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Abstract  24 

CD4+Foxp3+ T regulatory (Treg) cells provide a key defence against inflammatory disease, but also have 25 

an ability to produce pro-inflammatory cytokines. The evidence for these two possibilities in multiple 26 

sclerosis (MS) is controversial. However, this has largely been based on studies of circulating Treg cells 27 

derived from peripheral blood, rather than the central nervous system. We show that Foxp3+ cells in the 28 

brains of MS patients predominantly produce IL-10 and show high expression of the IL-33 receptor ST2 29 

(associated with potent Treg function), indicating that Treg in the inflamed brain maintain their 30 

suppressive function. 31 

  32 
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Main Text   33 

CD4+Foxp3+ Treg cells control immune responses in inflamed tissues as well as secondary lymphoid 34 

organs1, 2. Treg cells isolated from the peripheral blood of MS patients are reported to show reduced 35 

suppressive function, but not reduced frequencies3-5. Treg cells can “trans-differentiate” to a pro-36 

inflammatory function, producing IFN-γ or IL-17, when placed in conducive experimental conditions6-8. 37 

Peripheral blood Treg cells from MS patients were reported to display this ability, producing IFN-γ in 38 

vitro under the influence of IL-129. The major drawback of such studies is that, out of necessity, only the 39 

peripheral blood of MS patients can be sampled and not the central nervous system (CNS) itself. Tissue 40 

inflammation can stabilize, rather than diminish Treg suppressive function. We reported that the 41 

accumulation of highly activated and suppressive, IL-10-producing Treg cells within the CNS is 42 

necessary for the natural resolution of experimental autoimmune encephalomyelitis (EAE), a mouse 43 

model of MS10, 11. In addition, these CNS Treg cells resisted conversion to pro-inflammatory function in 44 

vitro12. Here, we sought to understand the distribution of Treg in human MS lesions and to gather 45 

evidence for suppressive, or pro-inflammatory roles for these cells. 46 

 47 

Results and Discussion 48 

Immunohistochemistry identified the presence of CD4+Foxp3+ T cells in post mortem brain tissue of 7/11 49 

secondary progressive MS (SPMS) patients (Fig. 1a), with none found in control brain tissue. MS 50 

samples that did or did not contain CD4+Foxp3+ cells could not be distinguished based on patient gender, 51 

age, duration of disease, or time to post mortem processing (summarised in Supp Table 1). CD4+Foxp3+ 52 

cells were distributed at similar frequencies across different white matter lesion types (9/10 active lesions, 53 

3/7 chronic active borders, 3/7 chronic active centres, 9/17 chronic inactive lesions), but not in 54 

remyelinating lesions (Fig. 1b). Thus, Treg presence in MS lesions appears to be associated with the 55 

presence of an inflammatory infiltrate (not found in remyelinating lesions). This is consistent with our 56 

previous EAE data showing that Treg numbers in the CNS decline markedly, in-line with the 57 

inflammatory infiltrate, as the disease resolves10,11.  Where present, the frequencies of CD4+ cells that 58 
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were Foxp3+ ranged between 10-30% (Fig. 1c), which represents an enrichment over the expected 59 

frequencies of these cells amongst CD4+ T cells in human peripheral blood (1-3% in healthy controls and 60 

MS patients) and in cerebrospinal fluid (3-4% in MS)3, 4, 13. 61 

Although the presence of CD4+IL-17+ T cells has been reported before14, no analogous analysis 62 

has been made of cytokine production by Foxp3+ cells in MS lesions. Two-colour immunohistochemistry 63 

identified co-expression of Foxp3 with IL-10, IL-17, IFN-γ, or GM-CSF in active and chronic lesions 64 

(Fig. 2a). Approximately 50% of Foxp3+ cells stained positive for IL-10 (Fig. 2b). Lower frequencies of 65 

Foxp3+ cells stained positive for pro-inflammatory cytokines. IL-10 was the dominant cytokine produced 66 

by Foxp3+ cells (>60%) in active lesions and the borders of chronic active lesions (Fig. 2b). This was less 67 

evident in chronic inactive lesions and in the centres of chronic active lesions, where Foxp3+ cells showed 68 

no enrichment in IL-10 over other cytokines. In contrast to IL-10, TNF-α staining in Foxp3+ cells only 69 

became evident in chronic inactive lesions. Frequencies of Foxp3+ cells staining for IFN-γ, IL-17, or GM-70 

CSF were low in all active and chronic lesion types. We conclude that the predominant cytokine produced 71 

by Foxp3+ cells within the brains of SPMS patients is IL-10. This is entirely consistent with our previous 72 

observations of Treg in the CNS of mice with EAE10-12 and indicates that, in MS, Treg that infiltrate the 73 

lesions are in suppressive rather than pro-inflammatory mode.   74 

As CD4+Foxp3+ cells composed only a minor fraction of infiltrating cells within lesions, their 75 

contribution to the overall cytokine+ cells remained modest, even for IL-10. We compared the frequencies 76 

of CD4+Foxp3- or CD4+Foxp3+ cells in all lesions, with the overall levels of cytokine+ cells in those 77 

lesions. CD4+Foxp3- frequencies did not correlate with any cytokine (Fig. 3a). Nor did CD4+Foxp3+ cells 78 

correlate with IFN-γ, GM-CSF or IL-17. However, CD4+Foxp3+ frequencies correlated with the 79 

frequencies of total IL-10+ cells and total TNF-α+ cells (Fig. 3b).  80 

Elegant murine studies have shown that IL-10 signalling in Treg cells is required for their own 81 

IL-10 expression and subsequent suppressive function15. Therefore it is plausible that, in addition to 82 

contributing to the IL-10 pool, IL-10+ Treg cells are specifically attracted to, expanded in, or maintained 83 
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in lesions with high IL-10 levels. TNF-α-blockade is a potent therapeutic option for several human 84 

inflammatory diseases such as rheumatoid arthritis, Crohn’s disease and psoriasis16, 17, but not MS18. 85 

Studies on how TNF-α-blockade effects the Treg populations have led to conflicting results. TNF-α 86 

blockers have been reported to increase the number or function of Treg cells in RA and Crohn’s19, 20. 87 

However, it has also been shown to inhibit suppressive function of Treg cells through down-regulation of 88 

Foxp3 in RA patients21. Recent studies indicate TNF-α signals selectively through TNFR2 in Treg cells22, 89 

23. This suggests that Treg cells might require TNF-α for their suppressive function and provides a 90 

plausible explanation for the positive correlation between Foxp3+ cells and TNF-α+ cells that we see.  91 

Expression of the IL-33 receptor, ST2, has been associated with potent Treg function in murine 92 

models24-26. Indeed, we found ST2 to be particularly enriched in CNS Treg in EAE (Fig. 4a). IL-33 is 93 

highly expressed in the CNS in both EAE and MS (Fig. 4b)27, 28. Dual immunofluorescence identified the 94 

presence of Foxp3+ST2+ cells in MS brains (Fig. 4c). In particular, ~60% of Foxp3+ cells in active lesions 95 

were ST2+, whilst its expression was almost absent in Foxp3+ cells in chronic lesions (Fig. 4d). High 96 

expression of both IL-10 (Fig. 2b) and ST2 (Fig. 4d) by Foxp3+ cells in active lesions suggests that their 97 

suppressive potency should be greatest in these lesions and that this might wane in more chronic lesions. 98 

A recent study from Miron et al29 demonstrated high numbers of M2 macrophages, also particularly in 99 

active lesions, of the same brain tissue studied here. This is interesting for two reasons. Firstly, IL-10 100 

(perhaps originating from Treg cells) can promote the M2 phenotype, which is thought to contribute to 101 

remyelination by inducing oligodendrocyte differentiation. Secondly, a study of experimental cerebral 102 

malaria recently reported that IL-33 is protective by coordinating both Treg and M2 activity (the latter via 103 

expansion of type-2 innate lymphoid cells which release M2-promoting cytokines)30. Whether such a 104 

coordinated response is protective in CNS autoimmune inflammation, and whether there are viable 105 

therapeutic approaches that can boost the numbers and/or sustain the function of these cells, should be 106 

fruitful avenues for exploration.    107 

 108 
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Methods 110 

Human Tissue specimens 111 

Post-mortem tissue from SPMS patients and control individuals who died of non-neurological causes 112 

were obtained via a UK prospective donor scheme with full ethical approval and informed consent from 113 

the UK Multiple Sclerosis Tissue Bank (MREC/02/2/39)(Supplementary information Table 1). Snap 114 

frozen unfixed tissue blocks from 11 SPMS patients (a total of 16 blocks containing 10 active lesions, 7 115 

chronic active lesions, 17 chronic inactive lesions and 12 remyelinating lesions) and 4 control blocks were 116 

analysed. Lesions were classified as active, chronic active, chronic inactive and remyelinating according 117 

to the International Classification of Neurological Diseases (www.icdns.org) using Luxol Fast Blue – 118 

Cresyl Violet staining and Oil Red O staining.  119 

Immunohistochemistry of T cell subsets 120 

10 μM sections were fixed in 4% PFA (Fisher Scientific, Waltham, USA) and subsequently delipidised in 121 

70% ice-cold ethanol. Antigens were retrieved using heating in acid citric buffer (Vector, Burlingame, 122 

USA). Sections were incubated with anti-Foxp3 (ab10563, rabbit, Abcam, Cambridge, UK) overnight at 123 

4°C. Subsequently the sections were incubated with anti-CD4 (M7310, mouse, Dako, Glostrup, Denmark) 124 

for 30 minutes at room temperature. An EnVision G|2 Doublestain System, Rabbit/Mouse kit (Dako) was 125 

used for detection as per manufacturer’s instructions, with exception of the use of an Vector Blue 126 

Alkaline Phosphatase Substrate Kit III (Vector) to develop the signal. Sections were mounted in aqueous 127 

permafluor medium (Thermo Scientific, Waltham, USA). Primary antibodies were omitted to check for 128 

non-specific binding of polymers. Rabbit IgG (ab27478, Abcam) or Mouse IgG1 isotype control (X0931, 129 

Dako) were used to control for non-specific binding of the primary antibodies. All IHC experiments were 130 

performed in triplicate. 131 

 132 

  133 



 8

Immunohistochemistry of cytokines 134 

For double staining of Foxp3 and cytokines, combinations of antibodies against TNF-α, IFN-γ, IL-17, 135 

GM-CSF or IL-10 (AF-210-NA, AF-285-NA, AF-317-NA, AF-215-NA, AF-217-NA, all goat, R&D 136 

systems, Abingdon, UK) with anti-Foxp3 (rabbit, Abcam) were used. For single IL-33 staining a goat 137 

anti-IL-33 antibody (AF3625, R&D systems) was used. Briefly, frozen brain sections were fixed in 4% 138 

PFA (Fisher Scientific), followed by antigen retrieval as described above. Endogenous peroxidase was 139 

blocked with 3% H2O2 in dH2O (Fisher Scientific), followed by blocking of biotin for 15 minutes 140 

(Vector). Sections were incubated with 10% horse serum in PBS (Biosera, Boussens, France) and Fc 141 

Receptor Blocking Solution was added (Human TruStain FcX Biolegend, London, UK). Primary 142 

antibodies were added overnight at 4°C. Cytokines were detected with donkey anti-goat-biotin (ab6578, 143 

Abcam) followed by streptavidin-alkaline phosphatase (SA-5100, Vector) and visualized with the Vector 144 

Blue Alkaline Phosphatase Substrate Kit III (Vector). Slides were blocked with 10% goat serum in PBS 145 

(Biosera). Anti-Foxp3 (rabbit) was detected with an anti-rabbit polymer-HRP (Dako) and developed with 146 

DAB substrate (Dako). Sections were counterstained with 4',6-diamidino-2-phenylindole (DAPI) (Life 147 

Technologies, Carlsbad, USA), and mounted in aqueous permafluor medium (Thermo Scientific). 148 

Secondary antibodies/polymers alone, or normal goat IgG (AB-108-C, R&D Systems) and rabbit IgG 149 

(Abcam) were used to control for non-specific binding.  150 

 151 

Immunofluorescent staining of Foxp3 and ST2 152 

Sections were air dried overnight, fixed in ice-cold acetone (VWR) and air dried for 30 minutes. 153 

Endogenous peroxidase and biotin were blocked as described above. Sections were blocked with 10% 154 

goat serum (Biosera) in PBS and incubated with rabbit anti-Foxp3 (Abcam) overnight at 4oC. Foxp3 155 

antibody was detected with a goat-anti-rabbit-biotinylated antibody (BA-1000, Vector), followed by 156 

incubation with a streptavidin-coupled horseradish peroxidase (SA-5004, Vector). Tyramide-Cy3 (Perkin-157 

Elmer, Waltham, USA) was applied for 10 minutes to visualize the staining and ST2L FITC antibody 158 

(MdBioproducts, Zürich, Switzerland) was incubated overnight at 4oC. Sections were counterstained with 159 



 9

DAPI (Life Technologies) and mounted in aqueous Permafluor medium (Thermo Scientific).  Mouse 160 

IgG1 FITC (1053002F, MdBioproducts), rabbit IgG (Abcam), or secondary antibodies/polymers alone 161 

were used to control for non-specific binding. Only lesions with Foxp3+ cells were analysed. 162 

 163 

EAE induction 164 

C57BL/6 mice were bred under specific pathogen free conditions at the University of Edinburgh. All 165 

experiments were approved by the University of Edinburgh Ethical Review Committee and were 166 

performed in accordance with UK legislation. Female mice were used between 6-12 weeks old (n = 7). 167 

EAE was induced by administration 100μg of MOG35–55 peptide (MEVGWYRSPFSRVVHLYRNGK, 168 

Cambridge Research Biochemicals, Teesside, UK), emulsified in complete Freund’s adjuvant containing 169 

200μg of heat-inactivated Mycobacterium tuberculosis H37Ra (Sigma-Aldrich), with a total volume of 170 

100μl injected subcutaneously into the hind legs. On the same day and 48 hours later, 200ng of pertussis 171 

toxin (Health Protection Agency, Dorset, UK) was given in 0.5ml of PBS intraperitoneally. Clinical signs 172 

of EAE were assessed daily with the following scoring system: 0, no signs; 1, flaccid tail; 2, impaired 173 

righting reflex and/or gait; 3, partial hindlimb paralysis; 4, total hindlimb paralysis; 5, hindlimb paralysis 174 

with partial forelimb paralysis; 6, moribund or dead.  175 

 176 

Isolation of CNS mononuclear cells and flow cytometry  177 

Mice were sacrificed at d16 (when Treg were evident in the CNS) by CO2 asphyxiation and perfused with 178 

PBS. Brains and spinal cords were removed, mechanically disrupted and digested in RPMI containing 7.5 179 

mg/ml collagenase type 4 (Lorne Laboratories, Reading, UK) and 2.5 mg/ml DNAse I (Sigma-Aldrich) 180 

for 30 minutes at 37°C. Mononuclear cells were isolated from the interface of a 30%:70% discontinuous 181 

Percoll gradient (GE healthcare, Uppsala, Sweden) after centrifugation at 530xg for 20 minutes. Cells 182 

were stained using the following antibodies: anti-CD4 brilliant violet 650 (Biolegend), anti-Foxp3 eFluor 183 

450 (eBioscience, San Diego, USA), anti-ST2 FITC (MdBioscience).  184 

 185 



 10

Data acquisition 186 

Immunohistochemistry samples were analysed using an Olympus AX70 microscope (Olympus 187 

Corporation, Tokyo, Japan). The number of cells was always quantified in the whole lesion and expressed 188 

as cells per mm2 within different lesion types. The total number of nuclei was also documented. An 189 

AxioScan.Z1 slide scanner (Zeiss, Cambridge, UK) was used to acquire fluorescent images and Zen Blue 190 

software (Zeiss) used to process the fluorescent images. Experiments were repeated 2-3 times and 191 

analysed blinded. Flow cytometric data was acquired using a Becton Dickinson (BD, Franklin Lakes, 192 

USA) LSRFortessa II and analysed using FlowJo software (Tree Star version 3.2.1, Ashland, USA).  193 

 194 

Statistical analysis 195 

Where data were unevenly distributed, log transformations and statistical analysis was performed using a 196 

linear mixed model. This model accounts for random effects such as having different numbers of tissue 197 

blocks from each patient. In case of multiple testing, significant values were corrected with the 198 

Bonferroni test. When random effects were found to be non-significant, simplified statistical tests such as 199 

a Mann-Whitney-U test or a Kruskal-Wallis test were used. In case of multiple testing using a Kruskal-200 

Wallis test, significant values were corrected with Dunn’s multiple comparison test. Correlations were 201 

performed using Spearman rank correlation tests. Lesions were not subdivided into pathological types, 202 

thereby allowing sufficient numbers for analysis. SPSS version 19 (IBM, New York, USA) statistical 203 

software and Prism version 5.04 (Graphpad, La Jolla, USA) software were used to perform the 204 

calculations. Data are presented as mean ± SEM. Significant differences are denoted as * p<0.05, ** 205 

p<0.01 and *** p<0.001.  206 
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Figure legends 295 

Figure 1. CD4+Foxp3+ T cell are enriched within MS lesions.  296 

 (a) Representative images from different MS cases (A = active, CA = chronic active and CI = chronic 297 

inactive lesions) of immunohistochemistry for CD4 (blue) and  Foxp3 (brown). No staining was observed 298 

using isotype controls or secondary antibodies alone. Scale bars 20 µm. Accompanying images show 299 

lesions (LFB = Luxol Fast Blue – Cresyl Violet). Dotted line represents lesion border. Black boxes 300 

delineate the areas CD4+Foxp3- and CD4+Foxp3+ cells were pictured. Scale bars 200 µm. (b) Densities of 301 

CD4+Foxp3- and CD4+Foxp3+ cells in the indicated SPMS lesion types. (c) Frequencies of CD4+ cells that 302 

were Foxp3+ in the indicated SPMS lesion types. Graphs show means ± SEM. Kruskal-Wallis tests with 303 

Dunn’s multiple comparison correction were used. * p<0.05, ** p<0.01. 10 active lesions, 7 chronic 304 

active lesions, 17 chronic inactive lesions and 12 remyelinating lesions were studied.  305 

 306 

Figure 2. Foxp3+ cells predominantly produce IL-10 in MS lesions.  307 

(a) Representative images of immunohistochemistry for individual cytokines (blue) and Foxp3 (brown). 308 

No staining was observed using isotype controls or secondary antibodies alone. Scale bars 20 µm. (b) 309 

Frequencies of Foxp3+ cells co-staining for individual cytokines in the indicated SPMS lesion types. 310 

Graphs show means ± SEM. A Kruskal-Wallis test with Dunn’s multiple comparison correction was used. 311 

** p<0.01. 5 active lesions, 3 chronic active lesions and 8 chronic inactive lesions were studied. 312 

 313 

Figure 3. Frequencies of CD4+Foxp3+ cells correlate with IL-10 and TNF-α levels in MS lesions 314 

Relationships between the frequencies of CD4+Foxp3- cells (a), or CD4+Foxp3+ cells (b), and the 315 

frequencies of all cells staining for the indicated cytokine. Non-parametric 2-sided Spearman correlations 316 

were used. Lesions were not segregated based on pathological type. 10 active lesions, 7 chronic active 317 

lesions and 17 chronic inactive lesions were studied.  318 

 319 

Figure 4. Foxp3+ST2+ Treg are present in MS lesions. 320 



 16

(a) Representative flow cytometry plots (gated on CD4+ cells) and summary data showing the expression 321 

of ST2 in CD4+Foxp3+ cells in spleen, lymph nodes (LN) and CNS isolated from mice 16 days after 322 

induction of EAE. A one-way ANOVA with Bonferroni’s post test was used. Graphs show means ± 323 

SEM. 7 mice were studied. (b) Representative immunohistochemistry image of IL-33 (brown) and 324 

haematoxylin (blue) and summary data showing percentage of IL-33+ cells in the indicated human SPMS 325 

lesions. No staining was observed using isotype controls. Scale bars 20 µm. (c) Representative 326 

immunofluorescent staining for DAPI (blue), ST2 (green) and Foxp3 (red) in an active lesion. Arrows 327 

delineate ST2+Foxp3+ cells (insets). No staining was observed using isotype controls. Scale bars 40 µm. 328 

(d) Frequencies of Foxp3+ cells that stained for ST2 in the indicated SPMS lesions. 5 active lesions, 2 329 

chronic active lesions and 6 chronic inactive lesions were studied. A Kruskal-Wallis test with Dunn’s 330 

multiple comparison correction was used. * p<0.05.   331 

 332 
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