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ABSTRACT

Normal tuple-generating dependencies (NTGDs) are TGDs en-
riched with default negation, a.k.a. negation as failuree® an-
swering under NTGDs, where negation is interpreted acagrtt
the stable model semantics, is an intriguing new problernghee
rise to flourishing research activity in the database and &Rmu-
nities. So far, all the existing works that investigate thieblem,
except for one recent paper that adopts an operational sesan
based on the chase, follow the so-called logic programmiif®) (
approach. According to the LP approach, the existentialigng
tified variables are first eliminated via Skolemization, efhieads
to a normal logic program, and then the standard stable nsadel
mantics for normal logic programs is applied. However, aglise
cuss in the paper, Skolemization is not appropriate in teegnce
of default negation since it fails to capture the intendedhmirgg
of NTGDs, while the operational semantics mentioned abaile f
to overcome the limitations of the LP approach. This revéads
need to adopt an alternative approach to stable model sem#rat

is directly applicable to NTGDs with existentially quareifi vari-
ables. We propose such an approach based on a recent chizaacte
tion of stable models in terms of second-order logic, whiteed
overcomes the limitations of the LP approach. We then perfor
an in-depth complexity analysis of query answering undenpr
nent classes of NTGDs based on the main decidability paralig
for TGDs, namely weak-acyclicity, guardedness and stassn In-
terestingly, weakly-acyclic NTGDs give rise to robust arnghty
expressive query languages that allow us to solve in a deslar
way problems in the second level of the polynomial hierarchy

1. INTRODUCTION

Rule-based languages lie at the core of several areas ahtent
importance to databases and artificial intelligence, ssateta ex-
change and integration, deductive databases, and knosviegg
resentation and reasoning, to name a few. The well-knimpte-
generating dependencies (TGI8) (a.k.a.existential ruleg4] and
Datalog® rules[9]) form a prominent rule-based formalism. TGDs
are implications of the fornvXvY (¢(X,Y) — 3Z¢ (X, Z)),
where ¢ and ¢ are conjunctions of (positive) atoms, and they
essentially state that certain tuples in a database imgypths-
ence of some other tuples in the database (hence the terte-“tup
generating”). Notably, during the last decade, TGDs havmdo
many uses and applications in different areas of datababkalae-
search. For example, they have been used in formalizingwed-i
tigating inter-operability tasks such as data exchangg [IGDs

have also been used for metadata management tasks, and in pal

ticular to formalize operations on schema mappings [16paly,
they have been employed for knowledge representation paspo
and in fact as an alternative way to model ontologies [4, 9].
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The main algorithmic task that is relevant for the above iappl
tions is conjunctive query answering: given a datab@sa set™
of TGDs, a conjunctive query, and a tuple of constants, decide
whether(D, 2) = q(t), or, equivalently, whether each (possibly
infinite) model of the logical theoryD A X)! is also a model of
q(t). Unfortunately, query answering under TGDs is undecidable
see, e.g., [5], and [4, 7] for tight undecidable classess Tas led
to a flurry of activity to identify syntactic restrictions aets of
TGDs that lead to decidable query answering; see, e.g.,,[8, 7
24]. In general, decidable classes of TGDs are based on timmgo
of weak-acyclicity [17], introduced in the context of datekange,
as well as guardedness [7] and stickiness [10], proposérticdn-
text of ontological reasoning.

Although decidable classes of TGDs are well-suited for mode
ing positive information, none of them can express defae@ian
tion, a.k.a. negation as failure, which is a key feature faduttive
databases and knowledge representation.

Example 1.Consider the set consisting of the rules

VX (person(X) — 3JY hasFather(X,Y))

VXVY (hasFather(X,Y) — sameAs(Y,Y))

VXVYVZ(hasFather(X,Y) A hasFather (X, Z)A
—sameAs(Y,Z) — abnormal(X)),

which states that each person has at most one biologicak fatth-
erwise, (s)he is abnormal. The above rules cannot be equotlal
expressed using (negation-free) TGDs. [

One of the standard approaches to interpret negation istdhe s
ble model semantics [20], which is the main subject of thisgpra
Other approaches include perfect model [28] and well-fedinsk-
mantics [19], which go beyond the scope of this work. Conjunc
tive query answering under TGDs extended with default negat
callednormal TGDs (NTGDs)w.r.t. the stable model semantics,
is an intriguing new problem that gave rise to flourishingesash
activity in the database and KR communities. In [2, 25], &cyc
ity and stratification conditions for NTGDs have been coesid,
which give rise to formalisms that admit finite and/or unigt&ble
models. In[3], a notion of stable models that can be direxlylied
to NTGDs is proposed, and NTGDs that satisfy certain adyglic
conditions are investigated. The classes that are basedamu-g
edness and stickiness have been recently studied in [22]14nd
respectively. A closely related work is [15], which focusesdis-
riun(:tive logic programs, where the so-callBEINC programs are

!By abuse of notation] refers to the logical formula given by the
conjunction of atoms occurring iP. This suffices since we adopt
the open world assumption.



proposed.FDNC programs combine default negation with func-
tion symbols, and decidability is obtained by restrictihg tule
syntax to one of seven predefined forms.

The Logic Programming approach. All the above works, except
for [3] that we discuss below, follow what we call the logimpr
gramming (LP) approach to stable model semantics for NTGDs.
This means that the existentially quantified variables asédiim-
inated via Skolemization, which leads to a normal logic paog,

and then the standard stable model semantics for normal pogt
grams with function symbols is applied. Consider thed3ef NT-
GDs given in Example 1. The first NTGD is replaced by the rule

hasFather (X, f(X)) < person(X),

where f is a Skolem function, while all the other NTGDs B&f
can be directly conceived as normal rules since they do nat ha
existentially quantified variables. The databggerson(Alice)}
together with the obtained normal logic program have eyawie
stable modelM/ consisting of

person(Alice), hasFather(Alice, f(Alice)),
sameAs(f(Alice), f(Alice)).

It is easy to verify that the (Boolean) query

3X (person(X) A —abnormal(X))
is entailed byM, while the query

3X (person(X) A abnormal (X))
is refuted byM.

Is the LP Approach the Right One?

Although the LP approach has so far been considered as tie sta
dard approach to stable model semantics for NTGDs, we ctdsn i
not the right way to reconcile existentially quantified adlies with
default negation. In fact, as we discuss below, we belie#ebi-
ization is not appropriate in the presence of stable negatite it
fails to capture the intuitive meaning of NTGDs. But let ustfgay

a few words about Skolemization and (positive) TGDs.

Skolemization and—-free TGDs. In the absence of default nega-
tion, TGDs are essentially first-order theories, and cartjua
query answering can be reduced to a satisfiability check okt fi
order formula. Given a databade, a setX of TGDs, a con-
junctive queryq, and a tuple of constants (D,X) [ q(t) iff

(D AX A —g(t)) is unsatisfiable. Furthermore, a classical result in
first-order logic guarantees that the form@la A sk(X) A =¢(t)),
wheresk(X) is obtained after Skolemizing the TGDsXf is equi-
satisfiable with(D A ¥ A —¢(t)). Roughly, this is true since, for
each tuplea of terms replacing the universally quantified variables
occurring in a TGDo, each existentially quantified variabfeoc-
curring ino can be satisfied by a different witness, which can be
represented by, ~(u), wheref, z is a Skolem function. More-
over, due to Herbrand’s theorem, the satisfiability of a thean be
checked by considering only Herbrand interpretations, igyan-
terpretations associating constants and functions wiémgelves.
Hence, wheneven # u’, it is safe to assume thg{u) and f(u’)

are different objects. Similarly, we can assume that Skatnms
using different function symbols represent different obge and
also that they are different from any constant in the thebrye to
the above key results, it is easy to see that Skolemizatiarbea
safely applied in the absence of default negation.

Skolemization and normal TGDs. In contrast to—-free TGDs,
Skolemization is not appropriate in the presence of defaedfa-
tion. In fact, a result which guarantees that Skolemizgpi@mvides
an equisatisfiable theory in the case of NTGDs is missings &hi
illustrated by the following example.

Example 2.Let D = {person(Alice)}, andX be the set of
NTGDs in Example 1. FronD and X there is no evidence that
Bob is not the father ofdlice, and thus, it is intuitive to say that

g = —hasFather(Alice, Bob)

is not entailed by D, ). In fact, it is natural to consider

{person(Alice),hasFather(Alice, Bob),
sameAs(Bob, Bob)},

as a stable model d¢fD A X)), which does not satisfy. However,
(D,sk(X)) = ¢, wheresk(X) is the set of normal rules obtained
by Skolemizing®, since the unique stable model (@ A sk(X)),
whereBob # f(Alice), satisfies;. [

From the above discussion, it is apparent that the LP apprtoac
stable model semantics for NTGDs does not capture the iatend
meaning of NTGDs. This reveals the need to adopt an alterna-
tive approach to stable model semantics for NTGDs, whichagem
general than the LP approach in the sense that is directlicapp
ble to normal rules with existentially quantified variabl&sis has
also been recognized by other researchers, and there angpégt
in the literature to resolve this issue. Notably, Baget ef3lpro-
pose a notion of stable models, which relies on the well-kmow
chase procedure, that can be directly applied to NTGDs witte
quiring Skolemization. Roughly, given a databd3eand a set:
of NTGDs, a (possibly infinite) set of atond is a stable model
of (D A X) if it can be obtained by the chase procedure starting
from D and applying the TGDs df ™, whereX ™ is obtained from
¥ by eliminating the negative literals, under the assumpgtithrat
(i) all TGD applications are sound, i.e., none of the negsliter-
als of a TGD can be found i/ (or, in other words, the TGD is
not blocked), and (ii) the chase is complete, i.e., all theliapble
TGDs that are not blocked are eventually being applied. cAigh
this is an interesting approach, there are still simplesaswhich
we infer unexpected answers. For instance, if we considainag
Example 2, and we apply the operational semantics of [3} the
unexpectedly conclude théb, ) = ¢. The reason for this is the
fact that the chase procedure always invents a new null vhlite
never a constant, in order to satisfy an existentially gtiadtvari-
able in the head of a TGD. This implies that there is no way t@ha
the atomhasFather(Alice, Bob) in a stable model of D A %),
which in turn implies tha{D, %) = q.

Another promising approach to default negation, which @dsoi
Skolemization, is the so-callegqjuality-friendly well-founded se-
mantics (EFWFS]21]. Although this approach deviates from the
idea of stable models, we would like to include it in our discu
sion since in some cases it yields the intended query anSier.
key idea is that, given a databaseand a se® of NTGDs, the
meaning of(D, X) may be captured by the set of all normal pro-
gramsII obtained by (i) unifying constants occurring in (note
that the unique name assumption is not adopted), and (iidacep
ing each NTGDo € X by arbitrary instances of, at least one
for each possible variable assignment for its body; an imtsta
of a normal TGDVXVY (¢(X,Y) — 3IZ¢(X,Z)) is simply
arulee(a,b) — (a,c), wherea, b, c are tuples of constants.
Let Z(D, X) be the set of all programH obtained from(D, X)
as described above. The equality-friendly well-foundeddel®



of (D,X) are defined a{ WFS(II) | II € Z(D, )}, where
WFS(II) are the well-founded models 1. Interestingly, if we

we can “guess” an appropriate guard, whose domain can be re-
stricted to an arbitrary set of values, and thus the propdnguard-

apply the EFWFS to Example 2, then we get the expected answer.edness that only atoms derived from a common guard ancestor ¢

Unfortunately, as we explain below, this is not always theeca

Example 3.Let D = {person(Alice)}, andX be the set of
NTGDs given in Example 1. One expects that the query

q = —abnormal(Alice)

is entailed by(D, X) since there is no evidence thatice has two
biological fathers, and thus that she is abnormal. Howénefol-
lowing the EFWFSy is not entailed. Observe that at least one
normal progranil € Z(D, X) contains the rules

person(Alice) — hasFather(Alice, Bob)
person(Alice) — hasFather(Alice, John),
where Bob # John. Therefore, there exists an equality-friendly

well-founded model of D, ) where Alice has two fathers, and
thus the atomabnormal(Alice) is entailed. L]

Research Challenges.In order to overcome the limitations dis-
cussed previously, we focus on the following questions:

interact, is destroyed.

» Query answering under weakly-acyclic sets of NTGDHE{S
complete in data complexity, anebN2EXPTIME""-complete in
combined complexity, even for predicates of bounded astd
—-free atomic queries (Theorem 6).

» Interestingly, weak-acyclicity can be enriched with digju
tion in the rule-heads without paying a price in terms of ctaxp
ity (Theorem 12). The reason for this unexpected outcombsis t
fact that we can simulate disjunction using existentiallawotified
variables and stable negation.

» The class of weakly-acyclic NTGDs gives rise to powerful
query languages that express exactly the queries Mith(resp.,
%) data complexity when the cautious (resp., brave) senmistic
adopted (Theorem 17); this implies that disjunction in féds
does not add expressive power (Theorem 18). This exprgssivi
result exposes an additional advantage of our approacharechjo
the LP approach, the operational semantics of [3], and th&/EF
of [21], that is, we obtain languages that can be used foadaiive
solving of problems that lie at the second level of the poiyiad
hierarchy. To justify this statement, we devise novel enugslfor
central problems in the second level of the polynomial g

e How can we define a new approach to stable model semantics(i) consistent query answering under weakly-acyclic TG8ative

for NTGDs, such that it is directly applicable to rules with
existentially quantified variables without requiring Sil-
ization?

e What is the data and combined complexity of conjunctive

guery answering under the main classes of NTGDs (based on

weak-acyclicity, guardedness and stickiness) w.r.t. @w n

approach to stable models? Notice that the query may also

contain negation.

e How is conjunctive query answering affected if, in addition
we allow disjunction to appear in rule-heads?

e How is the expressive power affected by allowing default
negation and existentially quantified variables to coé@xist
Does disjunction in rule-heads increase the expressivepow
of the various formalisms?

Our Contributions

Our answers to the above questions, and the main contnitsutib
the present paper, can be summarized as follows:

» We provide a precise definition of our new approach to stable
models for normal TGDs, which in turn is based on a recentazhar
terization of stable models via second-order logic [18]e Etable
models of a database and a set of NTGDs are defined as the
classical models of a second-order formsid[D, X], which goes
beyond MSO and encodes the vital properties of stable modéls
formally show that our new approach is indeed a generatinaf
the LP approach (Theorem 1). We then establish a sufficient cr
terion for the decidability of query answering under stahledels
via the so-calledtable tree model properf heorem 2).

to set-based repairs [30]; (ii) satisfiability for quantifiBoolean
formulas with two alternations of quantifiers (2-QBF); afif) &n
interesting variation of graph-colorability, which generalizes the
well-known problem CERT3COL [29].

2. PRELIMINARIES

General Definitions. We define the following pairwise disjoint
countably infinite sets of symbols: a g8tof constantsa setN of
labeled nulls(used as placeholders for unknown values), and a set
V of variables(used in queries and dependencies). Different con-
stants represent different valuasiique name assumptipnwhile
different nulls may represent the same value. We denotXby
sequences (or sets, with a slight abuse of notation) of hiasa
X1,...,Xpwithk > 0. Let[n] = {1,...,n}, foranyn > 1.

A (relational) schemaR is a (finite) set ofrelational symbols
(or predicatey. We writep/n for the fact thap is ann-ary pred-
icate. Atermis a constant, null or variable. Aatomic formula
over R (or R-aton) has the formp(t), wherep € R andt is
a tuple of terms. ArR-literal is either anR-atom (i.e., a posi-
tive literal), or anR-atom preceded by the negation symbel’“
(i.e., a negative literal). For a literé) we write dom (¢) for the set
of its terms; this notation naturally extends to sets oféite For
brevity, conjunctions of literals are often identified witte sets of
their literals. A (otal or two-valued R-interpretation! is a set of
R-literals which contain only constants and nulls such tfoatev-
ery R-atomp(ty, ..., tn), Wwhere(ts, ..., tn) € dom(I)", either
p(t1,...,tn) € TOr=p(ti,... t,) € I. We write I (I™) for

» We proceed to understand how conjunctive query answering the set of positive (negative) literals bf

behaves under NTGDs interpreted according to our new approa
We show that weak-acyclicity preserves the decidabilityoéry
answering (Theorem 3). However, if we focus on stickiness an
guardedness, then query answering is undecidable (Theofem
and 5, respectively). Although for sticky NTGDs this was exted,
for guarded NTGDs this is a rather surprising result. We stiat/
the tree model property, the key property of guarded-basgidd,
is not preserved when stable negation and existentiallyntifiexd
variables coexist. The reason for this can be found in thitifet

A homomorphisnirom a set of literals. to a set of literalsl’
isamappingh : CUNUYV — CUNUYV that is defined on
dom(L) and is the identity orC, andp(¢1,...,t,) € L (resp.,
—p(t1,...,t,) € L) implies p(h(t1),...,h(t,)) € L' (resp.,
=p(h(t1),...,h(tn)) € L').

A databaseD over a schem& is a finite set ofR-atoms such
that dom (D) C C. We sometimes treat a databd3eas a logical
formula given byA\ ), p(t), that is, the conjunction of atoms
occurring inD. An R-interpretation/ is amodelof D, denoted



I = D, if there exists a homomorphismsuch thath(D) C I.
Sincerh is the identity ondom (D), I = D iff D C I.

Normal TGDs. A normal tuple-generating dependency (NTGD)
is a constant-fréefirst-order formula of the form

VXVY (o(X,Y) — 3Z (X, Z)),

wherey (resp.,) is a conjunction of literals (resp., atoms), with
variables fromX U Y (resp.,X U Z). If there are no negative
literals ing, theno is a TGD. We focus osafeNTGDs, i.e., every
variable in a negative literal occurs also in a positiverdten .
Formulay is thebody of o, denotedB (o), while ¢ is the head
of o, denotedH (o). The schema of a sét of NTGDs, denoted
sch(X), is the set of predicates occurring Ih  We sometimes
treat a se®. of NTGDs as a logical formula given b\ . o,
that is, the conjunction of NTGDs iE. A sch(X)-interpretation
I is a model of an NTGDr € X, denoted! = o, if, whenever
there exists a homomorphistnsuch that(B(o)) C I, then there
existsh’ 2 h, calledextensiorof h, such that'(H (o)) C I. I is
amodelof X, denoted! = %, if I = o for eacho € X. The class
of all (finite) sets of NTGDs is denotedGD ™.

Normal (Boolean) Conjunctive Queries. An n-ary normal con-
junctive query (NCQ) over a schem&, wheren > 0, is a first-
order formula of the form

3Y<

wherem > 1, k > 0, {pi}icpm+r) € R, €ach atom contains
variables from(X UY) C V (and possibly constants &), and
1X| n. A 0-ary NCQ is callednormal Boolean conjunctive
query (NBCQ)We focus orsafequeries, i.e., every variable in a
negative literal occurs also in a positive literal. Témswerto an
n-ary NCQq of the form3Y ¢(X,Y) over an interpretatiod,
denoted;(I), is the set of all tuples € C™ for which there exists
a homomorphisnk such thath(¢(X,Y)) C I andh(X) =t. A
NBCQ ¢ has only the empty tuple as possible answer, and it has a
positiveanswer oved, denoted! = g, if ¢(I) # @. The class of
all (finite) normal (B)CQs is denotedB)CQ .

m-+k
ApiXY)A AN —pi(X,Y)

i=1 Jj=m+1

m

3. STABLE MODEL SEMANTICS: A NEW
APPROACH

We proceed to introduce our new approach to stable model se-
mantics for NTGDs that adopts a recent characterizationadfies
models in terms of second-order logic [18]. We first recadllibgic
programming (LP) approach considered so far (see, e.g27.1,
25]). Since minimality is one of the key properties of statmled-
els, we then recall, by means of a simple example, how thesésub
minimal models of a databade and a sef. of NTGDs can be
characterized via a second-order formula. We then procees-t
plain why this formula fails to precisely capture the stafledels
of D andX, and how it can be modified in order to accurately en-
code the properties of stable models; this leads to our npvoaph
to stable model semantics. Finally, we introduce the maitlem
tackled in this work, that is, query answering under NTGOsrin
preted according to our new approach.

3.1 The Logic Programming Approach

Consider a databade, and a set € TGD™. Following the LP
approach to stable model semantics for NTGDs, we first need to

2Constants are excluded for technical clarity; however,reatlts
can be extended to NTGDs with constants.

transformD andX into a normal logic prograrilp 5. If existen-
tially quantified variables occur in the head of an NTGDXJfthen
they are eliminated via the standard procesSlaflemizationThe
Skolemization of an NTGDr of the formVXVY (¢(X,Y) —
3Z ¢ (X, Z)) is the normal rulep (X, £,(X,Y)) « »(X,Y),
wheref, is a vector of function symbolg,. ~, one for eacl¥ € Z.
Then, the so-called grounding &fp s, denotedground(Ilp x),
is computed by constructing all the ground instances of @
IIp,x, i.e., all the rules that can be constructed by replacing eac
variable ofp with a term from the Herbrand universeldp s, that
is, all the terms that can be formed using constants andifumct
symbols occurring irD andX-.

Consider asch(X)-interpretation/. I is a stable model dfilp s
if I is a (classical) model dflp 5, and a (subset) minimal model
(w.r.t. positive literals) of the so-called reductléf s, w.r.t. I, writ-
tenIl}, y, obtained fromground (Ip,s) as follows: first, remove
all the rules with a negative literal not ify and then eliminate the
remaining negative literals. Intuitively,is a stable model dfip »
if it can be obtained by “executindlp, = using/ as an oracle for
the negative literals. The stable modelsiafand¥ are defined as
the stable models of the normal logic progréip 5.

3.2 Minimal Models

The minimality of a (classical) model of a databdsand a set
of NTGDs can be captured via a second-order fornMiM[D, X].
Consider the databade = {p(0)}, and the seE of NTGDs con-
sisting of

VX (p(X) A —t(X) — r(X)) VX(r(X) — t(X)).

The second-order formuldM[D, Y] is defined as follows:

DAY A
—3p*3t* I N\ (VX (U (X) = u(X))) A

ue{p,t,r}

A

A (VX (u(X) = u* (X))

ue{p,t,r}

p*(O) A VX(p*(X) A ﬁt*(X) — T*(X)) A
VX (r(X) t*(X)))

wherep*, t*, r* are predicate variables. An interpretatibns a
model of the above formula if (ij is a model of(D A X), and (ii)
there is no way to obtain a model @D A X2) from I by eliminating
a positive literal. In other words, the models ®M[D, 3] are
precisely the minimal models ¢D A X).

The syntactic transformation froifD A X) into MM[D, X] is
actually circumscription a logical approach, introduced by Mc-
Carthy [26], suitable for modeling what normally holds. Tidea
is to define, using first-order logic, both domain knowledge so-
called abnormality predicates that identify instances cdfas that
violate the normal properties of that class; e.g., a birtichanot fly
is abnormal, stored in a unary predicatg;.q. TO capture the intu-
ition that abnormality is exceptional, inference is raséd to those
models where the extension of the abnormality predicatesns
mal w.r.t. set inclusion. So, to transforf® A X) into MM[D, X]
we basically apply circumscription where all the predisaite D
andX are conceived as abnormality predicates.

3.3 The New Approach

Our ultimate goal is to transform a databaSeand a set: of



NTGDs into a second-order formuM[D, ¥] that characterizes
the stable models db andX.. InterestinglySM[D, 3] is obtained
by slightly modifyingMM|[D, X]. But let us first expose the key
reason whyMM[D, ] fails to recognize that an interpretation is
not a stable model ofD A X).

Consider the databage and the sek of NTGDs given in Sec-
tion 3.2. It can be verified that, according to the LP approdeh
andX do not have a stable model. Furthermore, sifcdoes not
contain existentially quantified variables, the LP apphoacd our
new approach should coincide, and thus, the fornSiNgD, X]
should not have a model. Consider now the interpretafios
{p(0),t(0), —r(0)}, which is clearly a model ocMM[D, 3. Dur-
ing the minimality check, the content of the predicatieat appears
in a negative literal may change. Indegd= MM|[D, ¥] since the
interpretationk’ = {p(0), —t(0), —r(0)}, which convertg(0) into
—t(0), is not a model oD andX. But, this is in a conflict with the
idea of stable models, where the redHc[’;,E is obtained by essen-
tially fixing in J the content of the predicates that appear in negative
literals of I p, 5. This can be resolved by stating that(X') holds
instead of-t*(X), i.e.,SM[D, X is obtained fromMM|[D, X] by
replacing the aton* (X) in VX (p* (X)A—t*(X) — r*(X)) with
t(X); clearly, J is not a model oSM[D, X].

The syntactic transformation frofD A X) into SM[D, ¥] dis-

cussed above can be extended to arbitrary NTGDs. In what fol-

lows, we formalize this transformation, which will be at thasis

of our new approach to stable model semantics for NTGDs. For

convenience, we employ the following notation. For pretisa
and s of the same arityn > 0, (p < s) stands for the formula
VX (p(X) — s(X)), whereX is a tuple ofm distinct variables.
If p = (p1,...,pn) ands = (s1,...,sn) are tuples of predi-
cates, where; ands; have the same arity, thép < s) stands for
Ny (pi < s:), while (p < s) stands fo(p < s) A =(s < p). In
second-order logic, we apply the same notation to tuplesefip
cate variables. Consider a sete TGD™, and a databasP over
sch(X). Letp = (p1, ..., pn) be the list of predicates oich(X),

ands = (s1,...,sn) alist ofn distinct predicate variables. For a
literal £ occurring inD or X%, we define
si(t), if £=pi(t),
Tpos(0) = ]
—pi(t), if £=-pi(t).

We definerpss (D) andpes (X) as the database and the set of NT-
GDs obtained by applyingyss to every literal inD andX, respec-
tively. UNA[D] is the formulaA . ;¢ jo(p),cza ~(c = d), Which
encodes the unique name assumpti®d[D, ¥] is defined as:

UNA[D]ADAXA=3s((s < p) A Tpss(D) A Tpss(2)).

as a stable model d® and:, which in turn implies that
g = —hasFather(Alice, Bob)

is not entailed by D, X)), which is what we expect since frol
and X there is no evidence thatob is not the father ofAlice.
Recall that, according to the LP approadhs not a stable model
of (D A X). However,I = SM[D, 3], and thus, according to our
new approach is a stable model. [

Our new approach directly deals with existentially quagdifi
variables without requiring Skolemization or groundingheTcru-
cial question though that we need to answer, in order toysatel-
clude that the new approach is a generalization of the LFoapr,
is whether the two approaches coincide if we focus on depende
cies that can be treated by both of them, that is, SkolemiZzéd N
GDs; note that Definition 1 can be directly applied to nornogid
programs. The answer to this question is affirmative, andedim
ately follows from Corollary 1 in [18]. To avoid notationalutter,
SMSrp(-) andSMSso(-) is the set of stable models according to
the LP and the new approach (which relies on second-order, log
hence the subscript “SO”), respectivélyRecall thatllp s is the
program obtained fron> and3 by applying Skolemization.

THEOREM 1. Consider a databasé®, and¥X € TGD™. It
holds that,SMSLP(HDg;) = SMSS()(HDE).

3.4 Query Answering

The answer to am-ary NCQgq over D andX¥ under the stable
model semantics is defined as the set of tuples

(| {teC"[teqdn)}

MeSMS(D,%)

A NBCQ ¢ has apositiveanswer overD andX under the stable
model semantics, denotéd, Y) Esus q, if M = g, for each
M € SMS(D, ¥). For clarity, we focus on NBCQs; however, our
results can be extended to NCQs. The main decision probleim ta
led in this work is defined as follow§; is a class of sets of NTGDs
(e.g., weakly-acyclic, sticky, etc., which are defined glo

PROBLEM:  SMS-QAns(C)
INPUT: DatabaséD, X € C, andq € BCQ™.
QUESTION: Does(D,Y) Esus ¢?

We assume, w.l.0.g., that both the database and the quepnlyse
predicates that already occur in the set of NTGDs.

A Criterion for Decidability
It is possible to establish a sufficient (semantic) condifior the

We are now ready to introduce our new approach to stable model decidability ofSMS-QAns via the so-called stable tree model prop-

semantics for NTGDs.

Definition 1. (Stable Modelg Consider a seE& € TGD™, and
a databaseD over sch(X). A sch(X)-interpretation! is a sta-
ble modelof D andX if I is a model ofSM[D, ¥]. We define
SMS(D, X) as the set of stable models bfandX. L]

The conceptual advantage of our new approach over the cddssi
LP approach is shown by the following example.

Example 4.Let D = {person(Alice)}, andX be the set of NT-
GDs given in Example 1. As discussed in Example 2, it is natura
to consider the interpretatiah where

It = {person(Alice), hasFather (Alice, Bob),
sameAs(Bob, Bob)},

erty. To introduce this property, we first need to recall wikahe
treewidth of an interpretation. fee decompositioof a (possibly
infinite) interpretation/ is a labeled tre€" = (V, E, X), whereX

is the labeling functior/ — 272%™ such that: (i) for a (pos-
itive) literal p(t1,...,tn) € I, there existsv € V such that
A(w) D {t1,...,tn}; and (ii) for every termé € dom([I), the
set of nodefv € V | t € A(v)} induces a connected subtree of
T. Thewidth of T' is max,ecv {|A(v)| — 1}. Thetreewidthof I

is the minimum width among all tree decompositions. Inveity,
the treewidth of an interpretatiah which can be represented as a
graph via its Gaifman graph, measures how similds to a tree;
the smaller the treewidth, the closer the interpretaticio ia tree.
We are now ready to introduce the stable tree model property:

3In the rest of the pape§MS(-) without a subscript refers to the
set of stable models according to our new approach.



Definition 2. We say that a clas§ of NTGDs enjoys thetable
tree model propertyf the following holds: for every database,
3 € C, andg € BCQ7, if (SM[D, 2] A =q) has a model, then it
has a model of finite treewidth. n

The next result establishes that the stable tree model giyope
implies the decidability of query answering:

THEOREM 2. SMS-QAns(C) is decidable ifC is a class of NT-
GDs that enjoys the stable tree model property.

Let us sketch the proof of the above result. Consider a databa
D, aset € C, whereC enjoys the stable tree model property, and
q € BCQ™. Since(D, X) Esus ¢ iff (SM[D,X] A —=¢) is unsat-
isfiable, it suffices to show that the problem whettfi[D, 3] A
—q) is satisfiable is decidable. We can construct an MSO formula
SM[D, %], such that: (iYSM[D, ¥] A ~¢) and(SM[D, 3]; A —q)
are equisatisfiable; and (ii) (EM[D, X]; A —¢) is satisfiable, then
it has a model of finite treewidth. Therefore, by Courcelt#&ssi-
cal result, which states that the satisfiability problemffagments
of MSO that enjoy the tree model property is decidable [118, w
get that the problem whethé8M[D, X] A —q) is satisfiable is de-
cidable, as needed. The key idea underlying the constructio
SM[D, %], can be described as follows: we attach, via a first-order
formula, to every tuple of termsoccurring in a model of D A %)

a unique identifier; this allows us to accasgia a unary predicate
that stores all the valid identifiers. Then, we can rewSit&[D, 3]
in such a way that only unary predicates are quantified.

4. QUERY ANSWERING UNDER STABLE
MODELS: A CASE STUDY

The goal of this section is to investigate how the problem of
query answering under stable models behaves. We consaieseds]
of NTGDs that are based on the main decidability paradigros pr
posed for TGDs, namely weak-acyclicity [17], stickines8][and
guardedness [7], and we study query answering.

4.1 Weak-Acyclicity

Weak-acyclicity is defined by posing an acyclicity condition
the position (dependency) graph, introduced in [17], wigicbodes
how terms are propagated during the “execution” of the @EgrA
position in a schem®, writtenpli], is a pair of am-ary predicate
p € R and an integef € [n], which represents theth attribute
of p. The set of positions oR, denotedpos(R), is defined as
{pli] | p/n € R andi € [n]}.

Definition 3. Theposition graphof a set® € TGD is a directed
graph PoG(X) = (V, E), whereV = pos(sch(X)), andE is
defined as follows: for each € X of the formVX(¢(X) —
3Y (X,Y)), for eachX € X that occurs in), and for eachX
in o in positionz: (1) for each occurrence of in ¢ in position
7', there is a regular edder, ') € E; (2) for eachY € Y, and
for each occurrence af in ¢ in position’, there is a special edge
(m,7') € E; and (3) no other edges occurin [

Roughly speaking, a regular edge, 7’) keeps track of the fact
that a term may propagate frosrto 7’ during the “execution” of:.
A special edgd, ') keeps track of the fact that the propagation
of a value fromr to 7’ also creates a new value at positiofi.
We are now ready to define weakly-acyclic NTGDs. A Eebf
NTGDs isweakly-acyclicif no cycle in PoG(X), wherex™t is
obtained from> by eliminating the negative literals, containing a
special edge exists. The corresponding class is deNgfeiGD ™.

r(X.Y) A p(Y,2) - IWHX,Y,W)

r(X.Y) A p(Y.2) = IWHX,Y, W)

HX,Y,Z) — IW s(V, V) HX,Y.Z) — IW s(X, W)

(@) x

(b)

r(XY) A p(Y.2) — IWHX,Y, W)
HX.Y,Z) — IV s(X,V)

Figure 1: Stickiness and marking; for brevity, the universd
quantifiers are omitted.

As one may expect, if a database and a weakly-acyclic set-of NT
GDs admit a stable model, then they admit a stable model ¢éfini
size, and thusWATGD™ enjoys the stable tree model property.
Hence, by Theorem 2, we get that:

THEOREM 3. SMS-QAns(WATGD™) is decidable.

The fact that?WATGD™ enjoys the stable tree model property
is shown in two steps: (i) we establish that a stable mddedf a
databaseé) and a sek of NTGDs (not necessarily weakly-acyclic)
is obtained by “executing¥, starting fromD, usingM as an ora-
cle for its negative literals, and (ii) we show that whendberinput
setX of NTGDs is weakly-acyclic, then its “execution” terminate
In fact, the same approach is followed in Section 5 to pinpibia
complexity of query answering under stable models for weakl
acyclic sets of NTGDs, which is one of the main contributiofis
this work; thus, all the details are deferred to Section 5.

4.2 Stickiness

Let us first recall the key property underlying the class kst
sets of (positive) TGDs [10]. During the execution of the TGD
or, in other words, during the chase procedure, terms tleadisso-
ciated (via a homomorphism) with variables that appear rtieae
once in the body of a TGD (i.e., join variables) are alwaysppro
gated (or “stick”) to the inferred atoms. This is illustrdtie Fig-
ure 1(a); the first set of TGDs is sticky, while the second is iibe
formal definition is based on an inductive marking procedhes
marks the variables that may violate the semantic propdrtiieo
chase described above [10]. Roughly, during the base stdpsof
procedure, a variable that appears in the body of a &iDt not in
every head-atom af is marked. Then, the marking is inductively
propagated from head to body as shown in Figure 1(b). Finally
set of TGDsX is stickyif no TGD in X contains two occurrences
of a marked variable. The notion of stickiness can be stthigh
wardly extended to NTGDs: a sEtof NTGDs is sticky if the set
of TGDs obtain by converting every literalp(t) occurring inX
into the atonp(t) is sticky [1]; the corresponding class is denoted
STGD™. Although stickiness guarantees not only the decidability
but also the data tractability of CQ answering under TGD} [the
situation changes for NTGDs under the stable model sengzantic

THEOREM 4. SMS-QAns(STGD™) is undecidable, even if the
query is—-free.

The above negative result is not surprising since the pnolite
undecidable even if we follow the LP approach [1]. The redson
this undesirable behavior should be found in the fact thektytets



of NTGDs are powerful enough for expressing cartesian prisgu
that is, rules of the forryXVY (p(X) A s(Y) — ¢(X,Y)), with

X NY = @. Using cartesian products we can build infinite grids,
while the stable negation gives us the power of guessing ddm-
bination allows us to simulate the behavior of a Turing maehi

4.3 Guardedness

An NTGD o is guarded if there exists an atom, called guard,
in B (o) that contains all the variables (). A setX of NT-
GDs is calledguardedif every NTGD of ¥ is guarded, and the
corresponding class is denot&é@GD™. Guardedness is a well-
accepted paradigm that gives rise to robust rule-basedidayes.
As shown in [7], query answering under guarded TGDs is decid-
able, while this decidability result has been recently edésl to
guarded NTGDs interpreted according to the LP approactatiest
model semantics [22]. Contrary to what one might expecs ithi
not the case for guarded NTGDs interpreted according to ewr n
approach to stable model semantics. As for sticky NTGDs,ave ¢
build grids of unbounded size, while the stable negatioegis
the power of guessing. This allows us to simulate the behafia
Turing machine, and show that:

THEOREM 5. SMS-QAns(GTGD™) is undecidable, even if the
query is—-free.

The above result, together with Theorem 2, immediately iespl
thatGTGD ™ does not enjoy the stable tree model property. This is
a surprising negative outcome since guardedness usuedly gse
to robust and decidable computational logics, such as thedgd
fragment of first-order logic, while the model-theoretiasen for
this desirable behavior is the tree model property; see, [28].
The reason for this negative outcome can be informally desdr
as follows. In the classical setting, the guard atoms oaayiin
rule-bodies force the existence of a model that follows dreiin
ent tree structure, where its branches cannot interacts Atids
also for the LP approach to stable model semantics, whigrgef
to Skolemization and grounding, since the obtained redactbe
seen as a set of (positive first-order) guarded TGDs [22]. évew
by following our new approach to stable negation for NTGDs, i
is possible to “guess” an appropriate guard, whose domairbea
restricted to an arbitrary set, and thus the key propertyuafded-
ness, i.e., only atoms derived from a common guard anceator ¢
interact, is destroyed. In fact, by restricting the domdiarm (ex-
istentially guessed) guard in an appropriate way, joingzeen any
two atoms can be forced, destroying the inherent tree sitmeicif
the underlying models.

4.4 Our Conclusions
From the above analysis, we conclude that:

e The class that is based on weak-acyclicity can be reconciled

with the new approach to stable model semantics, without
sacrificing the decidability of query answering. This is be-

cause, whenever a database and a set of weakly-acyclic NT-

GDs have a model, then they admit a finite model, which
implies thatWATGD™ enjoys the stable tree model property.
e Itis not possible to reconcile stickiness and guardednéss w

The latter demonstrates the need to provide a more refineai-defi
tion of stickiness and guardedness. This task goes beyersttipe
of the present work.

5. WEAK-ACYCLICITY: ALGORITHMS
AND COMPLEXITY

We proceed to pinpoint the complexity of NBCQ answering un-
der stable models focussing on weakly-acyclic sets of NT.Gs
consider the standard complexity measures, dlata complexity
calculated by considering only the database as inputcambined
complexity which considers everything as input. We show that:

THEOREM 6. SMS-QAns(WATGD™) is

e II}-complete in data complexity, and
e coN2EXPTIME""-complete in combined complexity.

The lower bounds hold for predicates of bounded arity, andsCQ
consisting of a singlé-ary predicate.

The above result shows that the complexity of query answer-
ing significantly increases in the presence of default riegate-
call that for weakly-acyclic sets of TGDs the problem isIRE-
complete in data complexity [17], and XETIME-complete in
combined complexity [10]. The rest of this section is dedoie
establishing the above result. The desired upper boundshare
tained via a guess and check algorithm for the complemeriteof t
problem, which guesses a stable model, and checks thatstrdite
entail the query. However, in order to apply such a simple pro
cedure, we need to solve two non-trivial subtasks: (i) distalan
upper bound on the size of stable models un¥&TGD ™, and (ii)
check the stability of a model in an optimal way.

5.1 Bounding the Size of Stable Models

In this section, we establish an upper bound on the size of sta
ble models undeWWATGD™, which will then allow us to obtain
optimal data and combined complexity upper bounds for gaary
swering. Let us first introduce our technical tool.

Immediate Consequence Operator

Consider a set of NTGDs, a setS of sch(X)-atoms, and a
sch(X)-interpretation/. An atomp(t) € I is animmediate conse-
quenceor S andX relative tol if there existss € X, and a homo-
morphismh such thati(B(o)) € SU I~ andp(t) € h(H(0)).
Theimmediate consequence operaafry relative tol follows:

Tx,1(S)

{p(t) € I'" | p(t) is an immediate
consequence fof andX. relative tof}.

We writeTéy,(S) for the result obtained aftérapplications of the
operatorTs, ; starting fromS. Formally,

T9(S) = S TEH(S) = Ter(T% (S) UTS £ (S)
and

TE(8) = JT81(9).
i=0

our new approach to stable negation for NTGDs, since query Note thatTs r is monotone; thus7y’;(S) is defined as its least
answering becomes undecidable. Although for sticky sets fixpoint. The next result formalizes the idea that a stableehd/

of NTGDs this was expected, for guarded NTGDs this is a
surprising outcome.

The former gives rise to the problem of closing the complexit
of SMS-QAns(WATGD™), which will be the subject of Section 5.

of a databasé andX € TGD™ can be obtained by “executing”
¥, starting fromD, usingM as an oracle for its negative literals.

LEMMA 7. Consider adatabas®, andX € TGD™. For every
M € SMS(D,%), M+ = T (D).



It is important to clarify that th&s; ; operator cannot be used
to characterize the stable models@fandX. In particular, given
a sch(X)-interpretation, It = 7% (D) does not imply/ €
SMS(D, ). Consider, for example,

D={s(a)} and ¥ ={VX(s(X)— IV p(X,Y))}.

For the interpretation with I™ = {s(a), p(a,b), p(a,c)} it is
clear thatl™ = T (D), butI ¢ SMS(D,X). However, as we
shall see, the immediate consequence operator is a usetfinitel
tool for bounding the size of stable models.

Establishing a Bound

Consider a modeM € SMS(D, ), whereX € WATGD ™. The
least fixpoint ofTs; as, starting fromD, can be reached after a finite
number of applications.

LEMMA 8. Consider a databas®, a setX €¢ WATGD™, and
let M € SMS(D, ). It holds that,

T v (D) < f(D,X),

where f is polynomial inD, and doubly exponential i&.

The above lemma relies on the fact that, given a databaaed
a weakly-acyclic set of (positive) TGDs, the result of every chase
sequence oD andX has size at most polynomial i, and doubly
exponential inZ; implicit in [17].% In particular, given a database
D and a se> € WATGD™, we show thatl'?%,,(D) induces a
chase sequend® of D andX* such thai75%,,(D)| is bounded
by the size of the result @', which in turn implies thatTs",, (D)|
is at most polynomial irD, and doubly exponential iR, as needed.
The next key result follows from Lemma 7 and 8:

ProPoOSITION 9. Consider a databasd), and a setY ¢
WATGD™. For everyM € SMS(D, Y),

M| < f(D,D),

where f is polynomial inD, and doubly exponential iR.

5.2 Checking Stability

We now investigate the stability problem, i.e., checkingethier
a modelM of a databasé andYX € WATGD™ satisfies the for-
mula—-3s((s < p) A Tpss(D) A Tpss(X)). Unfortunately, if we
perform this check blindly, without having available anyldinal
information about the model/ in question, then we cannot do
better tharlIZ’, which in turn does not lead to the desired upper
bounds stated in Theorem 6. This is because such a checkésvol
model checking for NTGDs, that is, to decide whether an prier
tation is a model of a set of NTGDs, and it is known that already
for TGDs model checking iEl4 -hard, even if we focus on a single
non-recursive TGD [27]. The crucial question that we shaurid
swer is the following: having available some additionabimhation
about the modelM, which can be computed on-the-fly during the
execution of our guess and check algorithm, is the abovekaigec
feasible in coNP? The answer to the above question is affirejat
which, as we shall see in the next section, will allows us t@iob
the worst-case optimal upper bounds stated in Theorem 6art p
ticular, the additional information about the modélthat we need
is the set of homomorphisms that acts as a witness for thetfact
M is a model of=. The notion of the witness is defined as follows:

“Here, we refer to the standard (a.k.a. the restricted) e the
chase, where a TGD is being applied only if its necessary.

Definition 4. Consider an NTG>, and an interpretatioh. The
witnessfor I w.r.t. o, denotedV7 , is defined as

{(h, Ef,”’) | his a homomorphism s.k(B(c)) C I} ,

whereE!"” = {u | u 2 handu(H (o)) C I}. The witnessVy
is callednegativeif there exists(h, E) € W7 such thattl = &;
otherwise Wy is calledpositive [

Itis clear that having the positive witneBg; in place, we know
precisely via which homomorphisni(o) is satisfied by (if there
exists one), and how they are extended in order to satigfy), and
therefores itself. The next auxiliary lemma follows by definition:

LEMMA 10. Consider a set¥ € TGD™, and a sch(X)-
interpretation/. The following are equivalent:

1. 13
2. WY is positive, for every € X..

We now introduce a refined version of the stability problem,
based on the notion of witness; IEtbe a class of NTGDs, and
®p,s = ~3s((s < P) A Tpes(D) A Tprs(3)):

PROBLEM:  W-Stability(C)

INPUT: Datab.D, ¥ € C, modelM of (D A %),
and positive witnesseSNVy; }oes.

QUESTION: DoesM | &p »?

We establish the following technical result, which is caldor
our later complexity analysis:

PROPOSITION 11. W-Stability(WATGD™) is in coNP.

We can decide the complement of the problem in question via
the following non-deterministic algorithm:

1. Guess/ C M™ such that/ D D, and letl be the total
interpretation withdom (1) = dom(J) andIt = J.

2. Iffor eacho € 7pps(X) the WithesSVy -, (1)) IS POSI-
tive, thenaccept; otherwise reject.

It is easy to see that, by Lemma 10, the above algorithm agcept
iff M = 3s((s < p) A Tpss(D) A Tpps(2)). Itis clear that both
steps are feasible in polynomial time. In particular, théness

for (M U mpss(I)) W.r.t. SOMes € 7p55(X) can be obtained in
polynomial time fromW$;, wheres € ¥ ando = 7p55(5). Thus,
W-Stability(WATGD™) is in coNP, as needed.

5.3 Finalizing the Complexity Analysis

We are now ready to close the complexity $¥S-QAns for
WATGD™, and obtain Theorem 6.

Upper Bounds

The upper bounds stated in Theorem 6 are obtained in a uniform
way via a guess and check algorithm, which exploits Projoosit9

and 11. Fix a databas®, > € WATGD™, andg € BCQ™. Let

p = (p1,...,pn) be the list of predicates ofch(X), ands =
(s1,...,sn) alist of n predicate variables. We write> s for the
bound provided by Proposition 9. The following procedureides

if (D,Y) FEsus q, 1.e., the complement of our problem:

1. Guess a set of atoms, where|J| < dp,s, and let] be
the totalsch (X)-interpretation withdom (I) = dom(J) and
It = Jsuchthat = (D A X A —q); if such a set of atoms
does not exist, thereject.



2. If I = —3s((s < p) A Tpss(D) A Tpss(X)), thenaccept;
otherwise reject.

The above procedure runs in polynomial timedp s with
an S-oracle, whereS is a complexity class powerful enough for
solving W-Stability; {W7 }-ex is implicitly constructed during
the first step of the algorithm. Consequently, the compleérén
SMS-QAns is in NP° in data complexity, and in N2BTIMES in
combined complexity. The desired upper bounds follow bypBro
sition 11 since®®NP = ONP, whereO € {NP, N2EXPTIME}.

Lower Bounds

We give the reduction for th&lZ -hardness in data complexity,
while for the combined complexity we simply mention the prob
lem from which we provide a reduction.

1% -hard Data Complexity

We reduce satisfiability of 2-QBfformulas to the complement
of SMS-QAns(WATGD™). Lety = IXVY ¢(X,Y) be a 2-
QBFs formula, andyy = VE_; (€} A £ A £3) be a 3DNF formula.
We construct a databage,, andX € WATGD™, which does not
depend onp, such thaty is satisfiable iff(D,,X) Esus error,
whereerror is a0-ary predicate.

Database. For a variableV, let (V) = v(=V) = V and
w(=V) = v(V) = x, wherex is a special constant. The database
D, is defined as follows:

{exists(X) | X € X} U {forall(Y)|Y e Y} U

{eX(m(6), w(€3), m(£3), v (L), v(£), v(£))) by U {nil(x)}.
This completes the definition db.,.

NTGDs. The setX € WATGD™ is defined as follows. First, we
guess an assignment for the variablegof
— 3X zero(X) — 3X one(X)
VX (zero(X) A one(X) — error)
VX (zero(X) — truthVal(X))
VX (one(X) — truthVal(X))
VX (exists(X) — JY assign(X,Y))
VX (forall(X) — JY assign(X,Y))
VXVY (assign(X,Y) A ~truthVal(Y) — error).
By exploiting the well-known technique of saturation [1&F pro-
ceed to perform the universal check as follows:
—saturate — saturate
VXVY (forall(X) A truthVal(Y) A
saturate — assign(X,Y))
VXVY (nil(X) A truthVal(Y) — assign(X,Y))
VPVNVOVZ(cl(P1, P2, P3, N1, N2, N3) A

3
/\ assign(P;, O) A one(O)A
i=1
3
/\ assign(N;, Z) A zero(Z) — saturate).
i=1
This completes the definition af.

We can show thap is satisfiable iff(D, ¥) Fsus error, and
the claim follows.

coN2ExPTIME “*-hard Combined Complexity

By reduction from the complement of finite tiling extensidar a
grid of double-exponential size, decide whether a top-ibmgtex-
ists that cannot be extended into a grid tilih/e define a database
D, andX € WATGD™ such that the instance of finite tiling exten-
sion is negative ifi D, X) Esus g, whereq is 0-ary predicate.

6. ADDING DISJUNCTION

An interesting question that comes up is h8MMS-QAns is af-
fected if we extendVATGD ™ with disjunction in rule-heads. Dis-
junction is a crucial feature for KR and database query laggs;
thus,WATGD ™" deserves our attention. We consigermal dis-
junctive tuple-generating dependencies (NDTGafghe form

YXVY <¢(X7 Y) - \n/ 3Z; i(X, Zi)> ;

i=1

where p is a conjunction of literals, and; is a conjunction of
atoms; we writeTGD ™" for the corresponding class. Extending
weak-acyclicity with disjunction is done in the obvious wax
sety € TGD™V is weakly-acyclic if no cycle inPoG(XH"),
whereX ™" is obtained from= by removing the negative literals
and converting the disjunction into a conjunction, corgarspecial
edge. The corresponding class is dend/édTGD™". Similarly

to NTGDs, we exploit the notion of homomorphism to define when
an interpretation is a model of a set of NDTGDs. For a datalbase
and asek € TGD™Y, SMS(D,Y) is defined, as for NTGDs, via
the second-order formusM|[D, %], which is obtained by simply
applying the operatory,;.s to every literal occurring irD andX.

6.1 Complexity of Query Answering

Weak-acyclicity can be enriched with disjunction in theerul
heads without paying a price in terms of complexity. As welsha
see, the reason for this is the fact that we can simulaterdispn
using existential quantification and stable negation. Vdsvsthat:

THEOREM 12. SMS-QAns(WATGD™V) is

¢ 1Y -complete in data complexity, and
e coN2EXPTIME""-complete in combined complexity.

The lower bounds hold for predicates of bounded arity, andsCQ
consisting of a singl@-ary predicate.

The lower bounds are immediately inherited from Theorem 6;
thus, in the rest of this section, we concentrate on the upmands.
We show that the problem in question can be reduced in poliailom
time into query answering under (non-disjunctive) NTGD# &
databaseD, a set> ¢ WATGD ™V, and a query; € BCQ™:

LEMMA 13. A databaseD’ and a set>’ € TGD™, which does
not depend orD, can be constructed in polynomial time such that
(D, %) Eswus qiff (D', %) Fsus g

Before we proceed with the construction Bf andY’, let us
clarify thatX' is, in generalnotweakly-acyclic. Once we defirg’
below, we will explain, via an example, the reason witiyiolates
weak-acyclcity, and we will discuss why Lemma 13 is still fuse
for our purposes.

5This problem is known to b&Z -hard for a grid of polynomial
size; see, e.g., [12]. Interestingly, the same constmaimws that
for a grid of double-exponential size it is NXETIME""-hard.



Database. The databas@®’ is obtained fromD by adding suffi-
ciently many indices for the disjuncts k. In particular, assuming
thatk > 0 is the maximum number of disjuncts occurring in the
head of a NDTGD of,

D' = D U {nil(%),idxi(c1),...,idxx(ck)}.

This completes the construction bBf

NTGDs. Before defining™’, let us explain how a NDTGE € ¥,
which has the general form given at the beginning of the gegti
can be simulated via a sEt, of (non-disjunctive) NTGDs. Clearly,
if o is already non-disjunctive, thend, = {o}. Assume now that
o is disjunctive. First, we need to guess a disjunct pfvhich can
be done via the sétf"*** consisting of the NTGDs:
VXVY (p(X,Y) = 3I13Zt,(1,X,Z))
VIVXVZ(to(I,X,Z) A —idxi(I) A ... A

—idxn(I) — false),

whereZ = Zi,...,Z,, andfalse is a0-ary predicate that is
forced to be false in every stable model via the rule

false A —aux — aux,

which also belongs t&2““**. Depending on the previous guess, we
should infer the right disjunct from the headafwhich is done via
the set=/*" consisting of the NTGDs:
VIVXVZ(to(I,X,Z) A idx;(])
— (X, Z;)), for eachi € [n].
Finally, we should ensure stability, that is, the first NTGDI wot
support any new disjunct from the headcoif one is already true.
This is done via the sé&t!*® consisting of the NTGDs:
VXVYVZVIVN (p(X,Y) ANbi(X,Z;) A idxi(I) A
nil(N) — t, (I, X, N ', Z;, N}, ,)), for eachi € [n],
whereNY = N, ..., N consisting o |Z,| +. . . +|Z,|) variables.
The set%, is defined agxg“e>* U B&er U £5fe), while &' is

defined ad J, .. Xo. It can be shown thatD,X) f=sus g iff
(D', %) Esums q, and Lemma 13 follows.

Although we have Lemma 13 in place, we cannot inherit yet the
desired upper bounds from our resultsSiiS-QAns(WATGD ™),
since in general’ violates weak-acyclicity.

Example 5.Consider the sef € WATGD ™"
VX (p(X) — 3Y s(X,Y))
VX(r(X) = p(X)Vs(X,X)).
According to our constructiort,’ contains (among others)
VX (p(X) — 3V s(X,Y))
VIVX (to(I, X) A idx1 (1) — p(X))
VXVY (r(X) A s(X,X) Addx2(I) Anil(N) — to (I, X)).
Due to the first rule, in the position graph we have the specige
(p[1], s[2]). In addition, due to the other rules, we have the regular
edges(t-[2], p[1]) and(s[2], t+[2]). Therefore, we have a cycle in

the position graph that contains a special edge, which aaghat
Y is not weakly-acyclic. n

Even if ¥’ is not weakly-acyclic, we can show that the new cy-
cles in the position graph that destroy weak-acyclicityterenless.
As it can be verified in Example 5, these cycles do not encogle th

situation where the generation of a term in a certain positauses
the generation of some other term in the same position, vevieh-
tually leads to an infinite generation of terms. By using faid,

we can show that Propositions 9 and 11, which were decisive fo
the analysis performed in the previous section, holdar This,
combined with Lemma 13, gives us the desired upper bounds.

7. EXPRESSIVE QUERY LANGUAGES

It turns out that the class of weakly-acyclic NTGDs, focaogsi
on our new approach to stable negation, gives rise to expeess
database query languages. Interestingly, the languagsd s
WATGD™ with cautious (resp., brave) stable model semantics cap-
tures preciselyI} (resp.,2%). Cautious (resp., brave) reasoning
refers to the approach where the answer to the query is ceahput
by considering the intersection (resp., union) of the ulyitey sta-
ble models. In the sequel, we introduce the new query laregjag
analyze their complexity, and demonstrate their practiglavance
by exhibiting prominent queries that can be naturally espee in
WATGD™. We finally investigate their expressive power.

7.1 New Query Languages

A WATGD™ query is a pairX, q), whereX € WATGD™ is
the query program, ang/n is a predicate not occurring in the
body of an NTGD. Theextensional (database) schemfY, de-
notededb(X), consists of all the extensional predicates@f(X),
whose values are given via an input database, whiletieasional
schemaof X, denotedidb(X), consists of all the intensional predi-
cates ofsch(X), whose values are computed by the program. Given
a databas® overedb(X), the answer t@) = (X, ¢) over D under
the cautiousstable model semantics is defined as

QD) ={t € C" | (D,X) =sums q(t)}.
The answer td@) over D under thebravestable model semantics is
Q(D)={te C"|3IM € SMS(D,%), M E q(t)}.

Let WATGD_ and WATGD,' be the query languag&/ATGD™
with cautious and brave stable model semantics, respbctivbe
query evaluation problem for a query langua@eis as follows:
given a databas®, a queryQ € Q, and a tuple;, decide whether
t € Q(D); ifitis C-complete, then we say tha is C-complete.

Computational Complexity
By exploiting the complexity analysis performed in Sectirit is
not difficult to show that:

THEOREM 14. Q is D-complete in data complexity, arc+
complete in combined complexity, where

¥, if Q = WATGD_,
D =
P if Q =WATGDy,
and
coN2EXPTIMEM, if Q = WATGD_,
C =

N2EXPTIME™, if @ =WATGD,'.

The lower bounds hold even for predicates of bounded arity.

Applications

The obtained query languages can be employed to solve iladec
ative way problems that lie at the second level of the polyiabhi-
erarchy. For example, by using our languages, we can dewis# n



encodings for the following problems: (i) consistent quary
swering under weakly-acyclic TGDs relative to subset nex&0];
(i) satisfiability for 2-QBF; and (iii) an interesting vation of
graph k-colorability, which generalizes the well-known problem
CERT3COL [29]. Due to space reasons, we focus only on (ii).

Satisfiability of 2-QBF. As shown in Section 5.3, 2-QBFcan be
reduced taSMS-QAns(WATGD™). The given formulap is en-
coded in a databasP,, and a fixed seE € WATGD™ is con-
structed such thag is satisfiable iff(D,, X) Fsus error, where
error is a propositional predicate. By using this construction, w
can show that 2-QBd-can be decided usingyATGD,’; notice that

it cannot be decided usinggATGD_', unless the polynomial hier-
archy collapses. We define the query

Q = (XU {—error — ans},ans) € WATGD,.

For every 2-QBE formula ¢, ¢ is satisfiable iff the empty tuple
belongs toQ(D.,), i.e., there existd4 € SMS(D,,X) such that
M = ans. Analogously, 2-QBFE can be decided usinggATGD,.

7.2 Expressive Power

We proceed to investigate the expressive power of our newyque
languages. For a query langua@ewe say that itebsolute expres-
sive poweris C, whereC is a complexity class, writte@ = C, if
it expresses exactly the queries withdata complexity. For two
language2 and Q’, we write Q < Q’, if for each quenQ € Q,
we can construct a quely)’ € Q' such that)(D) = Q' (D), for
every databas®. Q' is more expressivthan Q, written @ < Q’,
if @ <Q £ Q,while QandQ’ have thesame expressive power
writtenQ = Q',if 9 < Q' < Q.

Two query languages that are extremely important for oul-ana
ysis areDATALOG;"", wheres € {c,b}. These languages are
defined in the same way &8ATGD_ with the only difference that
the query program is a set of NDTGDs of the form

VXYY <<p(X, Y) - \/ mx)) ;

wherep; is a single predicate, i.e., NDTGDs where the heads are
existential-free disjunctions of atoms. InterestingWATGD_ and
DATALOG,"Y have the same expressive power:

THEOREM 15. WATGD_ = DATALOG."".

DATALOG_"" expresses exactly the queries wiily data com-
plexity [14]. By Theorem 14WATGD; is in IT% in data complex-
ity, and the ‘<” direction follows. Consider now ®ATALOG_"Y
query@ = (3, q). We construct the quer®’ = (X', q’), where
Y is defined as follows.

Simulate Predicates.We uniquely identify each predicatein >
via an atonpred_(-). This is done using the following set of rules:
for eachp € sch(X),

— 3X pred, (X),
and for each pair of distinct predicatess € sch(X),
VX (pred,(X) Apred, (X) — false).

Notice thatfalse is a speciaD-ary predicate that is forced to be
false in every stable model via the usual auxiliary réitase A
—aux — aux, Whereaux ¢ sch(X).

Simulate Disjunction. We proceed to simulate disjunction. We
could apply the construction given above for showing Lemi®a 1
However, since the query prograh is existential-free, we can

present a simplified version of it, which will allows us to ias
verify that the obtained séf’ of NTGDs is weakly-acyclic. For-
mally, for each rulep in X of the form

p1(X) V...V pm(X) = o(X,Y),

we have in>’ the following NTGDs:

VXVY (p(X,Y) = 3Zt,(Z,X))

VZVX (tp(Z,X) A —pred, (Z) A...

—pred, (Z)— false)
VZVX(to(Z,X) A pred, (Z) — pi(X)), for eachi € [m]
VXVYVZ(p(X,Y) Api(X) A
pred, (Z) — t,(Z, X)), for eachi € [m]

VX (q(X) — ¢'(X)).
We can show tha® (D) = Q'(D), for every databas®. More-
over, in the position grapti of ()" the only special edges are
edges of the forn{-,t,[1]), due to the first NTGD above, while
there are no edges of the forft,[1], -) since there is no NTGD in
¥ with a body-variable that appears at positigiil] and is also
propagated to the head. Thereforedrthere is no cycle that con-
tains a special edge, which implies thzte WATGD™, and Theo-

rem 15 follows. By employing a similar construction, we canws
that Theorem 15 holds even for the brave semantics:

A

THEOREM 16. WATGD, = DATALOG,"".

As already mentioned abovBATALOG."Y expresses exactly
the database queries that can be decidellfnin data complex-
ity [14]. Moreover, DATALOG,"" expresses exactly the queries
that can be decided iBZ in data complexity [14]. Consequently,
by Theorem 14, which establishes the desired data complemit
per bounds, and Theorems 15 and 16, we obtain the following:

THEOREM 17. It holds that,
¥, if s=c,
WATGD;,

»y, if s=b.

By exploiting the complexity analysis in Section 6, we caawh

that: WATGD;"" is IT% -complete, ifs = ¢, andZ% -complete, if
s = b, both in data complexity. Thus, an immediate consequence

of Theorem 17 is that disjunction does not add expressiveepow

THEOREM 18. It holds that,

WATGD_ = WATGD."Y ~ WATGD, = WATGD,"".

It remains to understand how the different approaches tiesta
model semantics affect expressiveness. We would like tqoaoe
in terms of expressive power, our new approach with the LP ap-
proach. To this end, we consider the class of normal ruless rodod
after Skolemizing weakly-acyclic sets of N(D)TGDs. Fortpal

SWATGD Y = {sk(X) | £ € WATGD "V},

wheresk(X) is the set of normal rules obtained after Skolemizing
the N(D)TGDs ofX. By Theorem 1, the LP approach coincides
with our approach when we focus on Skolemized NDTERsd
thus we simply need to compa¥®ATGD ', wheres € {c, b}, with

8In fact, Theorem 1 considers only NTGDs, but it can be easily
extended to NDTGDs.



SWATGD; andSWATGDS"" relative to our new stable model se-

mantics. By employing a simple complexity-theoretic arguity it

can be shown that our new approach gives rise to more exypeessi
query languages than the LP approach when disjunction ialnot

lowed, assuming that the polynomial hierarchy does notapsk.
In particular, it is possible to show th&WATGD_ is in coNP and
SWATGDy is in NP, which immediately implies that:

THEOREM 19. If NP C ¥ andcoNP C 117, then

WATGD, > SWATGD_ WATGD,' > SWATGD,,.

Now, if disjunction is allowed to appear in rule-heads, tiies
LP approach gives rise to equally expressive languages:

THEOREM 20. It holds that,
WATGD_ = SWATGD_."Y  WATGD, = SWATGD,"".

8. CONCLUSIONS

We propose a new approach to stable model semantics for NT-

GDs, based on a recent characterization of stable modetsrnrst
of second-order logic [18], that can be directly applied.ies with
existentially quantified variables without requiring Skwlization.
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reconciled with our new approach to stable negation, andbisgo
precise complexity results for query answering. Howeveceowe
focus on stickiness and guardedness query answering beaome
decidable. Although for sticky sets of NTGDs this was expédgct
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