b the maximum value for ⌘ is reached at
PWM = 110 with ⌘ (110) = 0.763. However, in the range
of 70-200 the values for ⌘ differ from each other by maximum
�⌘ = 0.025. Similarly, the optimal Weber contrast is reached
at PWM = 80 with W

c

(80) = 14.955 (Fig. 14c). Again
the difference between all values of W

c

in a range of 50-
170 has a maximum of �W

c

= 1.389. If the PWM values
for the maxima of ⌘ and W

c

are exchanged the resulting
measurements of ⌘ (80) = 0.749 and W

c

(110) = 14.464 are
still close to the respective maxima.

The results summarized in Fig. 14 suggest that a good
segmentation of the foreground objects is possible. The best
segmentation results are achieved with a PWM value range
between 80 and 110 showing that our setup is not restricted
to a specific parameter set but rather will produce adequate
segmentation results without precise luminance adjustment.

Due to the fact that the used cylindrical vial is open on
both sites (i.e. at the top and bottom), it is impossible to
prevent a small amount of IR light from entering the inner part
of the cylinder. This fact leads to a slightly inhomogeneous
distribution of the background pixel values with growing
PWM values and poses the question if high PWM values
cause erroneous segmentation artefacts as such artefacts would
increase the background class occurrence !0. By comparing all
occurrences for the correctly segmented images (with the same
number of larvae) and the given PWM values we quantify the
maximum increase of noise in this distribution by

n
inc

= max

p2{10,20,...,250}
!0 (p)� min

p2{10,20,...,250}
!0 (p)

Since n
inc

= 0.05809, the range of pixels identified as
background pixels is almost the same for all PWM values, our
measurement technique is stable against IR light illumination
changes.

D. Ghosts and Glowing Food
It was already mentioned in Section II that we were able to

overcome the ghost and the glowing food problem by inserting
an opaque inner cylinder in combination with an opaque food
bowl. In Fig. 15 a three-dimensional representation of the
cylindrical vial surface is given. It can be seen that there is
almost no infrared light illuminating the inner part of the vial.
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Fig. 14. PWM study and contrast analysis. (a) Otsu’s threshold k plotted against PWM. (b) Separability measurement ⌘ plotted against PWM. (c) Weber
contrast W

c

plotted against PWM.

Fig. 15. Three-dimensional representation of the cylindrical vial surface. By
inserting an opaque inner cylinder in combination with an opaque food bowl
we were able to overcome the ghost and the glowing food problem.

Furthermore, the larvae marked red are not visible in the area
marked blue and vice versa.

E. Locomotion Analysis
To evaluate the stability of our system and to demonstrate

its abilities for long-term monitoring, we performed a long
time test by capturing Drosophila melanogaster larvae 5 days
after egg laying in a vial with an inner radius of 22.63cm, a
height of 11.2cm, and a wall thickness of 2.4mm for 135 hours
without interruption. During the recording the PWM value was
set to 100 and according to the datasheet of the used LEDs
this results in a radiant intensity of approximately 400

mW

sr

.
To reduce the amount of data and to save storage space the

capturing was done with 2 frames per second and both the
stitched frames as well as the frames from each camera were
stored in compressed PNG file format. Furthermore, images
acquired by the cameras had a raw resolution of 992 ⇥ 1296

pixels. The square size s for unfolding was set to 30, resulting
in an overall stitched image size of 840⇥ 480 pixels. In total,
560GB of data were acquired and saved for the subsequent
evaluation.

Fig. 16 illustrates the first unfolded and stitched view of the
vial where almost all larvae are located in the food at the food
bowl. Additionally, images taken after 15, 39, 63, 87 and 111

hours are depicted in the same Figure showing the distribution
of the animals in the vial.

In the subsequent analysis the main challenge appears to
be the elaboration of an adequate background model, since
the dirt, the standard food, and the excretions of the larvae
accumulate more and more on the tracking surface. Each of

t=0
(a)

t=15
(b)

t=39
(c)

t=63
(d)

t=87
(e)

t=111
(f)

Fig. 16. (a-f) Unfolded and stitched raw images. The timestamps indicate the
hour the images were taken at. The image at t = 0 is the first taken image.

these artefacts induces the FTIR effect and as in any other
optical imaging technique becomes apparent in the images.
Additionally, these artefacts are not necessarily static since
they can stick to larvae and can then be transferred to another
position on the tracking surface very quickly (i.e. within a
few frames). Furthermore, an increasing number of larvae start
pupation over time, resulting in immoveable, static objects,
which also induce the FTIR effect. Fig. 16 provides an
impression of these problems and the development of the
background over time. Modelling such a dynamic background
where artefacts can have approximately the same size and even
appearance as larvae is a challenging task.

To demonstrate the basic technical suitability of the pro-
posed setup and to show the overall possibility to obtain
meaningful readout, we excluded the background modelling
problem by limiting the analysis to the first 15 hours. In
total, we have analysed 107, 671 frames using FIMTrack [26]
without any major adjustments for segmentation and tracking
of the larvae. Currently, FIMTrack is not able to handle
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Fig. 17. (a) Body bending of a larva. The arrows correspond to the time
points in the images in (c). (b) The complete track of the larva. (c) Images
of the larva corresponding to the time points marked in (a).

touching animals. Thus, these animals were excluded auto-
matically from tracking and the associated trajectories were
terminated at the time step at which the animals came in
contact. Furthermore, we have discarded trajectories which
are shorter than 30 seconds (i.e. 60 frames) resulting in
8, 650 remaining trajectories. Overall, we acquired more than
4.2 ⇥ 10

6 measurements. As mentioned above, this huge
amount of data was acquired implicitly without both disturbing
the animals and additional labour time.

As a first readout, we analysed the possibilities of FIMTrack
to calculate posture and motion parameters like the body
bending angle � [26] or the area as an indirect peristalsis
quantification parameter [24].

In Fig. 17a the body bending of a larva’s trajectory given in
Fig. 17b is plotted over time. A body bending to the left side
is indicated by a positive value of � (yellow area in Fig. 17a)
and a bending to the right side is indicated by a negative value
of � (red area in Fig. 17a). The images of a single larva in
Fig. 17c correspond to the time points marked by arrows in the
body bending graph (Fig. 17a). In Fig. 17b it can be noted that
utilizing FIMTrack for analysing images produced by the setup
it is possible to obtain meaningful and analysable trajectories.
Furthermore, FIMTrack is able to quantify the body bending
of a larva. The quality of the images is still sufficient to detect
even subtle body bending situations of a larva (see value and
still image for time point 261 in Fig. 17a and Fig. 17c).

Moreover, the detected contour of a larva defines the area
covered by the animal’s body. During the peristaltic contrac-
tion movement, a change of the area is expected [37]. Fig. 18a
illustrates the area of a larva’s trajectory depicted in Fig. 18b.
By analysing the changing rate of the area covered by the
larval body it is possible to compute the contraction frequency
of the animal.
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Fig. 18. (a) Area covered by the contour of a larva changes during the
peristaltic contraction movement. (b) The associated trajectory of the larva.

(a) (b)

Fig. 19. Stitching artefacts: (a) unfolded and stitched checkerboard. (b) The
artefact of a larva caused during the stitching process is marked by an arrow.

V. DISCUSSION

Imaging larvae in culture vials using several cameras and
frustrated total internal reflection entails several challenges.
We have already addressed and solved some of these. The
ghost problem was resolved by inserting an inner opaque
cylinder, effectively blocking scattered light from larvae at the
opposite vial wall. Similarly, the glowing food was removed
by disjoining the food and vial wall using a opaque food bowl.

One challenge occurs during the stitching process. In gen-
eral, the calibration is done in relation to the inner surface of
the cylinder described by the placement of the checkerboard.
To facilitate a good stitching and blending, we assume that
the position of the objects is the same in the overlapping area
of both cameras, which is true given this surface (Fig. 19a).
However, in some cases this assumption cannot be maintained.
If a larva or a part of it moves too far away from the calibration
surface, e.g. when the larva lifts its head or tail, the posture
of this larva is imaged at two slightly different positions.
Furthermore, this effect is aggravated by refraction effects.
Since alpha blending is used, this may result in situations such
as the one depicted in Fig. 19b where the artefact of a larva
caused during the stitching process is marked by an arrow. It
should be noted that the image of a larva is only influenced by
this effect in a narrow area around the vertical stitching line.
By modelling the refraction using a method similar to the
one described in [38] and by applying a more sophisticated
calibration and blending algorithm, this effect could potentially
be decreased to a minimum.

The main challenge is caused by the accumulation of dirt
during long measurements: Larvae leaving the food bowl
slowly accumulate food and other artefacts at the vial surface.
These artefacts also scatter IR light, making them detectable
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in the images which aggravates a robust segmentation. Taking
into account that the artefacts are mostly immoveable, this
issue could be resolved by learning the background over
time using a modified Gaussian mixture model approach [39].
Besides the accumulation of background artefacts the maximal
monitoring time is also limited by the available disk space of
the server. Given a well-defined behavioural readout online
processing of the images would however strongly reduce
the required memory load and could easily be incorporated
due to the client server architecture of this system. Finally,
the total amount of monitoring time has to be specified
based on the specific experiment. Considering an analysis of
wandering stage larvae a monitoring time of 24 hours might
be sufficient. If differences in the initiation of the wandering
stage or different hatching times need to be elucidated, longer
monitoring periods are necessary.

Although using our setup it is possible to perform long-
term monitoring of third instar Drosophila larvae without
disturbing the animals while reducing the necessary effort of
the experimenter to a minimum, currently it is not possible to
perform stimulus-based behaviour analysis. However, a heat
gradient could be integrated into the inner cylinder. Further-
more, since low-cost cameras are used the spatial resolution is
not sufficient if very precise quantifications are necessary. This
issue can be addressed by using more sophisticated but more
expensive cameras which are used in systems like MAGAT [4]
or FIM [24] in combination with more powerful hardware.

Nevertheless, in-vial tracking facilitates several novel stud-
ies. For example, this system represents a well-suited setup to
analyse the molecular regulation of circadian rhythmicity. Sev-
eral mutants of genes regulating the adult circadian rhythmic
are known [40]. For the gene timeless (tim), which is expressed
from embryonic stages [40], different alleles are known to
increase cycle frequency or to decrease it [41]. However, to
our knowledge these studies so far have not been extended to
the larval stage. Our system could allow to determine whether
different locomotion strategies are used since it allows to track
individual wandering third instar larvae after leaving the food
for a long time period without disturbing them. Furthermore,
this system for the first time allows an automated analysis of
the negative geotropism shown by third instar larvae.

Additionally, the system may also provide a starting point
for supervised Drosophila culture since it could potentially
be extended by additional hardware to adjust specific environ-
mental conditions like humidity in order to analyse if and how
these adjustments influence the behaviour of the animals.

VI. CONCLUSION

We have proposed a novel method to monitor the behaviour
of Drosophila larvae in vials from hours up to days. The
system was used to image entire vials for up to 135 hours using
multiple cameras and microcomputers. Our system provides
both a suitable temporal resolution as well as a sufficient image
resolution.

The subsequent posture and motion quantification was
performed using FIMTrack [26], a software designed for
analysing FIM images. We successfully analysed 15 hours

of continuous recordings and computed both the trajectories
and higher level features like body bending and the area of
the larvae which can be used as an indirect measure for
peristalsis. In total, 8, 500 tracks, each longer than half a
minute, could be extracted, resulting in millions of data points.
We are convinced that the proposed setup can be used for
monitoring third intar crawling larvae, allowing to extract
long-term quantities like time of entering the wandering stage,
(day/night) activity, overall distribution in the vial, and time
of pupation. Although we do not think that our system will
replace all existing tracking paradigms, it has the potential to
monitor the animals without any disturbance while drastically
reduce labour time.

In the future we plan to improve both our background
model and the calibration and stitching routine. Furthermore,
additional algorithms like an automatic pupae classification
and a collision resolution could be implemented to increase
possible readouts. We are aiming for an online-tracking algo-
rithm to extract the features during recording without saving
the images which will reduce the required amount of disk
space. This online-tracking in combination with a multi-vial
imaging system in controlled environments will facilitate the
extraction of billions of generic behavioural characteristics
without changing the laboratory routine bringing a database
of behavioural fingerprints of Drosophila larvae in reach.

APPENDIX A
SUPPLEMENTARY MOVIE

To give an impression of the images acquired by our setup
we provide a supplementary movie with this document which
shows a time laps of the first 39 hours of capturing Drosophila
melanogaster larvae 5 days after egg laying.
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