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ABSTRACT
Normal tuple-generating dependencies (NTGDs) are TGDs en-
riched with default negation, a.k.a. negation as failure. Query an-
swering under NTGDs, where negation is interpreted according to
the stable model semantics, is an intriguing new problem that gave
rise to flourishing research activity in the database and KR commu-
nities. So far, all the existing works that investigate thisproblem,
except for one recent paper that adopts an operational semantics
based on the chase, follow the so-called logic programming (LP)
approach. According to the LP approach, the existentially quan-
tified variables are first eliminated via Skolemization, which leads
to a normal logic program, and then the standard stable modelse-
mantics for normal logic programs is applied. However, as wedis-
cuss in the paper, Skolemization is not appropriate in the presence
of default negation since it fails to capture the intended meaning
of NTGDs, while the operational semantics mentioned above fails
to overcome the limitations of the LP approach. This revealsthe
need to adopt an alternative approach to stable model semantics that
is directly applicable to NTGDs with existentially quantified vari-
ables. We propose such an approach based on a recent characteriza-
tion of stable models in terms of second-order logic, which indeed
overcomes the limitations of the LP approach. We then perform
an in-depth complexity analysis of query answering under promi-
nent classes of NTGDs based on the main decidability paradigms
for TGDs, namely weak-acyclicity, guardedness and stickiness. In-
terestingly, weakly-acyclic NTGDs give rise to robust and highly
expressive query languages that allow us to solve in a declarative
way problems in the second level of the polynomial hierarchy.

1. INTRODUCTION
Rule-based languages lie at the core of several areas of central

importance to databases and artificial intelligence, such as data ex-
change and integration, deductive databases, and knowledge rep-
resentation and reasoning, to name a few. The well-knowntuple-
generating dependencies (TGDs)[6] (a.k.a.existential rules[4] and
Datalog± rules[9]) form a prominent rule-based formalism. TGDs
are implications of the form∀X∀Y(ϕ(X,Y) → ∃Zψ(X,Z)),
whereϕ and ψ are conjunctions of (positive) atoms, and they
essentially state that certain tuples in a database imply the pres-
ence of some other tuples in the database (hence the term “tuple-
generating”). Notably, during the last decade, TGDs have found
many uses and applications in different areas of database and AI re-
search. For example, they have been used in formalizing and inves-
tigating inter-operability tasks such as data exchange [17]. TGDs
have also been used for metadata management tasks, and in par-
ticular to formalize operations on schema mappings [16]. Finally,
they have been employed for knowledge representation purposes,
and in fact as an alternative way to model ontologies [4, 9].

The main algorithmic task that is relevant for the above applica-
tions is conjunctive query answering: given a databaseD, a setΣ
of TGDs, a conjunctive queryq, and a tuplet of constants, decide
whether(D,Σ) |= q(t), or, equivalently, whether each (possibly
infinite) model of the logical theory(D ∧ Σ)1 is also a model of
q(t). Unfortunately, query answering under TGDs is undecidable;
see, e.g., [5], and [4, 7] for tight undecidable classes. This has led
to a flurry of activity to identify syntactic restrictions onsets of
TGDs that lead to decidable query answering; see, e.g., [4, 7, 8,
24]. In general, decidable classes of TGDs are based on the notions
of weak-acyclicity [17], introduced in the context of data exchange,
as well as guardedness [7] and stickiness [10], proposed in the con-
text of ontological reasoning.

Although decidable classes of TGDs are well-suited for model-
ing positive information, none of them can express default nega-
tion, a.k.a. negation as failure, which is a key feature for deductive
databases and knowledge representation.

Example 1.Consider the setΣ consisting of the rules

∀X(person(X) → ∃Y hasFather(X,Y ))

∀X∀Y (hasFather(X,Y ) → sameAs(Y, Y ))

∀X∀Y ∀Z(hasFather(X,Y ) ∧ hasFather(X,Z)∧

¬sameAs(Y,Z) → abnormal(X)),

which states that each person has at most one biological father; oth-
erwise, (s)he is abnormal. The above rules cannot be equivalently
expressed using (negation-free) TGDs.

One of the standard approaches to interpret negation is the sta-
ble model semantics [20], which is the main subject of this paper.
Other approaches include perfect model [28] and well-founded se-
mantics [19], which go beyond the scope of this work. Conjunc-
tive query answering under TGDs extended with default negation,
callednormal TGDs (NTGDs), w.r.t. the stable model semantics,
is an intriguing new problem that gave rise to flourishing research
activity in the database and KR communities. In [2, 25], acyclic-
ity and stratification conditions for NTGDs have been considered,
which give rise to formalisms that admit finite and/or uniquestable
models. In [3], a notion of stable models that can be directlyapplied
to NTGDs is proposed, and NTGDs that satisfy certain acyclicity
conditions are investigated. The classes that are based on guard-
edness and stickiness have been recently studied in [22] and[1],
respectively. A closely related work is [15], which focuseson dis-
junctive logic programs, where the so-calledFDNC programs are

1By abuse of notation,D refers to the logical formula given by the
conjunction of atoms occurring inD. This suffices since we adopt
the open world assumption.



proposed.FDNC programs combine default negation with func-
tion symbols, and decidability is obtained by restricting the rule
syntax to one of seven predefined forms.

The Logic Programming approach. All the above works, except
for [3] that we discuss below, follow what we call the logic pro-
gramming (LP) approach to stable model semantics for NTGDs.
This means that the existentially quantified variables are first elim-
inated via Skolemization, which leads to a normal logic program,
and then the standard stable model semantics for normal logic pro-
grams with function symbols is applied. Consider the setΣ of NT-
GDs given in Example 1. The first NTGD is replaced by the rule

hasFather(X, f(X)) ← person(X),

wheref is a Skolem function, while all the other NTGDs ofΣ
can be directly conceived as normal rules since they do not have
existentially quantified variables. The database{person(Alice)}
together with the obtained normal logic program have exactly one
stable modelM consisting of

person(Alice), hasFather(Alice, f(Alice)),

sameAs(f(Alice), f(Alice)).

It is easy to verify that the (Boolean) query

∃X(person(X) ∧ ¬abnormal(X))

is entailed byM , while the query

∃X(person(X) ∧ abnormal(X))

is refuted byM .

Is the LP Approach the Right One?

Although the LP approach has so far been considered as the stan-
dard approach to stable model semantics for NTGDs, we claim it is
not the right way to reconcile existentially quantified variables with
default negation. In fact, as we discuss below, we believe Skolem-
ization is not appropriate in the presence of stable negation since it
fails to capture the intuitive meaning of NTGDs. But let us first say
a few words about Skolemization and (positive) TGDs.

Skolemization and¬-free TGDs. In the absence of default nega-
tion, TGDs are essentially first-order theories, and conjunctive
query answering can be reduced to a satisfiability check of a first-
order formula. Given a databaseD, a setΣ of TGDs, a con-
junctive queryq, and a tuple of constantst, (D,Σ) |= q(t) iff
(D ∧Σ∧¬q(t)) is unsatisfiable. Furthermore, a classical result in
first-order logic guarantees that the formula(D ∧ sk(Σ) ∧ ¬q(t)),
wheresk(Σ) is obtained after Skolemizing the TGDs ofΣ, is equi-
satisfiable with(D ∧ Σ ∧ ¬q(t)). Roughly, this is true since, for
each tupleu of terms replacing the universally quantified variables
occurring in a TGDσ, each existentially quantified variableZ oc-
curring inσ can be satisfied by a different witness, which can be
represented byfσ,Z(u), wherefσ,Z is a Skolem function. More-
over, due to Herbrand’s theorem, the satisfiability of a theory can be
checked by considering only Herbrand interpretations, that is, in-
terpretations associating constants and functions with themselves.
Hence, wheneveru 6= u′, it is safe to assume thatf(u) andf(u′)
are different objects. Similarly, we can assume that Skolemterms
using different function symbols represent different objects, and
also that they are different from any constant in the theory.Due to
the above key results, it is easy to see that Skolemization can be
safely applied in the absence of default negation.

Skolemization and normal TGDs. In contrast to¬-free TGDs,
Skolemization is not appropriate in the presence of defaultnega-
tion. In fact, a result which guarantees that Skolemizationprovides
an equisatisfiable theory in the case of NTGDs is missing. This is
illustrated by the following example.

Example 2.Let D = {person(Alice)}, andΣ be the set of
NTGDs in Example 1. FromD andΣ there is no evidence that
Bob is not the father ofAlice, and thus, it is intuitive to say that

q = ¬hasFather(Alice,Bob)

is not entailed by(D,Σ). In fact, it is natural to consider

{person(Alice), hasFather(Alice,Bob),

sameAs(Bob,Bob)},

as a stable model of(D ∧ Σ), which does not satisfyq. However,
(D, sk(Σ)) |= q, wheresk(Σ) is the set of normal rules obtained
by SkolemizingΣ, since the unique stable model of(D ∧ sk(Σ)),
whereBob 6= f(Alice), satisfiesq.

From the above discussion, it is apparent that the LP approach to
stable model semantics for NTGDs does not capture the intended
meaning of NTGDs. This reveals the need to adopt an alterna-
tive approach to stable model semantics for NTGDs, which is more
general than the LP approach in the sense that is directly applica-
ble to normal rules with existentially quantified variables. This has
also been recognized by other researchers, and there are attempts
in the literature to resolve this issue. Notably, Baget et al. [3] pro-
pose a notion of stable models, which relies on the well-known
chase procedure, that can be directly applied to NTGDs without re-
quiring Skolemization. Roughly, given a databaseD and a setΣ
of NTGDs, a (possibly infinite) set of atomsM is a stable model
of (D ∧ Σ) if it can be obtained by the chase procedure starting
fromD and applying the TGDs ofΣ+, whereΣ+ is obtained from
Σ by eliminating the negative literals, under the assumptions that
(i) all TGD applications are sound, i.e., none of the negative liter-
als of a TGD can be found inM (or, in other words, the TGD is
not blocked), and (ii) the chase is complete, i.e., all the applicable
TGDs that are not blocked are eventually being applied. Although
this is an interesting approach, there are still simple cases in which
we infer unexpected answers. For instance, if we consider again
Example 2, and we apply the operational semantics of [3], then we
unexpectedly conclude that(D,Σ) |= q. The reason for this is the
fact that the chase procedure always invents a new null value, but
never a constant, in order to satisfy an existentially quantified vari-
able in the head of a TGD. This implies that there is no way to have
the atomhasFather(Alice,Bob) in a stable model of(D ∧ Σ),
which in turn implies that(D,Σ) |= q.

Another promising approach to default negation, which avoids
Skolemization, is the so-calledequality-friendly well-founded se-
mantics (EFWFS)[21]. Although this approach deviates from the
idea of stable models, we would like to include it in our discus-
sion since in some cases it yields the intended query answer.The
key idea is that, given a databaseD and a setΣ of NTGDs, the
meaning of(D,Σ) may be captured by the set of all normal pro-
gramsΠ obtained by (i) unifying constants occurring inD (note
that the unique name assumption is not adopted), and (ii) replac-
ing each NTGDσ ∈ Σ by arbitrary instances ofσ, at least one
for each possible variable assignment for its body; an instance
of a normal TGD∀X∀Y(ϕ(X,Y) → ∃Zψ(X,Z)) is simply
a ruleϕ(a,b) → ψ(a,c), wherea,b, c are tuples of constants.
Let I(D,Σ) be the set of all programsΠ obtained from(D,Σ)
as described above. The equality-friendly well-founded models



of (D,Σ) are defined as{WFS(Π) | Π ∈ I(D,Σ)}, where
WFS(Π) are the well-founded models ofΠ. Interestingly, if we
apply the EFWFS to Example 2, then we get the expected answer.
Unfortunately, as we explain below, this is not always the case.

Example 3.Let D = {person(Alice)}, andΣ be the set of
NTGDs given in Example 1. One expects that the query

q = ¬abnormal(Alice)

is entailed by(D,Σ) since there is no evidence thatAlice has two
biological fathers, and thus that she is abnormal. However,by fol-
lowing the EFWFS,q is not entailed. Observe that at least one
normal programΠ ∈ I(D,Σ) contains the rules

person(Alice) → hasFather(Alice,Bob)

person(Alice) → hasFather(Alice, John),

whereBob 6= John . Therefore, there exists an equality-friendly
well-founded model of(D,Σ) whereAlice has two fathers, and
thus the atomabnormal(Alice) is entailed.

Research Challenges.In order to overcome the limitations dis-
cussed previously, we focus on the following questions:

• How can we define a new approach to stable model semantics
for NTGDs, such that it is directly applicable to rules with
existentially quantified variables without requiring Skolem-
ization?
• What is the data and combined complexity of conjunctive

query answering under the main classes of NTGDs (based on
weak-acyclicity, guardedness and stickiness) w.r.t. our new
approach to stable models? Notice that the query may also
contain negation.
• How is conjunctive query answering affected if, in addition,

we allow disjunction to appear in rule-heads?
• How is the expressive power affected by allowing default

negation and existentially quantified variables to coexist?
Does disjunction in rule-heads increase the expressive power
of the various formalisms?

Our Contributions

Our answers to the above questions, and the main contributions of
the present paper, can be summarized as follows:

◮ We provide a precise definition of our new approach to stable
models for normal TGDs, which in turn is based on a recent charac-
terization of stable models via second-order logic [18]. The stable
models of a databaseD and a setΣ of NTGDs are defined as the
classical models of a second-order formulaSM[D,Σ], which goes
beyond MSO and encodes the vital properties of stable models. We
formally show that our new approach is indeed a generalization of
the LP approach (Theorem 1). We then establish a sufficient cri-
terion for the decidability of query answering under stablemodels
via the so-calledstable tree model property(Theorem 2).

◮ We proceed to understand how conjunctive query answering
behaves under NTGDs interpreted according to our new approach.
We show that weak-acyclicity preserves the decidability ofquery
answering (Theorem 3). However, if we focus on stickiness and
guardedness, then query answering is undecidable (Theorems 4
and 5, respectively). Although for sticky NTGDs this was expected,
for guarded NTGDs this is a rather surprising result. We showthat
the tree model property, the key property of guarded-based logics,
is not preserved when stable negation and existentially quantified
variables coexist. The reason for this can be found in the fact that

we can “guess” an appropriate guard, whose domain can be re-
stricted to an arbitrary set of values, and thus the propertyof guard-
edness that only atoms derived from a common guard ancestor can
interact, is destroyed.

◮ Query answering under weakly-acyclic sets of NTGDs isΠP
2 -

complete in data complexity, andcoN2EXPTIMENP-complete in
combined complexity, even for predicates of bounded arity,and
¬-free atomic queries (Theorem 6).

◮ Interestingly, weak-acyclicity can be enriched with disjunc-
tion in the rule-heads without paying a price in terms of complex-
ity (Theorem 12). The reason for this unexpected outcome is the
fact that we can simulate disjunction using existentially quantified
variables and stable negation.

◮ The class of weakly-acyclic NTGDs gives rise to powerful
query languages that express exactly the queries withΠP

2 (resp.,
ΣP

2 ) data complexity when the cautious (resp., brave) semantics is
adopted (Theorem 17); this implies that disjunction in rule-heads
does not add expressive power (Theorem 18). This expressivity
result exposes an additional advantage of our approach compared to
the LP approach, the operational semantics of [3], and the EFWFS
of [21], that is, we obtain languages that can be used for declarative
solving of problems that lie at the second level of the polynomial
hierarchy. To justify this statement, we devise novel encodings for
central problems in the second level of the polynomial hierarchy:
(i) consistent query answering under weakly-acyclic TGDs relative
to set-based repairs [30]; (ii) satisfiability for quantified Boolean
formulas with two alternations of quantifiers (2-QBF); and (iii) an
interesting variation of graphk-colorability, which generalizes the
well-known problem CERT3COL [29].

2. PRELIMINARIES
General Definitions. We define the following pairwise disjoint
countably infinite sets of symbols: a setC of constants, a setN of
labeled nulls(used as placeholders for unknown values), and a set
V of variables(used in queries and dependencies). Different con-
stants represent different values (unique name assumption), while
different nulls may represent the same value. We denote byX

sequences (or sets, with a slight abuse of notation) of variables
X1, . . . , Xk with k > 0. Let [n] = {1, . . . , n}, for anyn > 1.

A (relational) schemaR is a (finite) set ofrelational symbols
(or predicates). We writep/n for the fact thatp is ann-ary pred-
icate. A term is a constant, null or variable. Anatomic formula
overR (or R-atom) has the formp(t), wherep ∈ R and t is
a tuple of terms. AnR-literal is either anR-atom (i.e., a posi-
tive literal), or anR-atom preceded by the negation symbol “¬”
(i.e., a negative literal). For a literalℓ, we writedom(ℓ) for the set
of its terms; this notation naturally extends to sets of literals. For
brevity, conjunctions of literals are often identified withthe sets of
their literals. A (total or two-valued) R-interpretationI is a set of
R-literals which contain only constants and nulls such that,for ev-
eryR-atomp(t1, . . . , tn), where(t1, . . . , tn) ∈ dom(I)n, either
p(t1, . . . , tn) ∈ I or ¬p(t1, . . . , tn) ∈ I . We writeI+ (I−) for
the set of positive (negative) literals ofI .

A homomorphismfrom a set of literalsL to a set of literalsL′

is a mappingh : C ∪N ∪V → C ∪ N ∪ V that is defined on
dom(L) and is the identity onC, andp(t1, . . . , tn) ∈ L (resp.,
¬p(t1, . . . , tn) ∈ L) implies p(h(t1), . . . , h(tn)) ∈ L′ (resp.,
¬p(h(t1), . . . , h(tn)) ∈ L

′).
A databaseD over a schemaR is a finite set ofR-atoms such

thatdom(D) ⊂ C. We sometimes treat a databaseD as a logical
formula given by

∧

p(t)∈D
p(t), that is, the conjunction of atoms

occurring inD. An R-interpretationI is a modelof D, denoted



I |= D, if there exists a homomorphismh such thath(D) ⊆ I .
Sinceh is the identity ondom(D), I |= D iff D ⊆ I .

Normal TGDs. A normal tuple-generating dependency (NTGD)σ
is a constant-free2 first-order formula of the form

∀X∀Y(ϕ(X,Y)→ ∃Z ψ(X,Z)),

whereϕ (resp.,ψ) is a conjunction of literals (resp., atoms), with
variables fromX ∪ Y (resp.,X ∪ Z). If there are no negative
literals inϕ, thenσ is a TGD. We focus onsafeNTGDs, i.e., every
variable in a negative literal occurs also in a positive literal in ϕ.
Formulaϕ is thebodyof σ, denotedB(σ), while ψ is thehead
of σ, denotedH (σ). The schema of a setΣ of NTGDs, denoted
sch(Σ), is the set of predicates occurring inΣ. We sometimes
treat a setΣ of NTGDs as a logical formula given by

∧

σ∈Σ σ,
that is, the conjunction of NTGDs inΣ. A sch(Σ)-interpretation
I is a model of an NTGDσ ∈ Σ, denotedI |= σ, if, whenever
there exists a homomorphismh such thath(B(σ)) ⊆ I , then there
existsh′ ⊇ h, calledextensionof h, such thath′(H (σ)) ⊆ I . I is
a modelof Σ, denotedI |= Σ, if I |= σ for eachσ ∈ Σ. The class
of all (finite) sets of NTGDs is denotedTGD¬.

Normal (Boolean) Conjunctive Queries.An n-ary normal con-
junctive query (NCQ)q over a schemaR, wheren > 0, is a first-
order formula of the form

∃Y

(

m
∧

i=1

pi(X,Y) ∧

m+k
∧

j=m+1

¬pj(X,Y)

)

,

wherem > 1, k > 0, {pi}i∈[m+k] ⊆ R, each atom contains
variables from(X ∪Y) ⊂ V (and possibly constants ofC), and
|X| = n. A 0-ary NCQ is callednormal Boolean conjunctive
query (NBCQ). We focus onsafequeries, i.e., every variable in a
negative literal occurs also in a positive literal. Theanswerto an
n-ary NCQq of the form∃Y ϕ(X,Y) over an interpretationI ,
denotedq(I), is the set of all tuplest ∈ Cn for which there exists
a homomorphismh such thath(ϕ(X,Y)) ⊆ I andh(X) = t. A
NBCQ q has only the empty tuple as possible answer, and it has a
positiveanswer overI , denotedI |= q, if q(I) 6= ∅. The class of
all (finite) normal (B)CQs is denoted(B)CQ¬.

3. STABLE MODEL SEMANTICS: A NEW
APPROACH

We proceed to introduce our new approach to stable model se-
mantics for NTGDs that adopts a recent characterization of stable
models in terms of second-order logic [18]. We first recall the logic
programming (LP) approach considered so far (see, e.g., [1,22,
25]). Since minimality is one of the key properties of stablemod-
els, we then recall, by means of a simple example, how the (subset)
minimal models of a databaseD and a setΣ of NTGDs can be
characterized via a second-order formula. We then proceed to ex-
plain why this formula fails to precisely capture the stablemodels
of D andΣ, and how it can be modified in order to accurately en-
code the properties of stable models; this leads to our new approach
to stable model semantics. Finally, we introduce the main problem
tackled in this work, that is, query answering under NTGDs inter-
preted according to our new approach.

3.1 The Logic Programming Approach
Consider a databaseD, and a setΣ ∈ TGD¬. Following the LP

approach to stable model semantics for NTGDs, we first need to
2Constants are excluded for technical clarity; however, ourresults
can be extended to NTGDs with constants.

transformD andΣ into a normal logic programΠD,Σ. If existen-
tially quantified variables occur in the head of an NTGD ofΣ, then
they are eliminated via the standard process ofSkolemization. The
Skolemization of an NTGDσ of the form∀X∀Y(ϕ(X,Y) →
∃Zψ(X,Z)) is the normal ruleψ(X, fσ(X,Y)) ← ϕ(X,Y),
wherefσ is a vector of function symbolsfσ,Z , one for eachZ ∈ Z.
Then, the so-called grounding ofΠD,Σ, denotedground(ΠD,Σ),
is computed by constructing all the ground instances of a rule ρ in
ΠD,Σ, i.e., all the rules that can be constructed by replacing each
variable ofρ with a term from the Herbrand universe ofΠD,Σ, that
is, all the terms that can be formed using constants and function
symbols occurring inD andΣ.

Consider asch(Σ)-interpretationI . I is a stable model ofΠD,Σ

if I is a (classical) model ofΠD,Σ, and a (subset) minimal model
(w.r.t. positive literals) of the so-called reduct ofΠD,Σ w.r.t.I , writ-
tenΠI

D,Σ, obtained fromground (ΠD,Σ) as follows: first, remove
all the rules with a negative literal not inI , and then eliminate the
remaining negative literals. Intuitively,I is a stable model ofΠD,Σ

if it can be obtained by “executing”ΠD,Σ usingI as an oracle for
the negative literals. The stable models ofD andΣ are defined as
the stable models of the normal logic programΠD,Σ.

3.2 Minimal Models
The minimality of a (classical) model of a databaseD and a setΣ

of NTGDs can be captured via a second-order formulaMM[D,Σ].
Consider the databaseD = {p(0)}, and the setΣ of NTGDs con-
sisting of

∀X(p(X) ∧ ¬t(X)→ r(X)) ∀X(r(X)→ t(X)).

The second-order formulaMM[D,Σ] is defined as follows:

D ∧ Σ ∧

¬∃p⋆∃t⋆∃r⋆





∧

u∈{p,t,r}

(∀X(u⋆(X)→ u(X))) ∧

¬





∧

u∈{p,t,r}

(∀X(u(X)→ u⋆(X)))



 ∧

p⋆(0) ∧ ∀X(p⋆(X) ∧ ¬t⋆(X)→ r⋆(X)) ∧

∀X(r⋆(X)→ t⋆(X))

)

,

wherep⋆, t⋆, r⋆ are predicate variables. An interpretationI is a
model of the above formula if (i)I is a model of(D ∧ Σ), and (ii)
there is no way to obtain a model of(D∧Σ) from I by eliminating
a positive literal. In other words, the models ofMM[D,Σ] are
precisely the minimal models of(D ∧ Σ).

The syntactic transformation from(D ∧ Σ) into MM[D,Σ] is
actually circumscription, a logical approach, introduced by Mc-
Carthy [26], suitable for modeling what normally holds. Theidea
is to define, using first-order logic, both domain knowledge and so-
called abnormality predicates that identify instances of aclass that
violate the normal properties of that class; e.g., a bird that cannot fly
is abnormal, stored in a unary predicateabbird . To capture the intu-
ition that abnormality is exceptional, inference is restricted to those
models where the extension of the abnormality predicates ismini-
mal w.r.t. set inclusion. So, to transform(D ∧ Σ) into MM[D,Σ]
we basically apply circumscription where all the predicates inD
andΣ are conceived as abnormality predicates.

3.3 The New Approach
Our ultimate goal is to transform a databaseD and a setΣ of



NTGDs into a second-order formulaSM[D,Σ] that characterizes
the stable models ofD andΣ. Interestingly,SM[D,Σ] is obtained
by slightly modifyingMM[D,Σ]. But let us first expose the key
reason whyMM[D,Σ] fails to recognize that an interpretation is
not a stable model of(D ∧ Σ).

Consider the databaseD and the setΣ of NTGDs given in Sec-
tion 3.2. It can be verified that, according to the LP approach, D
andΣ do not have a stable model. Furthermore, sinceΣ does not
contain existentially quantified variables, the LP approach and our
new approach should coincide, and thus, the formulaSM[D,Σ]
should not have a model. Consider now the interpretationJ =
{p(0), t(0),¬r(0)}, which is clearly a model ofMM[D,Σ]. Dur-
ing the minimality check, the content of the predicatet that appears
in a negative literal may change. Indeed,J |= MM[D,Σ] since the
interpretationK = {p(0),¬t(0),¬r(0)}, which convertst(0) into
¬t(0), is not a model ofD andΣ. But, this is in a conflict with the
idea of stable models, where the reductΠJ

D,Σ is obtained by essen-
tially fixing in J the content of the predicates that appear in negative
literals ofΠD,Σ. This can be resolved by stating that¬t(X) holds
instead of¬t⋆(X), i.e.,SM[D,Σ] is obtained fromMM[D,Σ] by
replacing the atomt⋆(X) in ∀X(p⋆(X)∧¬t⋆(X)→ r⋆(X)) with
t(X); clearly,J is not a model ofSM[D,Σ].

The syntactic transformation from(D ∧ Σ) into SM[D,Σ] dis-
cussed above can be extended to arbitrary NTGDs. In what fol-
lows, we formalize this transformation, which will be at thebasis
of our new approach to stable model semantics for NTGDs. For
convenience, we employ the following notation. For predicatesp
ands of the same aritym > 0, (p 6 s) stands for the formula
∀X(p(X) → s(X)), whereX is a tuple ofm distinct variables.
If p = (p1, . . . , pn) and s = (s1, . . . , sn) are tuples of predi-
cates, wherepi andsi have the same arity, then(p 6 s) stands for
∧n

i=1 (pi 6 si), while (p < s) stands for(p 6 s) ∧ ¬(s 6 p). In
second-order logic, we apply the same notation to tuples of predi-
cate variables. Consider a setΣ ∈ TGD¬, and a databaseD over
sch(Σ). Letp = (p1, . . . , pn) be the list of predicates ofsch(Σ),
ands = (s1, . . . , sn) a list ofn distinct predicate variables. For a
literal ℓ occurring inD or Σ, we define

τp⊲s(ℓ) =







si(t), if ℓ = pi(t),

¬pi(t), if ℓ = ¬pi(t).

We defineτp⊲s(D) andτp⊲s(Σ) as the database and the set of NT-
GDs obtained by applyingτp⊲s to every literal inD andΣ, respec-
tively. UNA[D] is the formula

∧

c,d∈dom(D),c 6=d ¬(c = d), which
encodes the unique name assumption.SM[D,Σ] is defined as:

UNA[D] ∧D ∧ Σ ∧ ¬∃s((s < p) ∧ τp⊲s(D) ∧ τp⊲s(Σ)).

We are now ready to introduce our new approach to stable model
semantics for NTGDs.

Definition 1. (Stable Models) Consider a setΣ ∈ TGD¬, and
a databaseD over sch(Σ). A sch(Σ)-interpretationI is a sta-
ble modelof D andΣ if I is a model ofSM[D,Σ]. We define
SMS(D,Σ) as the set of stable models ofD andΣ.

The conceptual advantage of our new approach over the classical
LP approach is shown by the following example.

Example 4.LetD = {person(Alice)}, andΣ be the set of NT-
GDs given in Example 1. As discussed in Example 2, it is natural
to consider the interpretationI , where

I+ = {person(Alice), hasFather(Alice,Bob),

sameAs(Bob,Bob)},

as a stable model ofD andΣ, which in turn implies that

q = ¬hasFather(Alice,Bob)

is not entailed by(D,Σ), which is what we expect since fromD
andΣ there is no evidence thatBob is not the father ofAlice.
Recall that, according to the LP approach,I is not a stable model
of (D ∧ Σ). However,I |= SM[D,Σ], and thus, according to our
new approach,I is a stable model.

Our new approach directly deals with existentially quantified
variables without requiring Skolemization or grounding. The cru-
cial question though that we need to answer, in order to safely con-
clude that the new approach is a generalization of the LP approach,
is whether the two approaches coincide if we focus on dependen-
cies that can be treated by both of them, that is, Skolemized NT-
GDs; note that Definition 1 can be directly applied to normal logic
programs. The answer to this question is affirmative, and immedi-
ately follows from Corollary 1 in [18]. To avoid notational clutter,
SMSLP(·) andSMSSO(·) is the set of stable models according to
the LP and the new approach (which relies on second-order logic,
hence the subscript “SO”), respectively.3 Recall thatΠD,Σ is the
program obtained fromD andΣ by applying Skolemization.

THEOREM 1. Consider a databaseD, and Σ ∈ TGD¬. It
holds that,SMSLP(ΠD,Σ) = SMSSO(ΠD,Σ).

3.4 Query Answering
The answer to ann-ary NCQq overD andΣ under the stable

model semantics is defined as the set of tuples
⋂

M∈SMS(D,Σ)

{t ∈ C
n | t ∈ q(M)}.

A NBCQ q has apositiveanswer overD andΣ under the stable
model semantics, denoted(D,Σ) |=SMS q, if M |= q, for each
M ∈ SMS(D,Σ). For clarity, we focus on NBCQs; however, our
results can be extended to NCQs. The main decision problem tack-
led in this work is defined as follows;C is a class of sets of NTGDs
(e.g., weakly-acyclic, sticky, etc., which are defined below):

PROBLEM: SMS-QAns(C)
INPUT: DatabaseD, Σ ∈ C, andq ∈ BCQ¬.
QUESTION: Does(D,Σ) |=SMS q?

We assume, w.l.o.g., that both the database and the query useonly
predicates that already occur in the set of NTGDs.

A Criterion for Decidability

It is possible to establish a sufficient (semantic) condition for the
decidability ofSMS-QAns via the so-called stable tree model prop-
erty. To introduce this property, we first need to recall whatis the
treewidth of an interpretation. Atree decompositionof a (possibly
infinite) interpretationI is a labeled treeT = (V,E, λ), whereλ
is the labeling functionV → 2dom(I), such that: (i) for a (pos-
itive) literal p(t1, . . . , tn) ∈ I , there existsv ∈ V such that
λ(v) ⊇ {t1, . . . , tn}; and (ii) for every termt ∈ dom(I), the
set of nodes{v ∈ V | t ∈ λ(v)} induces a connected subtree of
T . Thewidth of T is maxv∈V {|λ(v)| − 1}. The treewidthof I
is the minimum width among all tree decompositions. Intuitively,
the treewidth of an interpretationI , which can be represented as a
graph via its Gaifman graph, measures how similarI is to a tree;
the smaller the treewidth, the closer the interpretation isto a tree.
We are now ready to introduce the stable tree model property:
3In the rest of the paper,SMS(·) without a subscript refers to the
set of stable models according to our new approach.



Definition 2. We say that a classC of NTGDs enjoys thestable
tree model propertyif the following holds: for every databaseD,
Σ ∈ C, andq ∈ BCQ¬, if (SM[D,Σ] ∧ ¬q) has a model, then it
has a model of finite treewidth.

The next result establishes that the stable tree model property
implies the decidability of query answering:

THEOREM 2. SMS-QAns(C) is decidable ifC is a class of NT-
GDs that enjoys the stable tree model property.

Let us sketch the proof of the above result. Consider a database
D, a setΣ ∈ C, whereC enjoys the stable tree model property, and
q ∈ BCQ¬. Since(D,Σ) |=SMS q iff (SM[D,Σ] ∧ ¬q) is unsat-
isfiable, it suffices to show that the problem whether(SM[D,Σ] ∧
¬q) is satisfiable is decidable. We can construct an MSO formula
SM[D,Σ]1 such that: (i)(SM[D,Σ]∧¬q) and(SM[D,Σ]1 ∧¬q)
are equisatisfiable; and (ii) if(SM[D,Σ]1 ∧¬q) is satisfiable, then
it has a model of finite treewidth. Therefore, by Courcelle’sclassi-
cal result, which states that the satisfiability problem forfragments
of MSO that enjoy the tree model property is decidable [11], we
get that the problem whether(SM[D,Σ] ∧ ¬q) is satisfiable is de-
cidable, as needed. The key idea underlying the construction of
SM[D,Σ]1 can be described as follows: we attach, via a first-order
formula, to every tuple of termst occurring in a model of(D ∧Σ)
a unique identifier; this allows us to accesst via a unary predicate
that stores all the valid identifiers. Then, we can rewriteSM[D,Σ]
in such a way that only unary predicates are quantified.

4. QUERY ANSWERING UNDER STABLE
MODELS: A CASE STUDY

The goal of this section is to investigate how the problem of
query answering under stable models behaves. We consider classes
of NTGDs that are based on the main decidability paradigms pro-
posed for TGDs, namely weak-acyclicity [17], stickiness [10] and
guardedness [7], and we study query answering.

4.1 Weak-Acyclicity
Weak-acyclicity is defined by posing an acyclicity condition on

the position (dependency) graph, introduced in [17], whichencodes
how terms are propagated during the “execution” of the program. A
position in a schemaR, writtenp[i], is a pair of ann-ary predicate
p ∈ R and an integeri ∈ [n], which represents thei-th attribute
of p. The set of positions ofR, denotedpos(R), is defined as
{p[i] | p/n ∈ R andi ∈ [n]}.

Definition 3. Theposition graphof a setΣ ∈ TGD is a directed
graphPoG(Σ) = (V,E), whereV = pos(sch(Σ)), andE is
defined as follows: for eachσ ∈ Σ of the form∀X(ϕ(X) →
∃Y ψ(X,Y)), for eachX ∈ X that occurs inψ, and for eachX
in ϕ in positionπ: (1) for each occurrence ofX in ψ in position
π′, there is a regular edge(π, π′) ∈ E; (2) for eachY ∈ Y, and
for each occurrence ofY in ψ in positionπ′, there is a special edge
(π, π′) ∈ E; and (3) no other edges occur inE.

Roughly speaking, a regular edge(π, π′) keeps track of the fact
that a term may propagate fromπ toπ′ during the “execution” ofΣ.
A special edge(π, π′′) keeps track of the fact that the propagation
of a value fromπ to π′ also creates a new value at positionπ′′.
We are now ready to define weakly-acyclic NTGDs. A setΣ of
NTGDs isweakly-acyclicif no cycle inPoG(Σ+), whereΣ+ is
obtained fromΣ by eliminating the negative literals, containing a
special edge exists. The corresponding class is denotedWATGD¬.

(a) 

(b) 

× 

  t(X,Y,Z)  → ∃W  s(Y,W)

    r(X,Y) ∧  p(Y,Z) → ∃W  t(X,Y,W)

  t(X,Y,Z)  → ∃W  s(X,W)

    r(X,Y) ∧  p(Y,Z) → ∃W  t(X,Y,W)

  t(X,YYYY,Z)  → ∃W  s(X,W)

    r(X,YYYY) ∧  p(YYYY,Z) → ∃W  t(X,Y,W)

Figure 1: Stickiness and marking; for brevity, the universal
quantifiers are omitted.

As one may expect, if a database and a weakly-acyclic set of NT-
GDs admit a stable model, then they admit a stable model of finite
size, and thus,WATGD¬ enjoys the stable tree model property.
Hence, by Theorem 2, we get that:

THEOREM 3. SMS-QAns(WATGD¬) is decidable.

The fact thatWATGD¬ enjoys the stable tree model property
is shown in two steps: (i) we establish that a stable modelM of a
databaseD and a setΣ of NTGDs (not necessarily weakly-acyclic)
is obtained by “executing”Σ, starting fromD, usingM as an ora-
cle for its negative literals, and (ii) we show that wheneverthe input
setΣ of NTGDs is weakly-acyclic, then its “execution” terminates.
In fact, the same approach is followed in Section 5 to pinpoint the
complexity of query answering under stable models for weakly-
acyclic sets of NTGDs, which is one of the main contributionsof
this work; thus, all the details are deferred to Section 5.

4.2 Stickiness
Let us first recall the key property underlying the class of sticky

sets of (positive) TGDs [10]. During the execution of the TGDs,
or, in other words, during the chase procedure, terms that are asso-
ciated (via a homomorphism) with variables that appear morethan
once in the body of a TGD (i.e., join variables) are always propa-
gated (or “stick”) to the inferred atoms. This is illustrated in Fig-
ure 1(a); the first set of TGDs is sticky, while the second is not. The
formal definition is based on an inductive marking procedurethat
marks the variables that may violate the semantic property of the
chase described above [10]. Roughly, during the base step ofthis
procedure, a variable that appears in the body of a TGDσ but not in
every head-atom ofσ is marked. Then, the marking is inductively
propagated from head to body as shown in Figure 1(b). Finally, a
set of TGDsΣ is sticky if no TGD in Σ contains two occurrences
of a marked variable. The notion of stickiness can be straightfor-
wardly extended to NTGDs: a setΣ of NTGDs is sticky if the set
of TGDs obtain by converting every literal¬p(t) occurring inΣ
into the atomp(t) is sticky [1]; the corresponding class is denoted
STGD¬. Although stickiness guarantees not only the decidability,
but also the data tractability of CQ answering under TGDs [10], the
situation changes for NTGDs under the stable model semantics:

THEOREM 4. SMS-QAns(STGD¬) is undecidable, even if the
query is¬-free.

The above negative result is not surprising since the problem is
undecidable even if we follow the LP approach [1]. The reasonfor
this undesirable behavior should be found in the fact that sticky sets



of NTGDs are powerful enough for expressing cartesian products,
that is, rules of the form∀X∀Y(p(X)∧ s(Y) → t(X,Y)), with
X ∩Y = ∅. Using cartesian products we can build infinite grids,
while the stable negation gives us the power of guessing. This com-
bination allows us to simulate the behavior of a Turing machine.

4.3 Guardedness
An NTGD σ is guarded if there exists an atom, called guard,

in B+(σ) that contains all the variables inB(σ). A setΣ of NT-
GDs is calledguarded if every NTGD of Σ is guarded, and the
corresponding class is denotedGTGD¬. Guardedness is a well-
accepted paradigm that gives rise to robust rule-based languages.
As shown in [7], query answering under guarded TGDs is decid-
able, while this decidability result has been recently extended to
guarded NTGDs interpreted according to the LP approach to stable
model semantics [22]. Contrary to what one might expect, this is
not the case for guarded NTGDs interpreted according to our new
approach to stable model semantics. As for sticky NTGDs, we can
build grids of unbounded size, while the stable negation gives us
the power of guessing. This allows us to simulate the behavior of a
Turing machine, and show that:

THEOREM 5. SMS-QAns(GTGD¬) is undecidable, even if the
query is¬-free.

The above result, together with Theorem 2, immediately implies
thatGTGD¬ does not enjoy the stable tree model property. This is
a surprising negative outcome since guardedness usually gives rise
to robust and decidable computational logics, such as the guarded
fragment of first-order logic, while the model-theoretic reason for
this desirable behavior is the tree model property; see, e.g., [23].
The reason for this negative outcome can be informally described
as follows. In the classical setting, the guard atoms occurring in
rule-bodies force the existence of a model that follows an inher-
ent tree structure, where its branches cannot interact. This holds
also for the LP approach to stable model semantics, which refers
to Skolemization and grounding, since the obtained reduct can be
seen as a set of (positive first-order) guarded TGDs [22]. However,
by following our new approach to stable negation for NTGDs, it
is possible to “guess” an appropriate guard, whose domain can be
restricted to an arbitrary set, and thus the key property of guarded-
ness, i.e., only atoms derived from a common guard ancestor can
interact, is destroyed. In fact, by restricting the domain of an (ex-
istentially guessed) guard in an appropriate way, joins between any
two atoms can be forced, destroying the inherent tree structure of
the underlying models.

4.4 Our Conclusions
From the above analysis, we conclude that:

• The class that is based on weak-acyclicity can be reconciled
with the new approach to stable model semantics, without
sacrificing the decidability of query answering. This is be-
cause, whenever a database and a set of weakly-acyclic NT-
GDs have a model, then they admit a finite model, which
implies thatWATGD¬ enjoys the stable tree model property.
• It is not possible to reconcile stickiness and guardedness with

our new approach to stable negation for NTGDs, since query
answering becomes undecidable. Although for sticky sets
of NTGDs this was expected, for guarded NTGDs this is a
surprising outcome.

The former gives rise to the problem of closing the complexity
of SMS-QAns(WATGD¬), which will be the subject of Section 5.

The latter demonstrates the need to provide a more refined defini-
tion of stickiness and guardedness. This task goes beyond the scope
of the present work.

5. WEAK-ACYCLICITY: ALGORITHMS
AND COMPLEXITY

We proceed to pinpoint the complexity of NBCQ answering un-
der stable models focussing on weakly-acyclic sets of NTGDs. We
consider the standard complexity measures, i.e.,data complexity,
calculated by considering only the database as input, andcombined
complexity, which considers everything as input. We show that:

THEOREM 6. SMS-QAns(WATGD¬) is

• ΠP
2 -complete in data complexity, and

• coN2EXPTIMENP-complete in combined complexity.

The lower bounds hold for predicates of bounded arity, and CQs
consisting of a single0-ary predicate.

The above result shows that the complexity of query answer-
ing significantly increases in the presence of default negation; re-
call that for weakly-acyclic sets of TGDs the problem is PTIME-
complete in data complexity [17], and 2EXPTIME-complete in
combined complexity [10]. The rest of this section is devoted to
establishing the above result. The desired upper bounds areob-
tained via a guess and check algorithm for the complement of the
problem, which guesses a stable model, and checks that it does not
entail the query. However, in order to apply such a simple pro-
cedure, we need to solve two non-trivial subtasks: (i) establish an
upper bound on the size of stable models underWATGD¬, and (ii)
check the stability of a model in an optimal way.

5.1 Bounding the Size of Stable Models
In this section, we establish an upper bound on the size of sta-

ble models underWATGD¬, which will then allow us to obtain
optimal data and combined complexity upper bounds for queryan-
swering. Let us first introduce our technical tool.

Immediate Consequence Operator

Consider a setΣ of NTGDs, a setS of sch(Σ)-atoms, and a
sch(Σ)-interpretationI . An atomp(t) ∈ I is animmediate conse-
quencefor S andΣ relative toI if there existsσ ∈ Σ, and a homo-
morphismh such thath(B(σ)) ⊆ S ∪ I− andp(t) ∈ h(H(σ)).
The immediate consequence operatorof Σ relative toI follows:

TΣ,I(S) = {p(t) ∈ I+ | p(t) is an immediate

consequence forS andΣ relative toI}.

We writeT i
Σ,I(S) for the result obtained afteri applications of the

operatorTΣ,I starting fromS. Formally,

T 0
Σ,I(S) = S T i+1

Σ,I (S) = TΣ,I(T
i
Σ,I(S)) ∪ T

i
Σ,I(S)

and

T∞
Σ,I(S) =

∞
⋃

i=0

T i
Σ,I(S).

Note thatTΣ,I is monotone; thus,T∞
Σ,I(S) is defined as its least

fixpoint. The next result formalizes the idea that a stable modelM
of a databaseD andΣ ∈ TGD¬ can be obtained by “executing”
Σ, starting fromD, usingM as an oracle for its negative literals.

LEMMA 7. Consider a databaseD, andΣ ∈ TGD¬. For every
M ∈ SMS(D,Σ),M+ = T∞

Σ,M (D).



It is important to clarify that theTΣ,I operator cannot be used
to characterize the stable models ofD andΣ. In particular, given
a sch(Σ)-interpretationI , I+ = T∞

Σ,I(D) does not implyI ∈
SMS(D,Σ). Consider, for example,

D = {s(a)} and Σ = {∀X(s(X)→ ∃Y p(X,Y ))}.

For the interpretationI with I+ = {s(a), p(a, b), p(a, c)} it is
clear thatI+ = T∞

Σ,I(D), but I 6∈ SMS(D,Σ). However, as we
shall see, the immediate consequence operator is a useful technical
tool for bounding the size of stable models.

Establishing a Bound

Consider a modelM ∈ SMS(D,Σ), whereΣ ∈ WATGD¬. The
least fixpoint ofTΣ,M , starting fromD, can be reached after a finite
number of applications.

LEMMA 8. Consider a databaseD, a setΣ ∈ WATGD¬, and
letM ∈ SMS(D,Σ). It holds that,

|T∞
Σ,M (D)| 6 f(D,Σ),

wheref is polynomial inD, and doubly exponential inΣ.

The above lemma relies on the fact that, given a databaseD and
a weakly-acyclic setΣ of (positive) TGDs, the result of every chase
sequence ofD andΣ has size at most polynomial inD, and doubly
exponential inΣ; implicit in [17].4 In particular, given a database
D and a setΣ ∈ WATGD¬, we show thatT∞

Σ,M (D) induces a
chase sequenceC of D andΣ+ such that|T∞

Σ,M (D)| is bounded
by the size of the result ofC, which in turn implies that|T∞

Σ,M (D)|
is at most polynomial inD, and doubly exponential inΣ, as needed.
The next key result follows from Lemma 7 and 8:

PROPOSITION 9. Consider a databaseD, and a setΣ ∈
WATGD¬. For everyM ∈ SMS(D,Σ),

|M+| 6 f(D,Σ),

wheref is polynomial inD, and doubly exponential inΣ.

5.2 Checking Stability
We now investigate the stability problem, i.e., checking whether

a modelM of a databaseD andΣ ∈ WATGD¬ satisfies the for-
mula¬∃s((s < p) ∧ τp⊲s(D) ∧ τp⊲s(Σ)). Unfortunately, if we
perform this check blindly, without having available any additional
information about the modelM in question, then we cannot do
better thanΠP

2 , which in turn does not lead to the desired upper
bounds stated in Theorem 6. This is because such a check involves
model checking for NTGDs, that is, to decide whether an interpre-
tation is a model of a set of NTGDs, and it is known that already
for TGDs model checking isΠP

2 -hard, even if we focus on a single
non-recursive TGD [27]. The crucial question that we shouldan-
swer is the following: having available some additional information
about the modelM , which can be computed on-the-fly during the
execution of our guess and check algorithm, is the above checking
feasible in coNP? The answer to the above question is affirmative,
which, as we shall see in the next section, will allows us to obtain
the worst-case optimal upper bounds stated in Theorem 6. In par-
ticular, the additional information about the modelM that we need
is the set of homomorphisms that acts as a witness for the factthat
M is a model ofΣ. The notion of the witness is defined as follows:

4Here, we refer to the standard (a.k.a. the restricted) version of the
chase, where a TGD is being applied only if its necessary.

Definition 4. Consider an NTGDσ, and an interpretationI . The
witnessfor I w.r.t.σ, denotedWσ

I , is defined as
{(

h,Eh,σ
I

)

| h is a homomorphism s.t.h(B(σ)) ⊆ I
}

,

whereEh,σ

I = {µ | µ ⊇ h andµ(H (σ)) ⊆ I}. The witnessWσ
I

is callednegativeif there exists(h,E) ∈ Wσ
I such thatE = ∅;

otherwise,Wσ
I is calledpositive.

It is clear that having the positive witnessWσ
I in place, we know

precisely via which homomorphismsB(σ) is satisfied byI (if there
exists one), and how they are extended in order to satisfyH (σ), and
thereforeσ itself. The next auxiliary lemma follows by definition:

LEMMA 10. Consider a setΣ ∈ TGD¬, and a sch(Σ)-
interpretationI . The following are equivalent:

1. I |= Σ.
2. Wσ

I is positive, for everyσ ∈ Σ.

We now introduce a refined version of the stability problem,
based on the notion of witness; letC be a class of NTGDs, and
ΦD,Σ = ¬∃s((s < p) ∧ τp⊲s(D) ∧ τp⊲s(Σ)):

PROBLEM: W-Stability(C)
INPUT: Datab.D, Σ ∈ C, modelM of (D ∧ Σ),

and positive witnesses{Wσ
M}σ∈Σ.

QUESTION: DoesM |= ΦD,Σ?

We establish the following technical result, which is crucial for
our later complexity analysis:

PROPOSITION 11. W-Stability(WATGD¬) is in coNP.

We can decide the complement of the problem in question via
the following non-deterministic algorithm:

1. GuessJ ⊂ M+ such thatJ ⊇ D, and letI be the total
interpretation withdom(I) = dom(J) andI+ = J .

2. If for eachσ ∈ τp⊲s(Σ) the witnessWσ
(M∪τp⊲s(J)) is posi-

tive, thenaccept ; otherwise,reject .

It is easy to see that, by Lemma 10, the above algorithm accepts
iff M |= ∃s((s < p) ∧ τp⊲s(D) ∧ τp⊲s(Σ)). It is clear that both
steps are feasible in polynomial time. In particular, the witness
for (M ∪ τp⊲s(I)) w.r.t. someσ ∈ τp⊲s(Σ) can be obtained in
polynomial time fromW σ̂

M , whereσ̂ ∈ Σ andσ = τp⊲s(σ̂). Thus,
W-Stability(WATGD¬) is in coNP, as needed.

5.3 Finalizing the Complexity Analysis
We are now ready to close the complexity ofSMS-QAns for

WATGD¬, and obtain Theorem 6.

Upper Bounds

The upper bounds stated in Theorem 6 are obtained in a uniform
way via a guess and check algorithm, which exploits Propositions 9
and 11. Fix a databaseD, Σ ∈ WATGD¬, andq ∈ BCQ¬. Let
p = (p1, . . . , pn) be the list of predicates ofsch(Σ), ands =
(s1, . . . , sn) a list ofn predicate variables. We writeδD,Σ for the
bound provided by Proposition 9. The following procedure decides
if (D,Σ) 6|=SMS q, i.e., the complement of our problem:

1. Guess a set of atomsJ , where|J | 6 δD,Σ, and letI be
the totalsch(Σ)-interpretation withdom(I) = dom(J) and
I+ = J such thatI |= (D ∧Σ ∧ ¬q); if such a set of atoms
does not exist, thenreject .



2. If I |= ¬∃s((s < p) ∧ τp⊲s(D) ∧ τp⊲s(Σ)), thenaccept ;
otherwise,reject .

The above procedure runs in polynomial time inδD,Σ with
an S-oracle, whereS is a complexity class powerful enough for
solving W-Stability; {Wσ

I }σ∈Σ is implicitly constructed during
the first step of the algorithm. Consequently, the complement of
SMS-QAns is in NPS in data complexity, and in N2EXPTIMES in
combined complexity. The desired upper bounds follow by Propo-
sition 11 sinceOcoNP = ONP, whereO ∈ {NP,N2EXPTIME}.

Lower Bounds

We give the reduction for theΠP
2 -hardness in data complexity,

while for the combined complexity we simply mention the prob-
lem from which we provide a reduction.

ΠP
2 -hard Data Complexity

We reduce satisfiability of 2-QBF∃ formulas to the complement
of SMS-QAns(WATGD¬). Let ϕ = ∃X∀Yψ(X,Y) be a 2-
QBF∃ formula, andψ = ∨k

i=1(ℓ
1
i ∧ ℓ

2
i ∧ ℓ

3
i ) be a 3DNF formula.

We construct a databaseDϕ, andΣ ∈ WATGD¬, which does not
depend onϕ, such thatϕ is satisfiable iff(Dϕ,Σ) 6|=SMS error,
whereerror is a0-ary predicate.

Database. For a variableV , let π(V ) = ν(¬V ) = V and
π(¬V ) = ν(V ) = ⋆, where⋆ is a special constant. The database
Dϕ is defined as follows:

{exists(X) | X ∈ X} ∪ {forall(Y ) | Y ∈ Y} ∪

{cl(π(ℓ1i ), π(ℓ
2
i ), π(ℓ

3
i ), ν(ℓ

1
i ), ν(ℓ

2
i ), ν(ℓ

3
i ))}i∈[k] ∪ {nil(⋆)}.

This completes the definition ofDϕ.

NTGDs. The setΣ ∈ WATGD¬ is defined as follows. First, we
guess an assignment for the variables ofϕ:

→ ∃X zero(X) → ∃X one(X)

∀X(zero(X) ∧ one(X)→ error)

∀X(zero(X)→ truthVal(X))

∀X(one(X)→ truthVal(X))

∀X(exists(X)→ ∃Y assign(X,Y ))

∀X(forall(X)→ ∃Y assign(X,Y ))

∀X∀Y (assign(X,Y ) ∧ ¬truthVal(Y )→ error).

By exploiting the well-known technique of saturation [13],we pro-
ceed to perform the universal check as follows:

¬saturate→ saturate

∀X∀Y (forall(X) ∧ truthVal(Y ) ∧

saturate→ assign(X,Y ))

∀X∀Y (nil(X) ∧ truthVal(Y )→ assign(X,Y ))

∀P∀N∀O∀Z(cl(P1, P2, P3, N1, N2, N3) ∧

3
∧

i=1

assign(Pi, O) ∧ one(O)∧

3
∧

i=1

assign(Ni, Z) ∧ zero(Z)→ saturate).

This completes the definition ofΣ.

We can show thatϕ is satisfiable iff(Dϕ,Σ) 6|=SMS error, and
the claim follows.

coN2EXPT IME NP-hard Combined Complexity

By reduction from the complement of finite tiling extension:for a
grid of double-exponential size, decide whether a top-row tiling ex-
ists that cannot be extended into a grid tiling.5 We define a database
D, andΣ ∈ WATGD¬ such that the instance of finite tiling exten-
sion is negative iff(D,Σ) |=SMS q, whereq is 0-ary predicate.

6. ADDING DISJUNCTION
An interesting question that comes up is howSMS-QAns is af-

fected if we extendWATGD¬ with disjunction in rule-heads. Dis-
junction is a crucial feature for KR and database query languages;
thus,WATGD¬,∨ deserves our attention. We considernormal dis-
junctive tuple-generating dependencies (NDTGDs)of the form

∀X∀Y

(

ϕ(X,Y)→
n
∨

i=1

∃Zi ψi(X,Zi)

)

,

whereϕ is a conjunction of literals, andψi is a conjunction of
atoms; we writeTGD¬,∨ for the corresponding class. Extending
weak-acyclicity with disjunction is done in the obvious way. A
setΣ ∈ TGD¬,∨ is weakly-acyclic if no cycle inPoG(Σ+,∧),
whereΣ+,∧ is obtained fromΣ by removing the negative literals
and converting the disjunction into a conjunction, contains a special
edge. The corresponding class is denotedWATGD¬,∨. Similarly
to NTGDs, we exploit the notion of homomorphism to define when
an interpretation is a model of a set of NDTGDs. For a databaseD
and a setΣ ∈ TGD¬,∨, SMS(D,Σ) is defined, as for NTGDs, via
the second-order formulaSM[D,Σ], which is obtained by simply
applying the operatorτp⊲s to every literal occurring inD andΣ.

6.1 Complexity of Query Answering
Weak-acyclicity can be enriched with disjunction in the rule-

heads without paying a price in terms of complexity. As we shall
see, the reason for this is the fact that we can simulate disjunction
using existential quantification and stable negation. We show that:

THEOREM 12. SMS-QAns(WATGD¬,∨) is

• ΠP
2 -complete in data complexity, and

• coN2EXPTIMENP-complete in combined complexity.

The lower bounds hold for predicates of bounded arity, and CQs
consisting of a single0-ary predicate.

The lower bounds are immediately inherited from Theorem 6;
thus, in the rest of this section, we concentrate on the upperbounds.
We show that the problem in question can be reduced in polynomial
time into query answering under (non-disjunctive) NTGDs. Fix a
databaseD, a setΣ ∈ WATGD¬,∨, and a queryq ∈ BCQ¬:

LEMMA 13. A databaseD′ and a setΣ′ ∈ TGD¬, which does
not depend onD, can be constructed in polynomial time such that
(D,Σ) |=SMS q iff (D′,Σ′) |=SMS q.

Before we proceed with the construction ofD′ andΣ′, let us
clarify thatΣ′ is, in general,notweakly-acyclic. Once we defineΣ′

below, we will explain, via an example, the reason whyΣ′ violates
weak-acyclcity, and we will discuss why Lemma 13 is still useful
for our purposes.

5This problem is known to beΣP
2 -hard for a grid of polynomial

size; see, e.g., [12]. Interestingly, the same construction shows that
for a grid of double-exponential size it is N2EXPTIMENP-hard.



Database. The databaseD′ is obtained fromD by adding suffi-
ciently many indices for the disjuncts inΣ. In particular, assuming
thatk > 0 is the maximum number of disjuncts occurring in the
head of a NDTGD ofΣ,

D′ = D ∪ {nil(⋆), idx1(c1), . . . , idxk(ck)}.

This completes the construction ofD′

NTGDs. Before definingΣ′, let us explain how a NDTGDσ ∈ Σ,
which has the general form given at the beginning of the section,
can be simulated via a setΣσ of (non-disjunctive) NTGDs. Clearly,
if σ is already non-disjunctive, thenΣσ = {σ}. Assume now that
σ is disjunctive. First, we need to guess a disjunct ofσ, which can
be done via the setΣguess

σ consisting of the NTGDs:

∀X∀Y(ϕ(X,Y)→ ∃I∃Z tσ(I,X,Z))

∀I∀X∀Z(tσ(I,X,Z) ∧ ¬idx1(I) ∧ . . .∧

¬idxn(I)→ false),

whereZ = Z1, . . . ,Zn, andfalse is a 0-ary predicate that is
forced to be false in every stable model via the rule

false ∧ ¬aux→ aux,

which also belongs toΣguess
σ . Depending on the previous guess, we

should infer the right disjunct from the head ofσ, which is done via
the setΣinfer

σ consisting of the NTGDs:

∀I∀X∀Z(tσ(I,X,Z) ∧ idxi(I)

→ ψi(X,Zi)), for eachi ∈ [n].

Finally, we should ensure stability, that is, the first NTGD will not
support any new disjunct from the head ofσ if one is already true.
This is done via the setΣstab

σ consisting of the NTGDs:

∀X∀Y∀Zi∀I∀N(ϕ(X,Y) ∧ ψi(X,Zi) ∧ idxi(I) ∧

nil(N)→ tσ(I,X,N
i−1
1 ,Zi,N

n
i+1)), for eachi ∈ [n],

whereNy
x = N, . . . , N consisting of(|Zx|+. . .+|Zy|) variables.

The setΣσ is defined as(Σguess
σ ∪ Σinfer

σ ∪ Σstab
σ ), while Σ′ is

defined as
⋃

σ∈Σ Σσ . It can be shown that(D,Σ) |=SMS q iff
(D′,Σ′) |=SMS q, and Lemma 13 follows.

Although we have Lemma 13 in place, we cannot inherit yet the
desired upper bounds from our results onSMS-QAns(WATGD¬),
since in generalΣ′ violates weak-acyclicity.

Example 5.Consider the setΣ ∈WATGD¬,∨

∀X(p(X)→ ∃Y s(X,Y ))

∀X(r(X)→ p(X) ∨ s(X,X)).

According to our construction,Σ′ contains (among others)

∀X(p(X)→ ∃Y s(X,Y ))

∀I∀X(tσ(I,X) ∧ idx1(I)→ p(X))

∀X∀Y (r(X) ∧ s(X,X) ∧ idx2(I) ∧ nil(N)→ tσ(I,X)).

Due to the first rule, in the position graph we have the specialedge
(p[1], s[2]). In addition, due to the other rules, we have the regular
edges(tσ[2], p[1]) and(s[2], tσ[2]). Therefore, we have a cycle in
the position graph that contains a special edge, which implies that
Σ′ is not weakly-acyclic.

Even ifΣ′ is not weakly-acyclic, we can show that the new cy-
cles in the position graph that destroy weak-acyclicity areharmless.
As it can be verified in Example 5, these cycles do not encode the

situation where the generation of a term in a certain position causes
the generation of some other term in the same position, whicheven-
tually leads to an infinite generation of terms. By using thisfact,
we can show that Propositions 9 and 11, which were decisive for
the analysis performed in the previous section, hold forΣ′. This,
combined with Lemma 13, gives us the desired upper bounds.

7. EXPRESSIVE QUERY LANGUAGES
It turns out that the class of weakly-acyclic NTGDs, focussing

on our new approach to stable negation, gives rise to expressive
database query languages. Interestingly, the language based on
WATGD¬ with cautious (resp., brave) stable model semantics cap-
tures preciselyΠP

2 (resp.,ΣP
2 ). Cautious (resp., brave) reasoning

refers to the approach where the answer to the query is computed
by considering the intersection (resp., union) of the underlying sta-
ble models. In the sequel, we introduce the new query languages,
analyze their complexity, and demonstrate their practicalrelevance
by exhibiting prominent queries that can be naturally expressed in
WATGD¬. We finally investigate their expressive power.

7.1 New Query Languages
A WATGD¬ query is a pair(Σ, q), whereΣ ∈ WATGD¬ is

the query program, andq/n is a predicate not occurring in the
body of an NTGD. Theextensional (database) schemaof Σ, de-
notededb(Σ), consists of all the extensional predicates ofsch(Σ),
whose values are given via an input database, while theintensional
schemaof Σ, denotedidb(Σ), consists of all the intensional predi-
cates ofsch(Σ), whose values are computed by the program. Given
a databaseD overedb(Σ), the answer toQ = (Σ, q) overD under
thecautiousstable model semantics is defined as

Q(D) = {t ∈ C
n | (D,Σ) |=SMS q(t)}.

The answer toQ overD under thebravestable model semantics is

Q(D) = {t ∈ C
n | ∃M ∈ SMS(D,Σ),M |= q(t)}.

Let WATGD¬
c andWATGD¬

b be the query languageWATGD¬

with cautious and brave stable model semantics, respectively. The
query evaluation problem for a query languageQ is as follows:
given a databaseD, a queryQ ∈ Q, and a tuplet, decide whether
t ∈ Q(D); if it is C-complete, then we say thatQ is C-complete.

Computational Complexity

By exploiting the complexity analysis performed in Section5, it is
not difficult to show that:

THEOREM 14. Q is D-complete in data complexity, andC-
complete in combined complexity, where

D =







ΠP
2 , if Q = WATGD¬

c ,

ΣP
2 , if Q = WATGD¬

b ,

and

C =







coN2EXPTIMENP, if Q = WATGD¬
c ,

N2EXPTIMENP, if Q = WATGD¬
b .

The lower bounds hold even for predicates of bounded arity.

Applications

The obtained query languages can be employed to solve in a declar-
ative way problems that lie at the second level of the polynomial hi-
erarchy. For example, by using our languages, we can devise novel



encodings for the following problems: (i) consistent queryan-
swering under weakly-acyclic TGDs relative to subset repairs [30];
(ii) satisfiability for 2-QBF; and (iii) an interesting variation of
graphk-colorability, which generalizes the well-known problem
CERT3COL [29]. Due to space reasons, we focus only on (ii).

Satisfiability of 2-QBF. As shown in Section 5.3, 2-QBF∃ can be
reduced toSMS-QAns(WATGD¬). The given formulaϕ is en-
coded in a databaseDϕ, and a fixed setΣ ∈ WATGD¬ is con-
structed such thatϕ is satisfiable iff(Dϕ,Σ) 6|=SMS error, where
error is a propositional predicate. By using this construction, we
can show that 2-QBF∃ can be decided usingWATGD¬

b ; notice that
it cannot be decided usingWATGD¬

c , unless the polynomial hier-
archy collapses. We define the query

Q = (Σ ∪ {¬error→ ans}, ans) ∈ WATGD
¬
b .

For every 2-QBF∃ formulaϕ, ϕ is satisfiable iff the empty tuple
belongs toQ(Dϕ), i.e., there existsM ∈ SMS(Dϕ,Σ) such that
M |= ans. Analogously, 2-QBF∀ can be decided usingWATGD¬

c .

7.2 Expressive Power
We proceed to investigate the expressive power of our new query

languages. For a query languageQ, we say that itsabsolute expres-
sive poweris C, whereC is a complexity class, writtenQ = C, if
it expresses exactly the queries withC data complexity. For two
languagesQ andQ′, we writeQ ≤ Q′, if for each queryQ ∈ Q,
we can construct a queryQ′ ∈ Q′ such thatQ(D) = Q′(D), for
every databaseD. Q′ is more expressivethanQ, writtenQ < Q′,
if Q ≤ Q′ 6≤ Q, whileQ andQ′ have thesame expressive power,
writtenQ = Q′, if Q ≤ Q′ ≤ Q.

Two query languages that are extremely important for our anal-
ysis areDATALOG¬,∨

s , wheres ∈ {c, b}. These languages are
defined in the same way asWATGD¬

s with the only difference that
the query program is a set of NDTGDs of the form

∀X∀Y

(

ϕ(X,Y)→
n
∨

i=1

pi(X)

)

,

wherepi is a single predicate, i.e., NDTGDs where the heads are
existential-free disjunctions of atoms. Interestingly,WATGD¬

c and
DATALOG¬,∨

c have the same expressive power:

THEOREM 15. WATGD¬
c = DATALOG¬,∨

c .

DATALOG¬,∨
c expresses exactly the queries withΠP

2 data com-
plexity [14]. By Theorem 14,WATGD¬

c is inΠP
2 in data complex-

ity, and the “≤” direction follows. Consider now aDATALOG¬,∨
c

queryQ = (Σ, q). We construct the queryQ′ = (Σ′, q′), where
Σ′ is defined as follows.

Simulate Predicates.We uniquely identify each predicatep in Σ
via an atompredp(·). This is done using the following set of rules:
for eachp ∈ sch(Σ),

→ ∃X predp(X),

and for each pair of distinct predicatesp, s ∈ sch(Σ),

∀X(predp(X) ∧ preds(X)→ false).

Notice thatfalse is a special0-ary predicate that is forced to be
false in every stable model via the usual auxiliary rulefalse ∧
¬aux→ aux, whereaux 6∈ sch(Σ).

Simulate Disjunction. We proceed to simulate disjunction. We
could apply the construction given above for showing Lemma 13.
However, since the query programΣ is existential-free, we can

present a simplified version of it, which will allows us to easily
verify that the obtained setΣ′ of NTGDs is weakly-acyclic. For-
mally, for each ruleρ in Σ of the form

p1(X) ∨ . . . ∨ pm(X)← ϕ(X,Y),

we have inΣ′ the following NTGDs:

∀X∀Y(ϕ(X,Y)→ ∃Z tρ(Z,X))

∀Z∀X(tρ(Z,X) ∧ ¬predp1(Z) ∧ . . .∧

¬predpm(Z)→ false)

∀Z∀X(tρ(Z,X) ∧ predpi(Z)→ pi(X)), for eachi ∈ [m]

∀X∀Y∀Z(ϕ(X,Y) ∧ pi(X) ∧

predpi(Z)→ tρ(Z,X)), for eachi ∈ [m]

∀X(q(X)→ q′(X)).

We can show thatQ(D) = Q′(D), for every databaseD. More-
over, in the position graphG of (Σ′)+ the only special edges are
edges of the form(·, tρ[1]), due to the first NTGD above, while
there are no edges of the form(tρ[1], ·) since there is no NTGD in
Σ′ with a body-variable that appears at positiontρ[1] and is also
propagated to the head. Therefore, inG there is no cycle that con-
tains a special edge, which implies thatΣ′ ∈WATGD¬, and Theo-
rem 15 follows. By employing a similar construction, we can show
that Theorem 15 holds even for the brave semantics:

THEOREM 16. WATGD¬
b = DATALOG

¬,∨
b

.

As already mentioned above,DATALOG¬,∨
c expresses exactly

the database queries that can be decided inΠP
2 in data complex-

ity [14]. Moreover,DATALOG
¬,∨
b

expresses exactly the queries
that can be decided inΣP

2 in data complexity [14]. Consequently,
by Theorem 14, which establishes the desired data complexity up-
per bounds, and Theorems 15 and 16, we obtain the following:

THEOREM 17. It holds that,

WATGD
¬
s =







ΠP
2 , if s = c,

ΣP
2 , if s = b.

By exploiting the complexity analysis in Section 6, we can show
that: WATGD¬,∨

s is ΠP
2 -complete, ifs = c, andΣP

2 -complete, if
s = b, both in data complexity. Thus, an immediate consequence
of Theorem 17 is that disjunction does not add expressive power:

THEOREM 18. It holds that,

WATGD
¬
c = WATGD

¬,∨
c WATGD

¬
b = WATGD

¬,∨
b

.

It remains to understand how the different approaches to stable
model semantics affect expressiveness. We would like to compare,
in terms of expressive power, our new approach with the LP ap-
proach. To this end, we consider the class of normal rules obtained
after Skolemizing weakly-acyclic sets of N(D)TGDs. Formally,

SWATGD
¬(,∨) = {sk(Σ) | Σ ∈ WATGD

¬(,∨)},

wheresk(Σ) is the set of normal rules obtained after Skolemizing
the N(D)TGDs ofΣ. By Theorem 1, the LP approach coincides
with our approach when we focus on Skolemized NDTGDs,6 and
thus we simply need to compareWATGD¬

s , wheres ∈ {c, b}, with

6In fact, Theorem 1 considers only NTGDs, but it can be easily
extended to NDTGDs.



SWATGD¬
s andSWATGD¬,∨

s relative to our new stable model se-
mantics. By employing a simple complexity-theoretic argument, it
can be shown that our new approach gives rise to more expressive
query languages than the LP approach when disjunction is notal-
lowed, assuming that the polynomial hierarchy does not collapse.
In particular, it is possible to show thatSWATGD¬

c is in coNP and
SWATGD¬

b is in NP, which immediately implies that:

THEOREM 19. If NP( ΣP
2 andcoNP( ΠP

2 , then

WATGD
¬
c > SWATGD

¬
c WATGD

¬
b > SWATGD

¬
b .

Now, if disjunction is allowed to appear in rule-heads, thenthe
LP approach gives rise to equally expressive languages:

THEOREM 20. It holds that,

WATGD
¬
c = SWATGD

¬,∨
c WATGD

¬
b = SWATGD

¬,∨
b

.

8. CONCLUSIONS
We propose a new approach to stable model semantics for NT-

GDs, based on a recent characterization of stable models in terms
of second-order logic [18], that can be directly applied to rules with
existentially quantified variables without requiring Skolemization.
We show that the class of NTGDs based on weak-acyclicity can be
reconciled with our new approach to stable negation, and we obtain
precise complexity results for query answering. However, once we
focus on stickiness and guardedness query answering becomes un-
decidable. Although for sticky sets of NTGDs this was expected,
for guarded NTGDs this is a surprising negative result. Our next
step is to understand whether there is a way to reconcile stickiness
and guardedness with our new approach to stable models.
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