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Abstract Forest carbon sink strengths are governed by plant growth, mineralization of dead organic
matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground
states of forests and this information can be linked to models to estimate carbon cycling in forests close
to steady state. For aggrading forests this approach is more challenging and has not been demonstrated.
Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information
content, for two aggrading forests. We compare high information content analyses using local observations
with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody
biomass observations). The net biome productivity of both forests is constrained to be a net sink with
<2 Mg C ha−1 yr−1 variation across the range of inputs. However, the sequestration of particular carbon
pool(s) varies with assimilated biomass information. Assimilation of repeated biomass observations reduces
uncertainty and/or bias in all ecosystem C pools not just wood, compared to analyses using single or no
stock information. As verification, our repeated biomass analysis explains 78–86% of variation in litter
dynamics at one forest, while at the second forest total dead organic matter estimates are within
observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis
is reduced by up to 50% compared to analyses with less biomass information. This study quantifies
the importance of repeated woody observations in constraining the dynamics of both wood and dead
organic matter, highlighting the benefit of proposed remote sensing missions.

1. Introduction

Forests are a critical component of the global carbon cycle [Luyssaert et al., 2010], storing significant amounts
of carbon (861±66 Pg C), split between living biomass and dead organic matter (including fine litter, coarse
woody debris (CWD), and soil organic matter) [Pan et al., 2011; Liu et al., 2015; Magnusson et al., 2016]. There
are large carbon fluxes into and out of forests, dominated by natural processes of photosynthesis, respiration,
and decomposition, which have a high climate sensitivity, varying in space and time [Luyssaert et al., 2010;
Pan et al., 2011; Magnusson et al., 2016]. Forests are also subject to significant impacts from management
and other disturbances; consequently, forests may not be in steady state [Jarvis et al., 2009; Pan et al., 2011;
Liu et al., 2015; Poorter et al., 2016]. Overall, the carbon budget of forests is the most uncertain component of
the global carbon cycle—it is currently impossible to accurately quantify the carbon source/sink strength of
forest biomes due to their spatiotemporal heterogeneity and complex dynamics [Carvalhais et al., 2014; Friend
et al., 2014].

The storage of woody biomass is determined by the allocation of photosynthate into woody tissue and its
turnover (or transit time as defined by Sierra et al. [2016]); both of these processes are poorly constrained
[Smith et al., 2013; Malhi et al., 2015; Poorter et al., 2016] resulting in large errors in simulated biomass [Jiang
et al., 2015]. The transit time of woody biomass is measured in decades but can be highly variable across
species, according to disturbance and management regime [Luyssaert et al., 2007; Malhi et al., 2015]. Similarly,
the inputs to and transit time of CWD and soil carbon are poorly constrained resulting in large uncertainties in
the dynamics and magnitude of these large carbon pools [Brovkin et al., 2012; Todd-Brown et al., 2013; Exbrayat
et al., 2014a]. It has been a major challenge to generate robust carbon budgets across landscapes due to
data scarcity, e.g., CWD, soil, and woody carbon stocks. Terrestrial ecosystems models (TEM) have been used
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for estimating carbon budgets [e.g., Le Quéré et al., 2015], but outputs typically lack an assessment of model
uncertainty and exhibit orders of magnitude differences in stock sizes, making a robust assessment of their
reliability and precision challenging. TEM-based analyses also typically assume that forests are undisturbed
and in steady state with past climate (i.e., model spin-up), which may be inappropriate due to disturbance,
either natural or human driven. Moreover, errors in the model spin-up strongly correlate with simulation of
carbon stock dynamics [Exbrayat et al., 2014b; Tian et al., 2015].

Now novel data sources such as satellite-based remotely sensed estimates of forest cover and biomass
[Saatchi et al., 2011; Hansen et al., 2013; Thurner et al., 2014; Avitabile et al., 2016], plant trait databases [Wright
et al., 2004; Kattge et al., 2011], and digitized management [e.g., National Forest Inventory, 2011a] and soil
maps (Harmonized World Soil Database, HWSD) [Hiederer and Kochy, 2011] provide opportunities to generate
robust, high-resolution, and spatially continuous and explicit information at landscape scales. However,
remotely sensed biomass estimates and soil inventories are typically available with poor temporal resolution
[e.g., Saatchi et al., 2011] and/or covering a single ecosystem type [e.g., Thurner et al., 2014], although this is
expected to change with the advent of new remotely sensed products generating multiannual information
[e.g., Le Toan et al., 2011]. Thus, several distinct combinations of data are likely to be available over different
spatial and temporal domains which need to be assessed. Data assimilation techniques can be used to com-
bine such disparate, but spatially explicit, information streams with a process model to produce spatially
explicit, temporally constrained analyses of carbon budgets and estimation of ecosystem traits [Kuppel et al.,
2012; Bloom and Williams, 2015; Bloom et al., 2016].

Remotely sensed biomass estimates will likely provide similar information content to that of field-based
(in situ) estimates. The impact of assimilating any given observation is related to its associated uncertainty;
field-based estimates of woody biomass have uncertainties of 20–25% [e.g., Black et al., 2009]. Existing
remotely sensed biomass products have uncertainties which are highly variable between pixels and between
products, e.g., 6–53% tropical biomass [Saatchi et al., 2011] and 20–40% for Northern Hemisphere Boreal
forests [Thurner et al., 2014]. However, the pixel level uncertainty of future remotely sensed estimates from the
European Space Agency (ESA) Biomass mission is expected to be ∼20% [Le Toan et al., 2011].

Here we quantify the information content of management data (i.e., planting dates), biomass estimates, and
soil map data for constraining carbon budgets and ecosystem traits of nonsteady state (i.e., aggrading) forests
over multiple decades. Our key science question is the following: to what extent are (1) fluxes, (2) stocks of
carbon, and (3) ecosystem traits for dynamic systems constrained by management and biomass information?
This study lays the foundations for upscaling from site to regional and global scale analyses, generating spa-
tially explicit and dynamic analyses of global forest resources at fine spatial resolutions, utilizing spatially and
temporally explicit data sets from existing and upcoming missions for forest biomass mapping [e.g., Le Toan
et al., 2011; Hansen et al., 2013; Thurner et al., 2014]. The novelty of this research is that we provide the first
quantitative assessment of decadal constraints on forest carbon dynamics arising combining biomass, soil
carbon, and management data.

2. Materials and Methods

We carry out data assimilation analyses to address our science question at two well-studied managed ever-
green forests—Duke Forest (Loblolly pine, Pinus taeda) in the U.S. and Harwood Forest (Sitka spruce, Picea
sitchensis) in the UK. These sites were chosen because they represent key forestry species in their respective
countries and are intensively managed with extensive data sets available with which to constrain and validate
their analyses. Loblolly pine plantations covered an area of ∼33 million ha or ∼16% of the total forest plan-
tation area of the U.S. in 1997 [Carter and Foster, 2006; US Forest Service, 2001], while Sitka spruce plantations
covered an area of ∼682,000 ha or ∼23% of UK forestry in 2010 [National Forest Inventory, 2011a, 2011b].

We use a simple carbon cycle model (DALEC) [Williams et al., 2005; Bloom and Williams, 2015], within the
CARbon DAta MOdel fraMework (CARDAMOM) framework [Bloom et al., 2016], to assimilate a range of
remotely sensed, database, and in situ information using a Metropolis-Hastings Markov Chain Monte Carlo
(MH-MCMC) algorithm. CARDAMOM uses spatially and temporally explicit meteorological drivers and carbon
cycle observations to generate unique location-specific carbon cycle analyses. We assimilate all available in
situ live biomass carbon stock information plus soil organic carbon stock information for Duke and Harwood
Forests independently to generate our most data-constrained analysis of their carbon cycles (henceforth
referred to as the Reference analysis). The Reference analysis provides a baseline against which to assess the
information loss to our analyses as in situ carbon stock and management information is progressively removed,
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Table 1. Combinations of Data Streams Utilized in the Data Availability Experimentsa

Experiment Planting Date Cfoliar Croot Cwood Csom HWSD Csom Prior

Reference Y Y Y Y Y N

MultiWood Y N N Y N Y

OneWood Y N N maximum estimate only N Y

ManOnly Y N N N N Y

NoMan N N N N N Y
aAll scenarios use a time series of LAI to constrain the dynamics of the Cfoliar pool. Y, Yes; N, No.

ultimately leaving only information in the form of leaf area index (LAI) and a prior estimate of soil carbon
derived from the Harmonized World Soil Database (HWSD) [Hiederer and Kochy, 2011]. Here we consider the
degradation to the estimates and uncertainty of carbon fluxes and stocks but also to the retrieved ecosystem
traits in comparison with field observations. Finally, we validate our analyses using carbon flux estimates from
eddy covariance observations and in situ estimates of dead organic matter stocks. The validation information
are fully independent and not assimilated in any analysis here.

2.1. Experimental Design
2.1.1. Data Availability Scenarios
The data availability scenarios address combinations of ecosystem carbon stock data which are likely to be
available either currently or in the near future (Table 1). All scenarios assimilate a time series of LAI. At Duke For-
est the LAI time series are derived from in situ observations [McCarthy et al., 2010]. At Harwood Forest only four
LAI estimates are available; therefore, to provide continuous time series information, the in situ observations
have been used to bias correct Moderate Resolution Imaging Spectroradiometer (MODIS) LAI (2001–2008,
MOD15A2 LAI-8 day version 5, 1 km resolution product, http://lpdacc.usgs.gov/, using the maximum quality
flagged information only). Each scenario except Reference also uses a prior estimate of the initial soil carbon
stock derived from the HWSD [Hiederer and Kochy, 2011]. The HWSD-derived prior estimates for soil carbon
are 82 Mg C ha−1 for Duke Forest and 218 Mg C ha−1 for Harwood Forest. The HWSD information is nominally
assumed to represent the top 1 m of soil.

Five data availability scenarios have been analyzed at each site in approximate decreasing order of in situ
information content (Table 1). The Reference analysis assimilates all in situ information on foliage, fine root,
wood (combining stem, branch, and coarse root), and soil carbon stocks. Note that the combination of LAI
and in situ information on the foliar carbon stock also constrains the leaf carbon mass per leaf area (LCMA).
Location-specific information on fine root, foliage, and soil carbon stocks are unlikely to be available except
for site scale analyses. Therefore, we define two scenarios, MultiWood which assimilates multiple in situ wood
stock observations and OneWood which assimilates the most recent single in situ wood stock observation. In
many locations no biomass information is available; therefore, we assess the impact of management infor-
mation only (i.e., forest age) in the ManOnly scenario. The final scenario (NoMan) assimilates only data which
currently have global spatial coverage (e.g., MODIS LAI and HWSD). This information is required to sup-
port upscaling analyses of managed forest carbon dynamics over spatial areas where limited information
is available.

The Princeton meteorological reanalysis (1∘ × 1∘ spatial resolution) provides air temperature, short-wave
radiation, and vapor pressure deficit [Sheffield et al., 2006], while the atmospheric CO2 concentration was held
constant at 380 ppm. The Duke Forest analyses cover a 26 year period from planting in 1983 until the end of
2008. At Harwood Forest a pseudo time series of forest biomass was created using the chronosequence of in
situ observations, where the 30 year old stand is placed at the observation date in 2001 and all other obser-
vations are placed prior to 2001 based on their age difference from the 30 year old stand (i.e., the 21 year old
stand data are placed in 1992). The Harwood Forest analyses cover a 37 year period from 1972 until the end
of 2008. All analyses were conducted at a daily time step.
2.1.2. Site Description and Observations: Duke Forest
Duke Forest in North Carolina, U.S. (35.97∘N, 79.09∘W; elevation 163 m) is a second-rotation uniform age
loblolly pine (Pinus taeda) plantation with a deciduous hardwood understory. The first rotation was cleared in
1982 and replanted in 1983 on moderately low-fertility acidic clay-loam soil. The mean annual air temperature
is 15.8∘C, and precipitation is 1145 mm [McCarthy et al., 2007].

Observations were collected at Duke Forest for both the loblolly pine and understory as part of the Duke CO2

Free Air CO2 Enrichment (FACE) experiment [Oren et al., 2001]; here we use data collected from the unfertilized
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Table 2. Uncertainties Assimilated for Globally Available Data and
Assumed Uncertainties for Harwood Forest Site Estimates Based on Black
et al. [2009]a

Data Stream Uncertainty

LAI log(2)

HWSD Csom prior log(2)

Cfoliar 38%

Cwood 25%

Croot 44%

Csom 24%
aA lognormal uncertainty is assumed for LAI and HWSD.

ambient CO2 plots. Available in situ
carbon stock observations are the
growing season maximum estimates
of foliage, fine root, and wood for each
year of 1996–2004 inclusive [Oren et al.,
2001; McCarthy et al., 2010] and a single
estimate of soil organic carbon in
2005 (0–100 cm [Lichter et al., 2008]).
The mean annual wood increment is
4.5 Mg C ha−1 yr−1. Observation uncer-
tainty is assumed to be the standard
deviation of the plot estimates. Addi-
tional observations are available but
are not assimilated in any analysis to

provide fully independent validation. These data are in situ estimates of forest floor litter for 1996, 1999, 2002,
and 2006 (0–15 cm depth [Lichter et al., 2008]) and gross primary productivity (GPP) and ecosystem respiration
(Reco) estimates derived from eddy covariance [2001–2004; Oren et al., 2006; Stoy et al., 2006].
2.1.3. Site Description and Observations: Harwood Forest
Harwood Forest in Northumberland, UK (55.21∘ N, 2.04∘ W; elevation 200–400 m) consists of even aged stands
of Sitka spruce (Picea sitchensis) managed on rotations of 40–60 years followed by clear felling. There is no
understory present at Harwood Forest. Harwood Forest was established in the 1930s on seasonally saturated
peaty gley soil, covering an area of approximately 4000 ha [Zerva and Mencuccini, 2005]. The mean annual air
temperature is 7.6∘C and precipitation is 950 mm.

Data were collected from a chronosequence of four stands aged 3, 8, 21 and 30 years during summer 2001.
Stands aged 3 and 8 years are second rotation while stands aged 21 and 30 years are first rotation. The yield
class for each stand in the chronosequence is ∼6 m3ha−1 yr−1 wood volume increment in the UK Forestry
Commission subcompartment database (www.forestry.gov.uk/datadownload, accessed 30/10/2015). Carbon
stock estimates for foliage (including an estimate of LCMA), fine root, wood and soil organic matter (0–45 cm)
were collected from each stand [Zerva and Mencuccini, 2005; Magnani et al., 2007]. We note also that the soil
carbon observations here extend to only 45 cm depth while the HWSD estimate nominally represents the
top 1 m. However, the impact of this difference is expected to be minimal as the carbon concentration in
observations declines by >90% between the surface and 45 cm depth [Zerva and Mencuccini, 2005]. None of
the chronosequence stands were resampled at a later time from which to estimate the mean annual woody
increment. Therefore, the chronosequence stands themselves have been used to create a pseudo time
series for which mean annual wood increment is 2.2 Mg C ha−1 yr−1. As no estimate of uncertainty is avail-
able for these data, we conservatively use the upper estimate of uncertainty from a similar Sitka spruce
chronosequence in Ireland (Table 2) [Black et al., 2009]. Additional observations are available to provide fully
independent validation. An in situ estimate of total dead organic matter (CDeadOrg; i.e., forest floor litter plus
CWD) is available for the 30 year old stand (i.e., collected in 2001) and an annual estimate of gross primary
productivity (GPP) and ecosystem respiration (Reco) derived from eddy covariance (2001) [Kowalski et al., 2004].

2.2. Independent Validation
We compare each analysis against all available observations irrespective of whether a given datum has been
assimilated in a specific analysis, providing a means to assess the degradation of each analysis in the absence
of given data. In addition we validate our analyses against fully independent in situ estimates of dead organic
matter (i.e., litter and/or CWD) and annual estimates of GPP and Reco derived from eddy covariance. These data
are not assimilated in any analysis. Furthermore, we compare our retrieved estimates of ecosystem traits such
as the allocation of net primary productivity (NPP) and ecosystem mean transit times (MTT) with literature
estimates. Through a combination of validation and corroboration we aim to identify remaining weaknesses
and missing process information, due to the use of global data, required for future studies.

2.3. Analysis Framework
2.3.1. C Cycle Model
DALEC simulates the daily ecosystem carbon balance representing carbon stocks and fluxes between labile
(Clabile), foliage (Cfoliar), fine root (Croot), wood (Cwood; including branch, stem and coarse root), litter (Clitter),
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Figure 1. Schematic of the DALEC model. Green arrows indicate
biosphere carbon flows. The blue arrows show the inputs to the
photosynthesis model. Ra is autotrophic respiration while Rh is
heterotrophic respiration.

coarse woody debris (Ccwd), and soil
organic matter (Csom) (Figure 1) [Bloom
et al., 2016]. Gross primary productivity
(GPP) is calculated using the aggregated
canopy model (ACM) [Williams et al.,
1997]. GPP is then allocated based on
fixed fractions, while C pool turnover
follows first-order kinetics. Canopy phe-
nology is sensitive to environmental
drivers via a modified version of the
growing season index model (GSI model)
[Jolly et al., 2005; Stoeckli et al., 2008]. A
Ccwd pool has been added to our version
of DALEC due to the necessity of distin-
guishing between nonwoody (Clitter) and
woody litter (Ccwd) to improve the anal-
ysis of decomposition processes [Brovkin
et al., 2012]. Here the inclusion of Ccwd

prevents the unrealistic accumulation of
new soil organic matter found when using previous versions of DALEC. See Text S1 of the supporting
information for details.

The data assimilation analysis retrieves a total of 30 parameters for DALEC; 23 parameters govern ecosystem
processes, while the remaining 7 parameters describe the initial carbon stocks. Here we focus on the retrieval
of information on traits governing the allocation of photosynthate and MTT of ecosystem carbon stocks.
We define the MTT as the mean ratio of carbon losses from a given pool relative to the size of the pool.
2.3.2. Data Assimilation Approach
The model-data fusion framework employed here calculates the probability of a given parameter vector x
by comparing simulated DALEC stocks and fluxes with spatially and temporally explicit observations. We
prescribe a uniform prior probability density function for x between minimum and maximum parameter val-
ues (Prange(x)) (Table 3). Model predictions and observations, and their uncertainties, are compared within
a Bayesian framework [Ziehn et al., 2012; Bloom and Williams, 2015] to derive a posterior probability density
function (P(x|O)) of a given parameter vector x.

P(x|O) ∝ P(O|x) ⋅ Prange(x) ⋅ PEDC(DALEC(x)) (1)

P(O|x) is the probability of the observations given x, Prange(x) = 1 if all parameters are within predescribed
ranges (Table 3), and PEDC(DALEC(x)) = 1 if all Ecological and Dynamical Constraints (EDCs) criteria are
achieved. P(O|x) is derived from available observations, their uncertainty and model state variables simulated
from a given x.

P(O|x) = e
−0.5⋅

N∑
n=1

(Mn−On)2∕𝜎2
n

(2)

On is the nth observation, and Mn is the corresponding model state variable or flux. Each observation has an
associated error variance (𝜎2

n ); note that we assume that there is no covariance between observation errors
and Mn and On are log transformed for LAI and HWSD, which we assume have lognormal uncertainties [Bloom
and Williams, 2015]. If Prange(x) or PEDC(DALEC(x)) = 0 then x is rejected irrespective of P(O|x).
The EDCs are employed to improve realism of parameter selection and, as a result, lead to a reduction in
parameter uncertainty and bias [Bloom and Williams, 2015]. If PEDC(DALEC(x)) and Prange(x) = 1, a parameter
vector is accepted if its probability is greater than the probability of the last accepted parameter vector. Should
the probability of a parameter vector not be greater than the previous accepted vector, it is still accepted if the
ratio between its probability and the last accepted probability is less than a random number selected from a
uniform distribution between 0 and 1 (U0−1) [Ziehn et al., 2012; Bloom and Williams, 2015].
2.3.3. Ecological and Dynamical Constraints
EDCs ensure that parameter combinations which generate unrealistic stock dynamics and ecologically incon-
sistent parameter combinations are rejected. The EDCs described in Bloom and Williams [2015] have been
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Table 3. Descriptions, Units, and Prior Ranges of DALEC Parametersa

Description Units Minimum Value Maximum Value

Decomposition of Clitter to Csom (Decomplitter) g C m−2 day−1 1e−5 0.01

Fraction of GPP respired (Ra:GPP) - 0.3 0.7

Fraction of GPP to Clabile (GPPlab) fraction 0.01 0.5

Fraction of GPP to Croot (GPProot) fraction 0.01 1.0

Maximum Cfoliar turnover (kfol) fraction day−1 1e−6 0.2

Maximum Clabile turnover (klab) fraction day−1 1e−6 0.2

Turnover of Cwood (𝜃Cwood) fraction day−1 1e−5 0.001

Turnover of Croot (𝜃Croot) fraction day−1 1e−4 0.01

Turnover of Ccwd (𝜃Ccwd) fraction day−1 1e−4 0.01

Mineralization of Clitter (𝜃Clitter) g C m−2 day−1 1e−4 0.01

Mineralization of Csom (𝜃Csom) g C m−2 day−1 1e−7 0.001

Heterotrophic respiration exponential temperature response (Rhtemp) - 0.018 0.08

Canopy photosynthetic efficiency (Ceff) g Cm−2 day−1 at 0∘C 10 100

Leaf carbon mass per leaf area (LCMA) g C m−2 10 200

GSI minimum temperature threshold (mtempmin) K 225 330

GSI maximum temperature threshold (mtempmax) K 225 330

GSI minimum photo period threshold (photopmin) h 1 12

GSI maximum photo period threshold (photopmax) h 1 18

GSI minimum VPD threshold (VPDmin) Pa 1 5,500

GSI maximum VPD threshold (VPDmax) Pa 1 5,500

GSI critical GPP increase for additional Clabile turnover (𝛽 GPP) fraction 1e−10 0.2

GSI climate sensitivity for Clabile turnover (𝛽 GSIlab) - −0.05 0.05

GSI climate sensitivity for Cfoliar turnover (𝛽GSIfol) - −0.05 0.05

Initial Clabile pool size g C m−2 1 1,000

Initial Cfoliar pool size g C m−2 1 1,000

Initial Croot pool size g C m−2 1 1,000

Initial Cwood pool size g C m−2 1 20,000

Initial Ccwd pool size g C m−2 1 10,000

Initial Clitter pool size g C m−2 1 10,000

Initial Csom pool size g C m−2 100 200,000
aAll parameter ranges are as presented in Bloom and Williams [2015] except those governing the GSI model which are based on those found in Stoeckli et al.

[2008]. Decomplitter, 𝜃Clitter, and 𝜃Csom are baseline values adjusted by an exponential function of temperature. GPP allocation fractions are applied sequentially
such that GPP allocation to Cwood = GPP − (*GPP⋅Ra:GPP) − (GPP⋅GPPlab) − (GPP⋅GPProot).

modified to include additional prior knowledge appropriate for managed forest systems and to ensure realis-
tic parameter combinations for the phenology model. EDC modifications include additional constraint to the
accepted Croot:Cfoliar [Albaugh et al., 2004; Black et al., 2009; Morison et al., 2012; Akers et al., 2013] and refor-
mulation of Cfoliar turnover rates to include the impact of the phenology model. New EDCs include placing
an upper limit on the Clabile:Cwood ratio and Clabile MTT consistent with literature estimates [Samuelson et al.,
2004; Gough et al., 2009; Richardson et al., 2013a, 2015]. Finally, an EDC governing the expected biomass at
the beginning of the analysis based on yield curve estimates for a given forest stand age is used to provide
additional constraint on the initial conditions. The yield curve estimates are based on forestry yield curves
[Randle and Jenkins, 2011]; however, no yield class information is used here, instead relying on the maximum
and minimum possible values at a given age across all yield classes. Detailed description of the EDCs can be
found in Text S2 of the supporting information.

3. Results

All analyses of forest carbon cycling, at both sites, are consistent with the assimilated in situ biomass and man-
agement information. The analyses constrain the mean annual net biome productivity (NBP) of both forests

SMALLMAN ET AL. CONSTRAINING BIOMASS AND SOIL C CYCLES 533



Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003520

Figure 2. Box and whisker plots show the median and distribution information retrieved for (a, e) the mean annual net biome productivity (NBP), and the mean
annual accumulation of (b, f ) Cwood, (c, g) Csom, and (d, h) CDeadOrg. A positive value indicates a net accumulation of carbon within the forest or carbon pool.
The median is shown by the thick black horizontal line, while the box and whiskers represent the 50% and 95% confidence intervals, respectively. The number
imposed on each graph is the bias between the Reference analysis and the respective data availability scenario. Figures 2a–2d are Duke Forest, and
Figures 2e–2h are Harwood Forest.

as clear carbon sinks over their respective analysis periods (Figure 2). Analyses with reduced information show
a quantifiable increase in uncertainty and bias in carbon fluxes, stocks, and ecosystem traits at both sites
compared to the Reference analysis (Figures 3–8).

The Reference analyses at both sites compare well against independent estimates of annual GPP, Reco, litter
(Clitter), and dead organic matter (CDeadOrg = Clitter+Ccwd). The root-mean-square error (RMSE) of annual GPP
(2001–2005) at Duke Forest is 386 g C m−2 yr−1 (18% of the observed estimate), while at Harwood Forest the
RMSE for annual GPP (2001) is 486 g C m−2 yr−1 (24%). The RMSE for Reco at Duke Forest is 191 g C m−2 yr−1

(11%), and at Harwood Forest the RMSE is 471 g C m−2 yr−1 (34%). The uncertainties for the eddy covariance
estimates and our analysis here overlap in each case except GPP in 2001–2002 at Duke Forest, where the
separation between uncertainty bounds is<90 g C m−2 yr−1. At Duke Forest our analysis explains 56% of daily
variation in GPP and Reco with an RMSE of 2.3 g C m−2day−1 for GPP and 1.7 g C m−2day−1 for Reco. There are
no daily time step estimates of GPP or Reco available for Harwood Forest. At Duke Forest the observed litter
estimates Clitter are well within the analysis uncertainty, and the median estimate explains 79% of year to year
variation with an a RMSE of 2.1 Mg C ha−1 (22%) (Figure 8a). Finally, at Harwood Forest the combined estimate
of forest floor litter and coarse woody debris (CDeadOrg) is predicted with an error of 3.8 Mg C ha−1 yr−1 (12%)
(Figure 8c).

3.1. Reference Analysis
3.1.1. C Dynamics
At Duke Forest the median (2.5%/97.5%) NBP is estimated to be a net carbon sink of 6.2 (4.9/7.9) Mg C ha−1 yr−1

(Figure 2a). The majority of carbon at Duke Forest is accumulated in the Cwood pool with a mean annual
increment of 4.3 (3.5/5.0) Mg C ha−1 yr−1, with a further 1.5 (0.5/3.4) Mg C ha−1 yr−1 accumulating in the
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Figure 3. Time series of Cwood at (a–e) Duke and (f–j) Harwood Forest showing each analysis, where the assimilated information progressively decreases from
left to right. The shaded red area denotes the 95% confidence interval of the analysis ensemble were the blue line is the ensemble median. The filled black circles
are assimilated in situ observations, while the unfilled black circles are data shown for reference and not assimilated in a given analysis. The error bars indicate
the observation uncertainty assimilated into the analysis.

CDeadOrg and 0.05 (−0.09/0.7) Mg C ha−1 yr−1 accumulating in the Csom pool (Figures 2b–2d). Harwood Forest

is also a net carbon sink with a NBP of 4.0 (2.6/6.3) Mg C ha−1 yr−1 (Figure 2d). Similarly, the majority
of the net carbon sink at Harwood Forest is accumulated in the Cwood pool with a mean annual incre-
ment of 2.3 (1.4/3.4) Mg C ha−1 yr−1, with 0.9 (0.2/2.3) Mg C ha−1 yr−1 accumulating in the CDeadOrg and 0.3

(−0.03/2.6) Mg C ha−1 yr−1 in the Csom (Figures 2f–2h). The Reference analysis constrains the NBP at both sites
to a 95% confidence interval (CR95) range of <3.7 Mg C ha−1 (Figures 2a and 2e). At both sites the CR95 for the
mean annual increment of Cwood is <3.5 Mg C ha−1, <3.0 Mg C ha−1 for CDeadOrg, and <2.6 Mg C ha−1 for Csom

(Figures 2b–2d and 2f–2h).

Assimilated in situ wood stock information at both sites is well captured by the Reference analysis (Figures 3a
and 3f). At Duke Forest the RMSE between the Reference analysis and in situ wood stock observations
is 2.0 Mg C ha−1 with a bias (model-data) of −0.29 Mg C ha−1 (Table 4). At Harwood Forest the RMSE is
4.4 Mg C ha−1 and the bias is −0.21 Mg C ha−1. The median estimate of Csom at Duke Forest accurately simu-
lates the assimilated soil carbon information (Figure 4a), while at Harwood Forest the assimilated soil carbon
information are within the analysis 95% confidence interval (CI95) (Figure 4f ).

Analysis of the foliar and fine root carbon stocks is more challenging than that of wood or soil carbon partic-
ularly at Harwood Forest (Figure 5). At Duke Forest the mean annual peak values in foliar carbon are well cap-
tured by the Reference analysis except the peak value in 2001. The retrieved phenology parameters indicate
that variation in canopy phenology is dominated by variation in temperature (95 (62/97)%) with the remaining
variability due to variation in vapor pressure deficit (VPD). At Harwood Forest the analysis accurately simu-
lates the foliar carbon stock observations for the 9 year old stand (i.e., 1980) but underestimates the foliar
stock observations for the 21 and 30 year old stands (1992 and 2001, respectively) by 4–5 Mg C ha−1 each
(Figure 5c). As the biomass information is constructed from a chronosequence and does not overlay with
the MODIS LAI derived time series used here, there is limited scope for interpretation. The bias between the
observations and the median estimate of fine roots is less than 0.5 Mg C ha−1 yr−1 at both Duke and Harwood
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Figure 4. Time series of Csom at (a–e) Duke and (f–j) Harwood Forest showing each analysis, where the assimilated information progressively decreases from
left to right. The shaded red area denotes the 95% confidence interval of the analysis ensemble, while the blue line is the ensemble median. The filled black
circles are in situ observations assimilated in a given analysis, while the unfilled black circles are data shown for reference and not assimilated in a given analysis.
The error bars indicate the observation uncertainty assimilated into the analysis. When the brown circle is filled the Csom prior, derived from the HWSD, is
assimilated into the analysis; when unfilled the Csom prior was not assimilated and is shown for reference only.

Forests (Figures 5b and 5d). At Harwood Forest the CI95 remains substantial at onefold to fourfold greater than
the mean magnitude of in situ observations (∼1 Mg C ha−1 yr−1).
3.1.2. Retrieved Ecosystem Traits
Retrieved ecosystem traits for the Reference analysis is consistent with expectations based on field observa-
tions (Figure 6). The fraction of NPP allocated to Cwood is well constrained with a median value of ∼0.7 at both
Duke and Harwood Forests (Figures 6a and 6e). The Ra:GPP (carbon use efficiency = 1−Ra:GPP) at Duke Forest
is estimated to be ∼0.4 and ∼0.58 at Harwood Forest (Figures 6d and 6h). The retrieved MTT for Cwood

(19–22 years) and CDeadOrg (3.5–3.9 years) are also similar between sites (Figures 6b, 6c, 6f, and 6g). However,
while the MTT of the Ccwd at both sites is similar (7.6–7.9 years), the MTT of Clitter at Duke Forest (2.1 (0.2/8.8)
years) is more than double that of Harwood Forest (0.8 (0.2/7.9) years). The MTT for Csom at Harwood Forest
(∼275 years) is 48 years longer than Duke Forest (∼227 years). Overall retrieval of MTTs remains more uncer-
tain than allocation of NPP (Figure 6). Note also that as DALEC does not explicitly simulate self-thinning, the
Cwood mean transit times retrieved here implicitly include self-thinning resulting in shorter transit times than
might be expected. The median estimate of LCMA at Duke Forest is 90 (76/105) g C m−2, which is consis-
tent with the in situ estimate of 86 (81/90) g C m−2 (which in the Reference analysis is implicitly assimilated
through the combination of in situ LAI and foliar stocks). At Harwood Forest the retrieved LCMA is more uncer-
tain at 129 (75/191) g C m−2. However, the in situ estimate of LCMA at Harwood Forest varies with stand age;
LCMA estimates are 97, 166, and 167 g C m−2 for stands aged 9, 21, and 30 years, respectively. Therefore, the
increased uncertainty in retrieved LCMA at Harwood Forest accurately captures the variation of the in situ
observations. The CI95 of the retrieved posterior distributions of ecosystem traits for the Reference analysis
differ between sites. At Duke Forest the parameter posterior distributions are on average 45% smaller than
in NoMan (Figure 7a), while at Harwood Forest the mean parameter posterior is 24% smaller than in NoMan
(Figure 7b). However, the overall pattern of improved constraint when considering parameters related to dis-
tinct process areas is consistent between sites. At both sites parameters related to MTTs have the smallest
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Figure 5. Time series of (a, c) Cfoliar and (b, d) Croot for Duke (Figures 5a and 5b) and Harwood Forests (Figures 5c and 5d). The shaded red area denotes the 95%
confidence interval of the Reference analysis. The lines on the large panels are the ensemble medians for each of the data availability experiments. The error bars
shown in the small panels are the mean 95% confidence intervals for each experiment over the analysis period. The filled black circles are in situ observations
assimilated in Reference analysis only, and error bars indicate the observation uncertainty.

increase in constraint relative to NoMan, while initial conditions have the greatest increase in constraint rel-
ative to NoMan. A complete list of parameter uncertainty reductions for each data availability scenario is
available in Tables S1 and S2.

3.2. Impact of Reducing Information on Carbon Retrievals
3.2.1. C Fluxes
The NBP and its CI95 at both sites are sensitive to reducing the quantity of assimilated biomass information.
At Duke Forest the removal of in situ foliar, fine root, and soil carbon stock information in MultiWood has a
small impact on the NBP (0.29 Mg C ha−1 yr−1) and its CI95 (5%) (Figure 2a). The removal of all but one in
situ wood stock observation in the OneWood analysis increases the NBP bias with the Reference analysis to
−0.39 Mg C ha−1 yr−1 (i.e., an underestimate), and the CI95 increases by 42%. The removal of all in situ carbon
stock information in the ManOnly analysis increases the CI95 by 73% relative to the Reference analysis, and the
NBP bias increases to its largest magnitude of −0.64 Mg C ha−1 yr−1 (Figure 2a). With the removal of forest age
information in NoMan the CI95 of NBP more than doubles (113%) relative to the Reference analysis, though
the bias decreases to that found in OneWood. At Harwood Forest the NBP responds similarly to the removal
of in situ foliar, fine root, soil carbon, and multiple wood stock estimates. However, once all in situ biomass
information is removed in ManOnly the NBP bias increases to 1.9 Mg C ha−1 yr−1 (i.e., an overestimate) relative
to the Reference analysis, and the CI95 doubles (Figure 2e). Ultimately, between the Reference analysis and
NoMan the CI95 of NBP progressively increases to 105% relative to the Reference analysis (Figure 2e).

Partitioning of carbon fluxes between mean annual increments of Cwood, Csom, and CDeadOrg is more strongly
dependent on assimilated biomass information (Figures 2b–2d and 2f–2h). At Duke Forest Cwood increment
progressively decreases by 27% to ∼3.1 Mg C ha−1 yr−1 and the CI95 increases 2.4-fold in NoMan. Meanwhile,
CDeadOrg increment broadly decreases as information is removed from analyses; in the NoMan analysis the
median increment is 34% smaller, while the CI95 is 10% smaller (Figure 2d). The median increment for Csom is
largely unaffected by changes in assimilated data at Duke Forest, while the CI95 broadly increases (Figure 2c).

SMALLMAN ET AL. CONSTRAINING BIOMASS AND SOIL C CYCLES 537



Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003520

Figure 6. Box and whisker plots show the median and distribution information retrieved for key ecosystem traits at (a–d) Duke and (e–h) Harwood Forests.
The median is shown by the thick black horizontal line, while the box and whiskers represent the 50% and 95% confidence intervals, respectively.

At Harwood Forest Cwood increment decreases in stages between the Reference analysis and OneWood
(Figure 2f ). In contrast to Duke Forest, the removal of all assimilated biomass stocks in ManOnly increases the
Cwood increment by 70%, while the CI95 is more than double the Reference analysis. CDeadOrg is not substantially
impacted at Harwood Forest, but the largest bias in the median estimate and CI95 compared to the Reference
analysis is found when planting date only is used in ManOnly (Figure 2h). The Csom increment CI95 is greatest
when only a single wood stock observation is assimilated in OneWood, while the median retrieval varies by

Figure 7. The proportional reduction of the 95% confidence interval for retrieved ecosystem traits for each analysis
relative to the NoMan analysis. Information is presented for all retrieved traits as well as specific groupings related to
the initial conditions, allocation of photosynthate, and mean transit times (MTTs). A value <1 indicates that the average
constraint of parameters is greater than the least assimilated information scenario, NoMan.
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Figure 8. Time series of (a, b) Clitter at Duke Forest and (c, d) CDeadOrg (i.e., litter + coarse woody debris) at Harwood
Forest. The shaded red area denotes the 95% confidence interval of the Reference analysis. The lines in Figures 8a and
8c are the ensemble medians for each of the experiments. The error bars shown in Figures 8b and 8d are the mean 95%
confidence intervals for each experiment over the analysis period. Observations shown in unfilled black circles were not
assimilated in any analysis.

<0.2 Mg C ha−1 yr−1 among analyses. It is important to note that overlap exists between the CI95 of the Refer-
ence and each of the reduced information analyses indicating that our “best” estimate of the carbon cycle is
encompassed at all times.
3.2.2. C Stocks
The evolution of the Cwood pool over time is sensitive to reducing in situ biomass and management infor-
mation particularly at Harwood Forest (Figure 3). At Harwood Forest when only one wood stock observation
is assimilated (OneWood) the accumulation of carbon in Cwood shifts to front load the majority of the Cwood

accumulation to the first half of the analysis (Figure 3h). This front loading increases the error between the
analysis median and in situ wood stocks (Table 4). When multiple in situ woody observations are assimilated
(MultiWood), the RMSE and bias are impacted by less than 2 Mg C ha−1 at either site compared to the Refer-
ence analysis. However, in OneWood, the RMSE at Duke Forest increases by 1.5-fold relative to the Reference
analysis to 5.0 Mg C ha−1 and the magnitude of the bias increases by ∼15-fold to −4.5 Mg C ha−1. At Harwood
Forest the OneWood RMSE increases by 95% to 8.6 Mg C ha−1 and the magnitude of the bias increases by

Table 4. Statistical Metrics, Root-Mean-Square Error (RMSE), and Mean Bias
(Model-Obs), Between the Median Estimate of the Analysis Ensemble and
Observed Estimates for Cwood (Mg C ha−1) at Duke Forest and Harwood Foresta

Site Scenario RMSE Bias 𝛿 Cwood CI95

Duke Forest Reference 2.0 −0.29 –

MultiWood 2.0 −0.31 2%

OneWood 5.0 −4.58 −6%

ManOnly 11.7 −11.4 211%

NoMan 14.2 −13.4 230%

Harwood Forest Reference 4.4 −0.21 –

MultiWood 4.2 −0.43 −5%

OneWood 8.6 8.05 48%

ManOnly 39.9 34.3 169%

NoMan 28.0 24.2 225%
aThe 𝛿Cwood CI95 is the percentage change in the uncertainty of the Cwood

pool at the end of the analysis relative to the Reference analysis.
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39-fold to 8.05 Mg C ha−1. Finally, the removal of all biomass observations results in large errors between the
analysis medians and in situ wood stock observations (Table 4). The impact of including forest age informa-
tion, thereby adding constraint to the initial Cwood, has little positive impact on long-term Cwood dynamics
(Figures 3d, 3e, 3i, and 3j).

Analysis of foliar and fine root carbon stocks remains more challenging in all analyses but particularly at
Harwood Forest (Figures 5a–5d). Each analysis at Duke Forest captures the magnitude and broad interan-
nual variability of the foliar carbon stocks except the 2001 peak, as expected, given that the local LAI time
series is assimilated in all scenarios (Figure 5a). The largest CI95 is found in NoMan when no biomass or man-
agement information are assimilated, and the smallest CI95 as expected is found in the Reference analysis.
Fine root stocks are well simulated by all analyses with an error of less than 0.5 Mg C ha−1 except OneWood
(Figure 5b). Similar to foliar stocks, the largest CI95 is found when no biomass or management information is
assimilated with smaller uncertainties elsewhere (Figure 5b). At Harwood Forest the analyses are split between
those which assimilated multiple wood stock observations (MultiWood and Reference) and those which do
not (Figure 5c). Critically, no analysis was able to accurately simulate all of the observed foliar carbon stocks;
the Reference and MultiWood analyses were able to accurately capture the observation from the 9 year old
stand only. In contrast to Duke Forest, the CI95 decreases progressively as additional observations are assim-
ilated with the largest decreases in CI95 occurring with the MultiWood and Reference analyses (Figure 5c).
The fine root stock is substantially overestimated in all analyses by 1–2 Mg C ha−1 except in the Reference
analysis, and uncertainties remain large in all analyses relative to the magnitude of the observed fine root
stock. However, it should be noted that simulation of fine root stocks was also improved early in the analysis
when repeated wood stock observations are assimilated in MultiWood (Figure 5d).

Assimilation of repeated woody biomass observations strongly constrains the state and CI95 of Clitter and
CDeadOrg (Figure 8). At Duke Forest the median estimate for each analysis shows appropriate dynamics over
time compared to the unassimilated observations (Figure 8). The smallest CI95 is found with the assimilation of
repeated woody biomass observations (MultiWood), and the MultiWood analysis explains the largest propor-
tion of variation in Clitter (R2 = 0.86), however, the largest error (ensemble median observations) is also found
in the MultiWood analysis (RMSE = 6.6 Mg C ha−1). While only the median estimates of the Reference analysis
and ManOnly overlap with the observation uncertainty, the CI95 of each analysis is large and encompasses
each of the observations. At Harwood Forest the largest error between unassimilated observed CDeadOrg is
jointly found in OneWood and ManOnly, while the largest CI95 is found in ManOnly (Figures 8c and 8d). The
smallest error is found in the Reference, MultiWood, and NoMan analyses; however, the CI95 of NoMan is∼30%
larger than either the Reference or MultiWood (Figures 8c and 8d).
3.2.3. Retrieved Ecosystem Traits
Ecosystem trait retrieval is highly sensitive to the in situ carbon stock and management information
assimilated. At Duke Forest the median estimate and CI95 for the fraction of NPP allocated to Cwood are well
constrained in the Reference analysis (Figure 6a). At Duke Forest the NPP allocation to Cwood is ∼0.7 in all
experiments, while the magnitude of the CI95 varies with assimilated information, peaking when only man-
agement information is included in NoMan (Figure 6a). Similarly, the largest CI95 and median estimates for
CDeadOrg MTT is found in the NoMan analysis (Figure 6c). The retrieved Cwood MTT at Duke Forest is broadly
consistent varying between 22 and 30 years but with the greatest CI95 found in NoMan (Figure 6b). The
retrieved median estimate of Ra:GPP (CUE = 1 − Ra:GPP) varies among analyses, though the median esti-
mate and the CI95 tend to increase as assimilated information is reduced, ultimately reaching ∼0.5 in NoMan.
At Harwood Forest the retrieved NPP allocation fraction is also∼0.7 and the largest uncertainty is found when
repeated wood stock observations are removed (Figure 6e). The smallest CI95 and median estimate for Cwood

MTT is found in OneWood; however, there is a broad pattern toward increasing uncertainties as information
is removed from the analysis (Figure 6f ). CDeadOrg MTT at Harwood Forest is less sensitive than at Duke Forest,
with no substantial changes among analyses (Figure 6g). In contrast to Duke Forest, the retrieved Ra:GPP at
Harwood Forest does not change substantially as long as biomass information is assimilated, although the
CI95 progressively increases by ∼10%. The Ra:GPP declines from ∼0.6 to ∼0.5 when all biomass information
has been removed in ManOnly and NoMan (Figure 6h).

As expected there is an overall reduction in the uncertainty of retrieved ecosystem traits as assimilated infor-
mation increases across both sites (Figure 7). At Duke Forest there is a broadly consistent trend of reducing
overall uncertainty across all ecosystem traits, with the greatest reduction occurring with the inclusion of
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management information and then with repeated woody biomass estimates (Figure 7a). While the degree of
constraint on a given trait grouping (e.g., allocation of photosynthate or MTTs) varies between analyses, there
is also an overall reduction of uncertainty across all groups. In contrast at Harwood Forest no substantial reduc-
tion in uncertainty occurs until repeated woody biomass information is assimilated in MultiWood, except
for traits related to the allocation of photosynthate which remain poorly constrained (Figure 7b). Parameter
correlations also vary widely between parameters and between sites. The mean of the absolute values of
the Pearson’s correlation coefficient is ∼0.1 for both Duke and Harwood Forests. While the mean correlation
coefficients are low, maximum coefficients achieved are >0.9 at both sites such as the negative correlation
between Cwood turnover and the maximum rate of Clabile turnover at Duke Forest and the negative correla-
tion between LCMA and Ra:GPP at Harwood Forest. However, there is no overall pattern in trait correlations
between analyses at either site.

4. Discussion
4.1. Implications for Carbon Fluxes and Stocks
Our analyses demonstrate that assimilation of repeated woody biomass observations is not only able to con-
strain the overall carbon budget over multidecadal time periods but also the state and dynamics associated
with dead organic matter contained in the litter and coarse woody debris (CWD). The NBP does not substan-
tially vary between the Reference and MultiWood analyses at either site (Figures 2a and 2e). Constraint of NBP
when assimilating repeated wood stock observations is achieved through additional constraint of the Cwood

increment and also that of CDeadOrg and/or Csom mean annual increments. However, the CI95 for Csom stock
remains substantial without in situ soil carbon information. The in situ soil carbon observations have lower
uncertainty than that used here for the HWSD Csom prior, and unlike the HWSD the in situ information is well
constrained in time. Therefore, using the HWSD in the absence of an understanding of uncertainties and tem-
poral representation reduces the ability of our analysis to discriminate whether the soil is a net source or sink
of carbon. The median and/or CI95 of the mean annual Cwood increment are sensitive to the assimilation of
either a single or repeated wood stock observations (Figures 2b and 2f). The greatest impact can be seen at
Harwood Forest where errors develop in the trajectory of the Cwood pool in the absence of repeated wood
stock observations (Figures 3g–3j). Some of the strongest evidence for improved constraint using repeated
wood stock estimates comes from the large reduction in uncertainty and/or bias in comparison with inde-
pendent unassimilated observations of dead organic matter (i.e., Clitter and Ccwd) (Figure 8). This suggests that
while future remote sensing missions such as NASA’s global ecosystem dynamics investigating lidar (GEDI),
which is expected to operate for ∼1 year, will provide vital information characterizing the current state of the
above ground biomass, multiyear missions, such as ESA’s BIOMASS mission [Le Toan et al., 2011], may have a
greater potential to constrain unobserved components of the ecosystem carbon balance.

Our analysis generates estimates of GPP and Reco at both sites which are consistent with independent esti-
mates derived from eddy covariance [Kowalski et al., 2004; Stoy et al., 2006], thus providing a fully independent
validation of the gross carbon fluxes in our analysis. The mean error between our analysis and the indepen-
dent estimates (11–34%) are of a similar magnitude to the uncertainties associated with eddy covariance
methodologies (∼18% [Stoy et al., 2006]). Moreover, the true uncertainty of the eddy covariance derived esti-
mates of GPP and Reco is likely to be much larger due to uncertainties in the flux partitioning methodologies
[Stoy et al., 2006; Wehr et al., 2016].

When in situ carbon stock information is not assimilated (i.e., only forest age is known in ManOnly) the median
increment of Cwood at both forests is biased leading to an overestimation of the NBP at Harwood Forest and an
underestimation at Duke Forest. This also results in an equivalent error in the magnitude of Cwood (Figures 3d
and 3i), although the increased width of the CI95 means that the majority of the in situ observations remain
within the analysis uncertainty. However, such a large bias in Cwood stocks would lead to large errors in carbon
fluxes associated with disturbance or projected harvest. Previous studies have identified the need for
site-specific information such as stocking density [Bellassen et al., 2011] or an indication of site fertility [Bryars
et al., 2013] to accurately simulate forest growth. Assimilation of in situ wood stock observations allows the
analysis to infer these site-specific factors, particularly when planting age is known. Furthermore, these results
highlight the potential value of repeated remotely sensed estimates of forest biomass [e.g., Le Toan et al., 2011]
and also of spatially explicit management data-based information such as forest yield class and soil properties,
which may provide information on site-specific factors to correct errors demonstrated here.
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Accurate analysis of the magnitude of soil and dead organic carbon stocks remains challenging. Significant
uncertainty remains in the magnitude of the Csom (Figure 4) and CDeadOrg (Figure 8). The HWSD Csom prior
does not significantly differ in magnitude from the in situ estimates at either site (Figure 4). Despite this, the
impact of the HWSD prior is reduced due to a lack of a robust assessment of the uncertainty associated with
the database and the lack of information on the time for which the priors are representative, necessitating a
conserative use of the database. Additional effort should be made to improve the impact of such databases
through development of a robust uncertainty analysis (currently lacking for the HWSD) and the inclusion of
metadata providing information on temporal applicability. For dead organic matter which is dominated by
coarse woody debris (CWD) the situation is more challenging, with no similar database of CWD stock esti-
mates offering global coverage [Magnusson et al., 2016]. However, given the good performance, particularly at
Harwood Forest, in estimating CDeadOrg (Figure 8c), there is the potential for our system to generate accurate,
though uncertain, spatially explicit estimates of litter and CWD. The dynamics of soil and dead organic carbon
stocks have been identified as a key source of uncertainty in Earth System Models (ESMs) [Brovkin et al., 2012;
Exbrayat et al., 2014a], particularly the difficulty in accurately describing transit times [Todd-Brown et al., 2013]
and the assumption of steady state removing sensitivity to initial conditions [Brovkin et al., 2012; Exbrayat et al.,
2014b]. Recent efforts to improve the representation of soil decomposition processes, such as the explicit
representation of microbial activity chemical composition, have highlighted that the commonly used first-
order kinetic decomposition model (as used here) is insufficiently sensitive to changes in litter quality and
too sensitive to litter quantity [Wieder et al., 2013; Xenakis and Williams, 2014]. Therefore, future efforts should
assess how additional constraints on soil carbon dynamics or magnitude can be inferred when using a more
complex representation of soil processes.

4.2. Implications for Ecosystem Trait Retrieval
Our data assimilation analysis retrieves estimates for ecosystem traits that are consistent with field data.
Retrieved LCMA estimates are consistent with in situ observations even without the assimilation of foliar car-
bon stock information, which is important given that LCMA is strongly correlated with other canopy traits such
as nutrient status and leaf lifespan [Wright et al., 2004; Kattge et al., 2011]. The retrieved estimates of NPP allo-
cation to wood and Ra:GPP at both sites is consistent with previous studies on temperate evergreen forests
[Wolf et al., 2011; Chen et al., 2013]. Higher Ra:GPP values have been found to be associated with nutrient
stress [Chen et al., 2013] which is consistent with low-fertility peaty gley soils found at Harwood Forest. Even
though the assimilation of increasing amounts of biomass information improved the constraint on Ra:GPP,
this trait remains highly uncertain in all analyses (Figures 6d and 6h); Ra:GPP has been shown to vary with tree
age, in addition to climate and environmental stress [Maseyk et al., 2008; Piao et al., 2010; Dillaway and Kruger,
2014; Malhi et al., 2015]. Therefore, the current fixed ratio used in DALEC and other terrestrial ecosystem mod-
els [e.g., Landsberg and Waring, 1997; Ostle et al., 2009] may the lack necessary structural complexity required
to reduce retrieval uncertainty [De Kauwe et al., 2014]. However, due to the simplicity of DALEC, our analysis
framework could provide a viable approach to implement and test current hypotheses of NPP allocation and
Ra:GPP [e.g., Franklin et al., 2012].

Accurate estimation of ecosystem transit times remains challenging, necessitating greater integration with
experimental field studies to improve process representation [e.g., De Kauwe et al., 2014; Malhi et al., 2015].
In the Reference analysis at Duke Forest the magnitude of the wood pool, its dynamics, and NPP allocation
patterns closely agree with independent field-based estimates. In contrast, the mean transit times estimated
here for wood are ∼100 years shorter than field estimates [De Kauwe et al., 2014]. DALEC lacks an explicit rep-
resentation of self-thinning which becomes increasingly important as trees increase in height [Lonsdale et al.,
2015]. In DALEC self-thinning is included implicitly in the retrieved woody transit time, potentially explaining
this discrepancy. Furthermore, we also show substantial reduction in the uncertainty of traits related to the
allocation of photosynthate, MTTs, and initial conditions of carbon stocks, particularly with the assimilation of
repeated woody biomass information (Figure 7). Each of these components have been highlighted as impor-
tant uncertainties when attempting to generate robust estimates of how the terrestrial carbon cycle will
respond to predicted future climate change [Todd-Brown et al., 2013; Exbrayat et al., 2014b; Reich et al., 2014].
Our analysis highlights the remaining challenges in fully constraining ecosystem traits. These challenges intro-
duce substantial uncertainties when attempting to predict the response of the terrestrial carbon cycle across
landscapes under future climate change [Richardson et al., 2013b; Friend et al., 2014].
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4.3. Conclusions
Here we have demonstrated the critical role of repeated woody biomass estimates in constraining the
dynamics of the major ecosystem carbon pools (i.e., woody biomass, dead organic matter, and soil organic
matter) and net biome production and, therefore, the potential benefit of future remote sensing programs.
Moreover, we show that increasing assimilation of biomass observations successfully reduces bias and overall
uncertainty in retrieved ecosystem traits including those governing the initial conditions, allocation of NPP,
and ecosystem turnover rates including soil carbon. However, we also show that there remains significant
challenges in accurately estimating the magnitude of ecosystem carbon stocks, in particular soil organic
matter, necessitating additional effort in utilizing soil inventories and model structural development.
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