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Dynamic Manipulability of the Center of Mass: A Tool to Study,
Analyse and Measure Physical Ability of Robots

Morteza Azad1, Jan Babič2 and Michael Mistry3

Abstract— This paper introduces dynamic manipulability of
the center of mass (CoM) as a metric to measure robots’ phys-
ical abilities to accelerate their CoMs in different directions.
By decomposing the effects of velocity dependent constraints,
such as unilateral contacts and friction cones, CoM dynamic
manipulability is defined as a velocity independent metric which
depends only on robot’s configuration and inertial parameters.
Thus, this metric is independent of any choice of controller
and expresses only physical abilities of robots. This important
property makes the proposed metric a proper tool to study,
analyse and design current and future robots. The outcome of
the CoM dynamic manipulability analysis in this paper is an
ellipsoid in the CoM acceleration space which graphically shows
accessible points due to the unit weighted norm of joint torques.
Physical meanings and concepts of two reasonable choices for
the weighting matrix, which is used in the weighted norm
of joint torques, are discussed and illustrative examples are
presented. Since the proposed metric measures physical ability
to accelerate the CoM, it is claimed to be a suitable tool to
study balance ability of legged robots.

I. INTRODUCTION
Over the last years, many balance criteria for legged robots

have been proposed in order to help to design balancing
controllers. Among them, zero moment point (ZMP) [19],
[20] or center of pressure (CoP), foot rotation indicator (FRI)
[7] and zero rate of change of angular momentum (ZRAM)
[8] are most famous and applicable ones. Unfortunately, most
of the above mentioned criteria are not well-defined when the
robot has multiple non-planar contacts with its environment
[8]. The other problem with these criteria is that none
of them is able to distinguish between different balanced
configurations of a robot in terms of the ability to keep the
balance. For example, a legged robot is in balance if the rate
of change of its momentum is zero, according to ZRAM, or
if its ZMP or CoP is inside the convex hull of the supporting
area, according to ZMP and CoP criteria. However, none of
these criteria explain the difference between configurations
(or robot states) which have the same ZMP, CoP or the rate
of change of momentum. In other words, based on the above
mentioned criteria, all balanced configurations for a robot are
the same as long as they meet the criteria. Here, we tackle
this problem and introduce CoM dynamic manipulability as
a metric that quantitatively evaluates the physical ability of a
robot to accelerate its CoM in different postural and contact
configurations. Since the CoM plays a key role in a balancing
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motion, the ability to accelerate this point can be defined as
a robot’s ability to balance. Also, the proposed metric is
configuration dependent only which enables it to evaluate
different configurations in the sense of balance ability.

Unlike the end-effector manipulability, which is a well-
developed topic [2], [5], [10], [16], [21], [22], there have not
been many studies on CoM manipulability in the literature.
Naksuk and Lee [14] introduced ZMP manipulability as an
extension to the ZMP balance criterion based on the concept
of dynamic manipulability of end-effectors. Then, Cotton et
al. [3] were the first to introduce dynamic manipulability of
the CoM for humanoid robots. They used dynamic motion
equations to calculate the CoM acceleration due to available
joint torques. The result was a polyhedron in the CoM accel-
eration space and also a sphere inside the polyhedron as an
approximation to that space. Recently, Gu et al. [9] proposed
feasible CoM dynamic manipulability (FCDM) for planar
humanoids. To evaluate the feasibility of the manipulability
index, they considered the ground-contact force constraints
such as friction cone and unilaterlaity of the normal force
for single support phase of a planar humanoid. However,
their proposed method is not developed for floating base
robots with multiple contacts and also it is dependent on
the robot’s joint velocities (i.e. a velocity dependent index).
Featherstone [6] was the first to introduce a metric to evaluate
physical ability of a robot to balance on a single point. By
using impulsive dynamics, this metric was defined as the
ratio between instantaneous change of the CoM velocity and
instantaneous changes of joint accelerations, due to impulses
at the actuated joints.

In this paper, we calculate CoM dynamic manipulability
by using motion equations of floating base robots which
have multiple contacts with the environment. Thus, in our
manipulability analysis, we take into account the effects of
inertial parameters as well as under-actuation and kinematics
constraints. The under-actuation is due to the floating base
and kinematic constraints are due to multiple contacts with
the environment, such as hands and feet for biped robots.
As a result of the manipulability analysis, we obtain an
ellipsoid which graphically shows the CoM acceleration
due to the weighted unit norm of torques at the actuated
joints. The weights should be set by the user and based on
the application. Two physically meaningful choices for the
weights are introduced in this paper and their concepts are
discussed. The proposed CoM dynamic manipulability is a
configuration based (i.e. velocity independent) metric which
is dependent only on the physical properties of a robot and
its configuration and it is applicable to all types of legged



(floating base) robots with different contact conditions. Also,
since this metric studies the motion of the CoM, it provides a
proper tool to study balancing abilities of robots and design
new robots with higher physical abilities to balance.

II. DYNAMIC MANIPULABILITY OF THE COM

The concept of manipulability (of end-effectors) for ma-
nipulators, first introduced by Yoshikawa [21]. He proposed
that

√
JeJTe , where Je is the Jacobian of end-effector,

can be used to measure the capability of a manipulator in
a specific configuration. He also extended this metric to
dynamic manipulability by including the dynamics equations
of manipulators [22]. However, Doty et. al. [5] pointed out
that

√
JeJTe has no physical meaning when dealing with

general robots with a combination of different joint types
(e.g. revolute and prismatic joints). They proposed to use a
weighting matrix to solve this issue and make consistency in
the units.

In this section, we calculate dynamic manipulability ellip-
soid of the CoM which shows the effects of unit weighted
joint torques on the CoM accelerations. Let q ∈ Rn denote
the vector of generalized coordinates of a floating-base robot
which has 6 virtual unactuated degrees of freedom (DoF)
due to its floating base. Assume that there are l linearly
independent kinematic constraints acting on the robot. These
constraints are either due to the kinematic loops in the
mechanism or contacts with the environment. The latter
models the hands and feet contacts for a humanoid or a
legged robot. The motion equations of this robot will be

M(q)q̈+ h(q, q̇) + g(q) = Bτ + JTc (q) fc , (1)

where M ∈ Rn×n is the joint-space inertia matrix, h ∈ Rn
is the vector of centripetal and Coriolis forces, g ∈ Rn is
the vector of gravity force, B ∈ Rn×k is the selection matrix
for the actuated joints, τ ∈ Rk is the vector of actuated joint
torques, Jc ∈ Rl×n is the Jacobian of the constraints and
fc ∈ Rl is the vector of the constraint forces.

Assuming that there is no sliding or loss of contact (i.e.
kinematic constraints are bilateral), we will have

Jcq̇ = 0 =⇒ J̇cq̇+ Jcq̈ = 0 . (2)

By multiplying both sides of (1) by JcM
−1 and employing

(2), we obtain

fc = −(JcM−1JTc )
−1[J̇cq̇+ JcM

−1(Bτ − h− g)] . (3)

Substituting fc from (3) into (1) and solving for q̈, yields

q̈ = Jqτ + q̈vg , (4)

where
Jq = PMM−1B , (5)

and q̈vg is a part of the joint accelerations due to the gravity
and joint velocities as

q̈vg = −PMM−1(h+ g)− J#
cM J̇cq̇ , (6)

and
PM = I− J#

cMJc , (7)

where I ∈ Rn×n is an identity matrix and

J#
cM = M−1JTc (JcM

−1JTc )
−1 , (8)

is a generalized inverse of Jc with the joint-space inertia
matrix as the weighting matrix [4].

Let c ∈ R3 and J ∈ R3×n denote the position and
Jacobian of the CoM in the world frame, respectively. Note
that, Jacobian of the CoM is a well-studied subject in the
literature [1], [11], [12], [13], [15], [17], [18]. Then, the
velocity of the CoM will be ċ = Jq̇ and therefore, the CoM
acceleration is

c̈ = J̇q̇+ Jq̈ = Jττ + c̈vg , (9)

where
Jτ = JPMM−1B , (10)

and c̈vg is the gravity and velocity dependent part of the
CoM acceleration which is

c̈vg = Jq̈vg + J̇q̇ . (11)

Matrix Jτ can be regarded as a Jacobian that maps the joint
torques to the CoM acceleration. Note that Jτ is independent
of the robot’s velocity whereas c̈vg is dependent on both
configuration and velocity of the robot. Here, we assume
that there is no constraint on the movement of the CoM and
therefore Jτ is full row rank. In case that the CoM has only
2 DoF (i.e. constrained motion of the CoM), we introduce
a new frame oriented such that its x and y axes span the
space of motion freedoms of the CoM, and redefine c̈ to be
a 2D vector. Likewise, if the CoM has only one DoF then
we introduce a new frame with its x axis in the direction of
motion freedom, and define c̈ to be a 1D vector. Hence, the
Jacobian in the new frame will be full row rank but it will
have a lower dimension than Jτ . The above explanation is
for the sake of mathematical soundness, though there might
not be any practical example of a robot with a constrained
motion of its CoM.

The unit weighted norm of actuated joint torques can be
defined as

τTWττ = 1 , (12)

where Wτ is a weighting matrix and assumed to be sym-
metric and positive definite. The reason of using Wτ is to
unify the units and strengths of different actuated joints. By
inverting (9), we can write

τ = J#
τ (c̈− c̈vg) +Nτ τ 0 , (13)

where Nτ = I− J#
τ Jτ is the projection matrix to the null-

space of Jτ , and

J#
τ = W−1

τ JTτ (JτW
−1
τ JTτ )

−1 , (14)

is a generalized inverse of Jτ . Thus, by replacing (13) into
(12), we will have

1 = (J#
τ (c̈− c̈vg) +Nττ 0)

TWτ (J
#
τ (c̈− c̈vg) +Nτ τ 0)

= (c̈− c̈vg)
TJ#

τ
TWτJ

#
τ (c̈− c̈vg)

+ (c̈− c̈vg)
T (J#

τ
TWτNτ )τ 0

+ τT0 (N
T
τ WτJ

#
τ )(c̈− c̈vg) + τT0 N

T
τ WτNττ 0 .



Note that, according to definitions of J#
τ and Nτ , we have

J#
τ
TWτNτ = NT

τ WτJ
#
τ = 0. Hence,

1 = (c̈− c̈vg)
TJ#

τ
TWτJ

#
τ (c̈− c̈vg) + τT0 N

T
τ WτNττ 0 .

Since Wτ is positive definite, both terms in the right hand
side of the above equation are positive. Thus, removing the
last term yields an inequality as

0 ≤ (c̈− c̈vg)
TJ#

τ
TWτJ

#
τ (c̈− c̈vg) ≤ 1 (15)

and therefore, by employing (14), we will have

0 ≤ (c̈− c̈vg)
T (JτW

−1
τ JTτ )

−1(c̈− c̈vg) ≤ 1 . (16)

The above inequality defines an ellipsoid in the acceleration
space which represents the acceleration of the CoM due to
the unit weighted norm of torques at the actuated joints. The
center of this ellipsoid is c̈vg and its radii and orientation can
be determined by the eigenvectors and eigenvalues of matrix
JτW

−1
τ JTτ . Therefore, the size and shape of the ellipsoid

is configuration dependent only. Velocity and gravity only
alter the location of the ellipsoid within the space of the
CoM acceleration. Note that, according to (16), this ellip-
soid captures the effect of both under-actuation (due to the
floating base) and kinematic constraints (due to the contacts)
in the relationship between the CoM acceleration and torques
at the actuated joints.

Note that, the analysis presented in this section is appli-
cable to planar robots, in which case n = k+3, c̈ ∈ R2 and
the ellipsoid becomes ellipse.

III. DISCUSSION ON CONCEPT AND APPLICATION

As previously mentioned in this paper, dynamic manipu-
lability of the CoM is a metric that can be used to measure
the physical ability of a mechanism to accelerate its CoM. It
graphically shows the acceleration of the CoM in different
directions which can be used to analyse existing robots and
also designing new robots in terms of CoM manipulability.
According to (16), shape and size of the ellipsoid are de-
pendent on the robot’s configuration, its inertial parameters,
kinematic constraints and also the weighting matrix. Among
these factors, weighting matrix is the only one that has
to be chosen by the user and based on the application.
Note that, defining proper Wτ is quite important since it
significantly affects the size and shape of the ellipsoid. None
of the previous studies on manipulability, including the well-
developed area of end-effector manipulability, has studied
the effects of the weighting matrix nor discussed possible
meaningful choices for this matrix.

In this section, we introduce two reasonable choices for
Wτ and discuss their physical meanings and their appli-
cations in studying and measuring robot’s physical ability
to manipulate its CoM. The suggested choices are defined
in a general way so they can also be used for end-effector
dynamic manipulability analysis. Note that, the application
of the CoM dynamic manipulability proposed in this paper
is not limited to the suggested options for Wτ and users can
define their weighting matrices to suit their applications. For
example, an identity matrix can be chosen when all joints are

the same type and able to generate same amount of torque (or
the user cares about generating torques at all joints equally).

A. First Choice: Torque Limits

One first proposed reasonable choice for Wτ is

W−1
τ = diag([kτ 2

1max
, kτ 2

2max
, . . . , kτ 2

kmax
]) , (17)

where τ imax
is the saturation limit at the ith joint (i =

1, 2, ..., k) and |τ i| ≤ τ imax . By using this weighting matrix,
(12) will become

τ 2
1

τ 2
1max

+
τ 2
2

τ 2
2max

+ · · ·+ τ 2
k

τ 2
kmax

= k . (18)

Since the ellipsoid in (18) accommodates all combinations
of available joint torques (i.e. τ 2

i /τ
2
imax

≤ 1), the outcome
ellipsoid in (16) will include all achievable accelerations of
the CoM. Observe that, as proved in Section II, all points
inside the ellipsoid in (18) map into the ellipsoid in (16).

It is worth mentioning that, the weighting matrix in (17)
is different from the one used in [9] to approximate feasible
CoM accelerations due to torque limits. The difference is that
Gu et al. [9] did not include the number of actuators (i.e.
k) in their weighting matrix. Removing k from (17), which
is the same as replacing k with 1 in the right hand side of
(18), results in the unit norm of normalized joint torques
based on torque limits as it is mentioned in [9]. It is clear
that the outcome ellipsoid, by using their choice of Wτ , will
not include all feasible CoM accelerations and cannot be a
reasonable approximation of achievable CoM accelerations
due to torque limits.

In order to verify our choice of Wτ and to illustrate
the relationship between manipulability ellipsoid (ellipse in
2D) by using (17) and achievable CoM accelerations due
to torque limits, we plot ellipses for four different planar
robots at zero velocity and gravity (i.e. c̈vg = 0), assuming
arbitrary torque limits. These four robots consist of (i) four,
(ii) five, (iii) seven and (iv) ten links which are connected
to each other by active revolute joints. The first link of each
robot is fixed to the ground by a passive revolute joint. Each
link is assumed to have unit mass and length and its CoM
in the middle. Corresponding robots configurations, which
are chosen randomly, are depicted in the top right corner
of each plot. Areas of feasible CoM accelerations (due to
saturation limits) for these robots are indicated in Fig. 1
by grey and black polygons. These polygons are obtained
numerically by mapping points inside the range of available
joint torques (|τ i| ≤ τ imax

) to the CoM acceleration space.
This mapping is done by using (9). Both polygons for each
robot are for a same configuration. The difference is that
the black one shows the achievable area when the end point
of the last link is fixed (i.e. an extra bilateral constraint).
This is to show the effect of an additional constraint on
feasible CoM accelerations (and also on ellipses). The extra
constraint deforms the feasible area due to (i) the additional
kinematic constraint limiting the movements of the CoM in
some directions, and (ii) contact forces provide additional
torques in some directions. Corresponding manipulability
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Fig. 1. Feasible CoM acceleration polygons due to torque limits and
CoM dynamic manipulability ellipses for four different planar robots. The
black polygons and red ellipses are for constrained end-effectors whereas
the grey polygons and blue ellipses are for unconstrained robots at the same
configuration. The gravity and velocity are assumed to be zero (c̈vg = 0).

ellipses, which are calculated by using the weighting matrix
in (17), are also shown in Fig. 1. Red and blue ellipses
are related to constrained and unconstrained last links, re-
spectively. Comparing the ellipses and polygons, it can be
seen that, by employing (17) as a weighting matrix, these
ellipses can provide reasonable approximations of achievable
CoM accelerations. It is obvious that calculating ellipses is
computationally much more efficient rather than obtaining
polygons. Ellipses also provide analytical metrics which can
be used to study and optimize a robot’s physical ability to
manipulate its CoM.

Including gravity and velocity to the above examples will
only change center points of the polygons and ellipses and
will have no effect on shapes and sizes of those areas.
As an example, we consider the five-link robot in the
same configuration and same torque limits as we had for
the ellipses in the top right corner of Fig. 1. The robot’s
configuration is shown in the bottom left corner of Fig. 2.
The blue ellipse in this figure is the CoM manipulability
ellipse for this robot when the gravity exists and velocity is
zero. Therefore, the difference between this ellipse and the
blue one in the top right corner of Fig. 1 is due to the gravity
which only moves the center point (c̈vg 6= 0). The red and
green ellipses in Fig. 2 are also for the same robot and same
configuration but different velocities. This implies a kind of
decoupling between the effects of inertial parameters and
configuration (size and shape of the ellipse) on one hand
and velocity (location of the ellipse) on the other hand. This
decoupling is important in studying physical ability of a robot

-5 0 5

-10

-5

Fig. 2. CoM dynamic manipulability ellipses for a five-link planar robot
in different velocities. The robot’s configuration is shown on the bottom left
corner. Straight lines show the friction cone of the contact force.

in different configurations independent of its velocity.
The inequality (16) for the CoM dynamic manipulability

ellipsoid in Section II is derived assuming that the contacts
are bilateral. Although in legged robots the contacts are
usually unilateral, it is desired to maintain the contacts
(except contact switching) and prevent sliding or loss of
contact during the robot’s performance. Therefore, bilateral
contact assumption still makes sense if the contact forces
satisfy the unilateral contact constraints. In the example in
Fig. 2, replacing the bilateral constraint by a unilateral one
in the first link, we can draw friction cone constraints in the
CoM acceleration space. Straight lines in Fig. 2 show the
CoM acceleration limits due to the friction cone when the
coefficient of friction is 0.5. As can be seen in this figure,
different velocities result in different feasible areas for a
same manipulability ellipse due to the unilateral constraint.
It implies that, although the CoM dynamic manipulability
ellipse, which is an approximation of the robot’s physical
ability to accelerate its CoM, remains the same, enabling
the robot to exploit that ability is dependent on velocity, as
well. Note that, a proper velocity has to be determined by a
controller (or a motion planner) in order to exploit available
ability of a robot to reach a certain acceleration of the CoM
and satisfy the contact conditions.

In the examples in Fig. 2, we assumed a unilateral con-
straint at the first link of the robot which is the same situation
that arises in single support phase for legged robots. Since
we also assumed that the first joint is unactuated, the CoP
(and also the ZMP) is always at the contact point no matter
if the robot is in balance or not. This clarifies the difference
between the CoP (or the ZMP) and manipulability ellipses.
As can be seen in Fig. 2, ellipses provide information about
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Fig. 3. CoM dynamic manipulability ellipses and feasible CoM acceleration
polygons due to torque limits and unilateral constraints of a four-link robot
with two contact points in different velocities. Straight lines show the friction
cone of the total force.

the robot’s ability to accelerate the CoM in different direc-
tions with different configurations and velocities, whereas the
CoP (or the ZMP) remains at the same point regardless of
the robot’s states.

It is worth mentioning that a larger ellipse means not only
higher physical ability to accelerate the CoM, but also larger
feasible region for c̈vg to include a desired point in the
CoM acceleration space inside the ellipse. In other words,
although the ellipse’s position and therefore its feasible part
due to the unilateral constraint is dependent on c̈vg , having
a larger ellipse provides more options for the controller (or
the planner) to choose a proper velocity to reach a desired
CoM acceleration.

Introducing more unilateral constraints to the robot (e.g.
double support phase in legged robots), or having multiple
contacts which at least one of them is unilateral, will result
in velocity dependent limits for the CoM acceleration. In
this case, each contact has its own friction cone limits which
are dependent on robot’s states. This is due to the relation-
ship between contact forces and robot’s velocity which is
stated in (3). Fig. 3 shows manipulability ellipses and their
corresponding feasible CoM acceleration areas of a four-link
robot in three different velocities. The polygons are obtained
numerically and by using (9). The robot’s configuration is
depicted in the bottom left corner of the graph and it is
chosen to mimic double support phase of a planar biped. The
blue (top) area shows the feasible area when the velocity is
zero and the two others are for randomly chosen velocities.
By comparing the three areas, it is obvious that different
limits are affecting feasible areas at different velocities which
shows the dependency of the limits on the robot’s velocity.

As can be seen in Fig. 3, manipulability ellipses are the
same for all velocities implying that the robot’s physical
ability to accelerate its CoM does not depend on velocity.
However, the robot’s velocity affects the feasibility of the
areas due to the unilateral contacts. In other words, in all
three velocities, the robot’s physical ability to accelerate its
CoM is the same, although in two of the velocities (i.e.
green and red areas) the robot may lose its contact with the
ground if it wants to reach certain accelerations. Therefore,
exploiting robot’s ability in a certain configuration depends
on choosing proper velocity by the controller (or planner),
as well. Note that, straight lines in Fig. 3 show the friction
cone limits for the total contact force which do not have
any effect on feasible areas at the chosen velocities since
the areas are already limited by friction cone constraints of
individual contact forces.

B. Second Choice: Joint Accelerations

Other than joint torques, joint accelerations are also impor-
tant factors in studying a robot’s physical ability. Obviously,
producing less accelerations at the joints, with same amount
of joint torques and same CoM acceleration, is desirable
since it leads to lower joint velocities and consequently less
joint movements. Less movements at the joints is beneficial
since the robot’s workspace is limited. Also lower joint
velocities with same joint torques means less work and
higher energy efficiency. Therefore, we introduce a proper
weighting matrix in order to study the robot’s CoM acceler-
ation due to the limited joint accelerations.

Let Wq ∈ Rn×n denote a symmetric positive definite
matrix. We define the second choice of Wτ as

Wτ = JTq WqJq . (19)

By substituting (19) into (12), we will have

τTWττ = 1 = τTJTq Wq Jqτ . (20)

By employing (4), the above equation becomes

(q̈− q̈vg)
TWq (q̈− q̈vg) = 1 , (21)

where Wq can be used to unify the units or express the
relative importance of the joint accelerations in q̈. The
above equation specifies a n-dimensional ellipsoid in the joint
acceleration space which its center point is at q̈vg . This point
is the same center point of a n-dimensional ellipsoid that will
be obtained if we project the unit weighted norm of joint
torques (i.e. Eq. (12)) to the joint acceleration space. Such
ellipsoid will be the same as (16) if we replace Jτ with Jq
and c̈ with q̈.

By choosing Wτ as in (19), CoM dynamic manipulability
ellipsoid will show an area in the CoM acceleration space
which is achievable via unit weighted norm of joint accel-
erations in (21). Therefore, by setting proper values for Wq

(user’s choice based on the application), a user can study
the effect of joint accelerations on reaching desired CoM
accelerations. As an illustrative example, Fig. 4 shows CoM
manipulability ellipses for a five-link planar robot (i.e. the
same robot explained earlier in this section) in two different
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Fig. 4. CoM dynamic manipulability ellipses with different weighting
matrices for a planar five-link robot in two configurations. Green areas
show feasible CoM accelerations due to torque limits. Blue and red areas
show achievable CoM accelerations with unit weighted norms of joint
accelerations.

configurations which are shown in bottom left corners of
the plots. Without losing generality, we set the gravity and
velocity to zero in these examples (i.e. q̈vg = c̈vg = 0).
Torque limits for all four actuated joints are assumed to be
one. Green areas show feasible CoM accelerations due to
the torque limits and green ellipses are their approximations
which are obtained by using (17). Blue and red areas indicate
CoM accelerations which are achievable by limited norm of
the joint accelerations. For the blue areas the norm is one (i.e.
q̈T q̈ = 1) and for the red ones the norm is 3 (i.e. q̈T q̈ = 9).
Blue and red ellipses are obtained by using (19) and setting
Wq to identity and 1/9 times identity matrices, respectively,
to match the corresponding areas. Green, blue and red areas
are obtained numerically and by using (9). In obtaining red
and blue areas corresponding joint acceleration limits (i.e.
q̈T q̈ ≤ 1 for red areas and q̈T q̈ ≤ 9 for blue areas) are also
considered via (4).

As it is expected, and also can be seen in Fig. 4, blue
and red ellipses include all points in the blue and red areas,
respectively. Although they also include points which are
not inside their corresponding areas. The reason is that
the mapping from the joint acceleration space to the CoM
acceleration space is not one-to-one, which means that the
mapping from the CoM to the joint acceleration space may
be different. Comparing the two examples in Fig. 4, it is
obvious that in the top configuration, although the green area
is smaller, the blue and red areas are larger compared to the
bottom plot. It means that, the same CoM accelerations can
be achieved by generating smaller accelerations at the joints
in the top configuration comparing with the bottom one. This
can be explained by CoM dynamic manipulability ellipses
as the blue and red ellipses are much more aligned with the
green one in the top plot rather than in the bottom one. Note
that, blue and red ellipses have the exact same alignments
and the only difference is in their sizes. Therefore, in order
to minimize the norm of the joint accelerations to reach a
certain CoM acceleration, one can minimize the difference
in the alignments of these two ellipses.

Since the proposed metric in this paper studies the motion
of the CoM, which is the main focus in balancing motions of
robots, it can be used to evaluate a robot’s ability to balance.
Thus, we define physical ability to balance as a robot’s
physical ability to manipulate its CoM in the horizontal
directions. Therefore, if we project dynamic manipulability
ellipsoids of a robot, in different configurations, onto the
horizontal plane, the configuration with the largest ellipse
(i.e. projected ellipsoid) will have the highest ability to
balance in the sense of the required torque if we use (17) or
the required joint accelerations if we use (19) . Note that,
the largest projected ellipse is not necessarily the projection
from the largest ellipsoid, since the largest ellipsoid might
be extended in another (i.e. the vertical) direction. Therefore,
by using the CoM dynamic manipulability one can compare
different configurations of a robot] or even different robots
in terms of their physical abilities to maintain balance.

IV. CONCLUSION

CoM dynamic manipulability, for legged robots with mul-
tiple contacts with the environment, is introduced in this
paper in order to study, analyse and measure physical abili-
ties of robots to accelerate their CoMs. Since the proposed
metric concerns the motion of the CoM, it is claimed to
be a proper tool to study balancing motion and robots’
abilities to maintain balance. As a result of the CoM dynamic
manipulability analyses in this paper, an ellipsoid in the
CoM acceleration space is defined which graphically shows
achievable points due to the unit weighted norm of torques
at the actuated joints. Two physically meaningful choices for
the weights are introduced and discussed in this paper and
illustrated by examples. By employing those two choices,
CoM manipulability ellipsoids will provide reasonable ap-
proximations to the feasible areas of the CoM accelerations
due to torque limits and limited joint accelerations.
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