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Abstract—Full-system simulators are increasingly finding their
way into the consumer space for the purposes of backwards
compatibility and hardware emulation (e.g. for games consoles).
For such compute-intensive applications simulation performance
is paramount. In this paper we argue that existing benchmark
suites such as SPEC CPU2006, originally designed for architec-
ture and compiler performance evaluation, are not well suited
for the identification of performance bottlenecks in full-system
simulators. While their large, complex workloads provide an
indication as to the performance of the simulator on ‘real-world’
workloads, this does not give any indication of why a particular
simulator might run an application faster or slower than another.
In this paper we present SimBench, an extensive suite of
targeted micro-benchmarks designed to run bare-metal on a full-
system simulator. SimBench exercises dynamic binary translation
(DBT) performance, interrupt and exception handling, memory
access performance, I/O and other performance-sensitive areas.
SimBench is cross-platform benchmarking framework and can
be retargeted to new architectures with minimal effort. For
several simulators, including QEMU, Gem5 and SimIt-ARM, and
targeting ARM and Intel x86 architectures, we demonstrate that
SimBench is capable of accurately pinpointing and explaining
real-world performance anomalies, which are largely obfuscated
by existing application-oriented benchmarks.

I. INTRODUCTION

Fast instruction set simulation is an increasingly important
technology. It is used in both the commercial space (for
software development, design space exploration, and debug-
ging), as well as in the consumer space (to provide backwards
compatibility). Fast simulation technologies allow us to run
large, complex applications which were originally developed
for one ‘target’ architecture (such as ARM) on a machine of
a different ‘host’ architecture (such as x86).

Simulation tools can be broadly split into two groups. ‘User-
mode’ (also sometimes called ‘Syscall emulation’) simulators
permit the execution of a target application on a host machine,
in the context of the operating system running on the host
machine. The target binary might have access to the host
file system, network, and other OS-provided features. On the
other hand, ‘Full-System’ simulation allows the user to run an
entire target operating system in a simulated context. This is
achieved by modelling each component in the target hardware
platform, including the CPU cores, MMU, uncore devices such
as timers, I/O devices, etc. This grouping of simulators is
independent of if they perform any performance modelling
(whether or not they are ‘cycle-accurate’, e.g. Gem5 [5]), or
not (e.g., QEMU [3] and Simics [22]). The requirement for

fast full-system simulation has sparked interest in techniques
such as Dynamic Binary Translation [33], parallel Just-in-
Time compilation [8], precise interrupt handling [10], and fast
memory address translation [32].

Since full-system simulation performance is important, it is
critical that the speed of these simulators can be accurately
evaluated and analysed. The SPEC2006 suite, which is a col-
lection of benchmarks based on real world applications such as
the gcc compiler, is used (such as in [28, 31, 26, 32, 9, 15, 7]).
This has the advantage of reflecting real-world conditions and
applications. However, these programs are large and complex,
and may run for many billions of instructions, and so there is
only limited insight into the reasons for performance bottle-
necks. Other benchmark suites, targeting OS-level operations,
or hardware virtualization features (such as LMBench [23]
and VMark [30]) also exist, but do not properly exercise
full-system simulation techniques. Occasionally (e.g. in [11]),
small microbenchmarks might be used for performance analy-
sis. However, this is often an ad-hoc solution, and they may not
be available for others to use and compare with. Additionally, a
technique which improves the performance of the simulator in
one area may unexpectedly degrade the performance of some
other operation, which may not be detected if each aspect of
the simulator is not thoroughly analysed.

In this paper we demonstrate that neither of these ap-
proaches are suitable for the analysis of full-system simulation
performance. This is for several reasons: 1) Existing kernel as
well as application benchmarks do not sufficiently exercise
system-level features, which are efficient in hardware, but
costly to simulate, 2) full applications execute many billions
of instructions and performance bottlenecks are hidden in
complex interactions, hard to isolate and attribute to simulator
design choices, 3) an aggregate performance figure further
hides individual application behaviour. Instead, in this paper
we develop the novel SimBench methodology. SimBench
exercises critical contributors to full-system simulation per-
formance using benchmarks targeted specifically at full-system
simulation features and technologies. It is easily ported to new
ISAs and platforms, is self-contained, and runs as a bootable
bare-metal executable. It accurately pinpoints performance
deficits, allowing the user to evaluate simulator design and
implementation trade-offs and fix performance anomalies.

This paper makes the following contributions:
1) We demonstrate that existing application benchmarks
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Full-System simulation – capable of hosting a full OS – with a
simulated MMU and I/O devices backed by host counterparts.
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Fig. 2: Relative performance of the sjeng and mcf bench-
marks and the overall SPEC rating (weighted geometric mean
across all benchmarks) on a variety of QEMU versions for
x86. Version 1.7 is used as a baseline.

such as SPEC CPU2006 are not well suited for the
performance analysis of full-system simulators.

2) We develop a retargetable performance evaluation meth-
odology, which exercises specific performance related
features in full-system simulators though a set of targeted
micro-benchmarks.

3) We show how these detailed performance metrics can be
used to drive further simulator development and to model
application performance without the need to repeatedly
run full-scale application benchmarks.

A. Motivating Example

We performed an experiment into running ARM binaries of
the SPEC benchmarks on an ARM Linux OS inside multiple
versions of QEMU on an x86 host machine. The Linux kernel
and SPEC binaries are all compiled with GCC 5.1 for the
ARMv5 architecture, and every version of QEMU has been
compiled with the same version of GCC. The results of this
experiment are shown in Figure 2.

Compared to version 1.7.0, released in 2013, the current
version 2.5.0 has suffered more than 10% performance loss
across the SPEC suite. Whilst this is a surprising result in
itself, this behaviour is not consistent across all SPEC appli-

cations: individual benchmarks have suffered an even greater
performance degradation, whilst others exhibit improvements.
In fact, we observe a widening performance gap between the
sjeng and mcf applications. The performance of mcf has
dropped by almost 30% and sjeng’s performance has im-
proved by about 10% between the earliest and latest releases.
Additionally, sjeng’s performance peaked in version 2.2.1,
delivering a 30% speedup over version 1.7.0, before gradually
suffering losses. These losses are beginning to be addressed
in more recent releases, exacerbating the situation for mcf.

This motivating example demonstrates that application
benchmarks such as the SPEC suite are not effective for per-
formance analysis of full-system simulators. Multiple effects,
resulting in speedup for some applications and slowdown for
others, can cancel each other out. An average performance
profile would not accurately account for the dramatic perfor-
mance loss of individual applications. Even more important
is the fact that the use of application benchmarks does not
explain the observed behaviour. Developers of the simula-
tor have no indication which change has caused this effect
and where performance bottlenecks occur in their system.
What is needed is a methodology to benchmark individual
performance-critical aspects of full-system simulators, in or-
der to isolate performance anomalies and pinpoint areas for
improvement. In Section III-B we will show how our novel
SimBench methodology directly identifies control flow and
exception handling performance as possible sources of the
particular performance regressions shown in Figure 2.

II. SIMBENCH METHODOLOGY

SimBench is designed to run bare metal on each target
architecture and platform. There is no underlying OS or RTOS
(although a bootloader may be used). Each benchmark runs
with a configurable iteration count and a per-benchmark run
time is reported. The iteration count should be set such that
each benchmark runs for a reasonable amount of time (perhaps
several minutes), in order to amortise startup and shutdown
time. When reporting results, both the run time and iteration
counts should be reported.

To ensure that the benchmark runtime consists as much
as possible of the ‘interesting’ operations, each benchmark
is executed in three phases. First, benchmark specific setup
of page tables, interrupt vectors, etc. is performed. Second,
the benchmark kernel itself is executed for the desired num-
ber of iterations. Finally, any benchmark specific cleanup is
performed. Only the benchmark kernel itself is timed, and so
supporting operations do not impact the benchmark runtime.

Finally, it is important that the benchmarks can be strongly
optimised, without affecting any behaviours that are being
evaluated – we recommend that SimBench is compiled with
standard ’-O3’ optimisations. Several techniques are used to
allow the compiler to optimise the benchmark suite where it
is desirable, while still guaranteeing correct behaviour. This is
done mainly through the use of volatile variables and inline
assembly statements. In some cases, control flow is made
unpredictable by having it depend on the iteration count, or



Benchmark Iterations Operation Density
SimBench SPEC

Code Generation
Small Blocks 100K 0.049 8.49E-7
Large Blocks 500K 0.003 8.09E-8

Control Flow
Inter-Page Direct 100M 0.204 0.025
Inter-Page Indirect 250K 0.268 0.022
Intra-Page Direct 500M 0.632 0.131
Intra-Page Indirect 200K 0.286 0.011

Exception Handling
Data Access Fault 25M 0.143 8.02E-7
Instruction Access Fault 25M 0.063 2.49E-8
Undefined Instruction 50M 0.125 0
System Call 50M 0.100 1.47E-6
External Software Interrupt 20M † 0.015 † 1.36E-6

I/O
Memory Mapped Device 400M † 0.250 † 5.17E-6
Coprocessor Access 250M 0.167 2.83E-4

Memory System
Cold Memory Access 50M 0.143 9.16E-4
Hot Memory Access 500M 0.909 0.809
Nonprivileged Access 300M 0.125 0
TLB Eviction 4M 0.062 2.51E-6
TLB Flush 4M 0.091 0

Fig. 3: This table shows the set of benchmarks contained
within the SimBench suite. Benchmarks marked with a †
have significant platform-specific portions which may skew
the operation density measurement.

be via function pointers. This adds some overhead to the
benchmark but cannot be easily avoided.

A. Features Covered

SimBench currently includes 18 benchmarks in 5 groups.
This set of benchmarks has been built after an extensive
evaluation of existing full-system simulators, as well as the
literature surrounding fast simulation.

We have also decided to omit features which have large
platform-specific components, or which are better covered by
existing benchmarks. In particular, there is no evaluation of
external I/O (which is better covered by I/O benchmarks such
as FIO or HDParm), or of translated code quality (which can
be covered by the wide range of application benchmarks).
We have also avoided the testing of floating point emula-
tion infrastructure, such as rounding mode changes, context
save/restore operations etc., although this might be a possible
enhancement in future versions. We also avoid ‘high-level’
benchmarks which test application or OS structures such as
algorithmic kernels or file accesses. Other benchmark suites
(e.g., LMbench [23]) are better suited for this.

Some of the features measured by SimBench exist on
some architectures but not others. For example, the ARM
architecture has kernel-mode instructions to access memory
without using kernel privileges. There is no equivalent of this
in the x86 architecture. SimBench includes a benchmark for
this feature, but it is implemented as a no-op for the x86 port.

B. Benchmark Categories
SimBench contains several categories of benchmark out-

lined in Figure 3. These target code generation performance
(for DBT-based simulators), control flow handling, excep-
tion/interrupt handling, I/O infrastructure, and memory sys-
tems. Figure 3 also provides the default iteration count used
for each benchmark (tuned to allow the full benchmark suite
to execute in a reasonable amount of time on a variety of
platforms and simulators), as well as the ‘operation density’ of
each benchmark. The operation density is the relative number
of tested operations performed per executed instruction of the
benchmark kernel. For each benchmark, its operation density
across the SPEC2006 INT benchmarks is also specified. Some
operations do not occur at all during the SPEC benchmarks,
such as full TLB flushes, nonprivileged memory accesses,
and undefined instruction exceptions. For all operations, the
operation density is higher in the SimBench benchmark than
it is across the SPEC benchmark suite, showing that SimBench
thoroughly exercises the targeted feature in each case.

We now discuss each of these benchmark categories, as well
as the individual benchmarks in each category. In particular,
we will focus on decisions made when designing these bench-
marks and any difficulties and challenges encountered during
their design and implementation.

1) Code Generation: The Code Generation benchmarks are
mainly designed to measure DBT performance in terms of
code generation speed and do not attempt to measure the
quality of generated code. In order to measure code generation
performance, two separate benchmarks are used: one which
contains many small basic blocks, and another which contains
one very large basic block. Both of these benchmarks work
by executing the same region of code (the many small blocks,
or single large block) repeatedly. Between each execution,
the code region is rewritten in order to invalidate any DBT
translations (or other cached data structures) of the code
region. This means that these benchmarks also measure the
handling of self modifying code. Furthermore, when optimi-
sations such as concurrent code generation [7] or region-based
code generation [28] are applied, these benchmarks will help
to measure the effectiveness of these techniques.

Small blocks: This benchmark consists of short functions
which tail call each other. To force code generation, the first
word in each function is rewritten at the start of each iteration.
This means that this benchmark also performs a large amount
of indirect control flow, but the benchmark execution time
should be dominated by code generation, except in extremely
unusual cases (e.g. where code generation is extremely fast,
or where the generated code is of extremely poor quality).

Large blocks: This benchmark has a single very large
basic block with a repeated sequence of arithmetic instructions
and where the first word of the block is rewritten at every
execution. At the start of each iteration the inputs are read
from a set of volatile variables, and the results are written
back at the end of each iteration.

The code generation benchmarks need to be carefully
written to stop the compiler from optimising away important



portions of the benchmark. For example, if the large block
benchmark was naively written as a computation occurring on
constant values, constant folding could be used to eliminate it.
Similarly, each iteration of the benchmark involves a function
call to the benchmark kernel. If that call can be inlined at
compile time, then code generation will only occur once, at the
first iteration of the benchmark, rather than once per iteration.

2) Control Flow Handling: Control flow handling in a
simulator can be split into two groups: intra-page and inter-
page. This split exists because intra-page control flow does
not require a virtual address translation, as long as address
mappings are not changed. Control flow can also be split into
direct (where the branch target is known in advance, and is
encoded as an absolute or relative path into the instruction) and
indirect (where the branch target is read from memory or a
register). A large amount of work has been done on optimising
the various forms of control flow [28, 20, 15, 17].

SimBench includes benchmarks to test each of the four
combinations of these types.

Inter Page Direct and Indirect These benchmarks consist
of several short functions located on separate pages that tail
call each other. In the Inter Page Indirect benchmark, the
functions are called via difficult to predict function pointers,
in order to defeat compiler optimisation.

Intra Page Direct and Indirect These benchmarks are
similar to the Inter Page benchmarks, except that all the
functions are on the same memory page.

In each of these benchmarks, we are careful to inhibit the
compiler’s ability to perform optimisations such as function in-
lining, in order to ensure that the benchmark operates correctly.
Furthermore, defining the size of a ‘page’ is difficult since
different architectures have different minimum page sizes. For
example, the ARM architecture specifies a minimum page size
of 1KB prior to ARMv6, while many other architectures (and
new versions of ARM) have a minimum page size of 4KB.
This does not significantly affect this benchmark at this time
but would have to be revisited if SimBench were ported to an
architecture with a minimum page size of more than 4KB. This
is particularly relevant for the inter-page benchmarks since we
need to ensure that the control flow used by these benchmarks
does actually cross page boundaries.

3) Exception/Interrupt Handling: There is a large range of
exception types in modern computer architectures. The most
frequently encountered are virtual memory related exceptions
and system calls. SimBench contains benchmarks to target
these and other common exception and interrupt types.

Data Access Exception: Virtual memory related exceptions
can be split into data and instruction exceptions. SimBench
contains a benchmark to test each case. The data memory
benchmark repeatedly attempts to access a memory location
which is not mapped, generating an exception each time. The
exception handler immediately returns to the next instruction
after the memory access.

Instruction Access Exception: This benchmark repeatedly
attempts to call a function located in a region of unmapped
memory. Each call results in an exception, which is handled

by returning to the next instruction after the function call (this
requires some stack unwinding on architectures such as x86).

Undefined Instruction This benchmark uses an architec-
turally undefined instruction to trigger an exception. Most
instruction sets support at least one such instruction (e.g., the
UD2 instruction in x86 [16], and the Architecturally Undefined
Instruction Space in the ARM architecture [2]). The use of
undefined instructions varies by architecture and application,
but undefined instruction handling mechanisms can be used
to perform emulation of floating point instructions in CPUs
that do not have a floating point unit, or to provide backwards
compatibility for legacy instructions or operations.

System Call: This benchmark attempts to measure the
performance of performing a system call (sometimes known as
a ‘software interrupt’). The exact nature of system calls is ar-
chitecture specific, but typically involves executing a ‘syscall’
instruction which generates an exception. This benchmark
repeatedly executes such an instruction, with the exception
handler returning to the next instruction.

External Software Interrupt: While the syscall benchmark
uses a system call instruction to generate an exception, the
interrupt controllers in most systems also support software
generated interrupts. This benchmark mainly exercises the
interrupt handling performance of the system under test.

4) I/O Infrastructure: Many modern platforms include de-
vices that are manipulated using memory mapped registers.
For example, communication with a screen device uses normal
memory store instructions. SimBench tests memory mapped
I/O in a fairly limited fashion – a platform-specific device is
repeatedly accessed (preferably a device with no side effects
and very limited processing required to evaluate).

Coprocessor accesses can also be used to communicate
with a limited range of devices external to the CPU. For
example, the ARM VFP extensions are encoded as coprocessor
access instructions, and a lot of ARM system configuration is
performed via a system control coprocessor.

Note that we are not seeking to benchmark any particular
I/O operation, but rather to measure the base cost of any oper-
ation. By accessing a straightforward side-effect-free register,
we are able to investigate the cost of performing an I/O access,
without measuring a particular subsystem. For example, if we
perform a complex operation through a coprocessor, then we
are measuring the costs of performing that complex operation,
rather than the costs associated with coprocessor accesses.

However, we must also be careful to select I/O and co-
processor accesses that cannot be trivially optimised away
by the simulator. For example, a CPUID register read could
potentially be optimised into a constant value by a sufficiently
smart simulator (this is more difficult for memory mapped
devices). Determining a ‘safe’ register to access is something
that must be done separately for each architecture.

Memory Mapped Device Access: This benchmark repeat-
edly accesses a platform specific ‘safe’ device, using a memory
access operation. For example, this might toggle an LED, or
repeatedly read from a device ID register.



Coprocessor Access: This benchmark repeatedly accesses
an architecture specific ‘safe’ coprocessor, using an archi-
tecture specific method. In the case of ARM, the Domain
Access Control register is read from. In the case of x86, the
mathematic coprocessor is repeatedly reset.

5) Memory System: The performance of the memory sys-
tem is very important to the overall performance of a sim-
ulator. For example, in the SPEC benchmark suite compiled
for the x86 architecture, up to 57% of instructions involve
data memory accesses [6]. In a full system simulation of a
system with an MMU, each memory access must perform a
virtual to physical address translation, and any privilege checks
required. Many real systems include a TLB to accelerate these
translations, and many simulators include a similar structure.
SimBench includes benchmarks designed to exercise both the
hot path (a TLB hit) and the cold path (a TLB miss).

Since a ‘cold’ memory access involves performing an
MMU translation, this benchmark necessarily examines the
architecture specific MMU implementation. This can have a
significant impact on the overall runtime of the benchmark,
since e.g. a single level translation (such as an ARM section
or supersection translation) is more straightforward than a
two-level translation (such as a coarse page translation). The
mapping of pages is handled by the architecture support
package rather than the benchmark.

Cold Memory Access: This benchmark reserves a large
portion of memory, and performs one memory read at the top
of each page of that region. For this reason, each access results
in a TLB miss and a ‘cold-path’ memory access.

Hot Memory Access: In this benchmark the same memory
page is loaded from and stored to repeatedly. Each iteration
could potentially consist of only two instructions (a load and a
store instruction), so the benchmark loop is manually unrolled.
This benchmark tests the common case for memory accesses.

Nonprivileged Access: Similar to the ‘hot’ memory access
benchmark, except that the normal memory access is replaced
with a non-privileged memory access for architectures which
support this kind of access (such as ARM). Such nonprivileged
accesses can be used to safely copy data from an operating
system kernel into user memory (in order to return data from
system calls, for example).

Also important to the overall performance of the system
is how TLB operations are performed in simulation. This
situation is complicated by multiprocessing support built in
to many modern virtual memory systems e.g., the ASID in
the ARM virtual memory system and the PCID in x86. These
are very much architecture specific features which are difficult
to assess in a portable fashion. These might be handled in a
future version of SimBench. Two benchmarks are currently in
SimBench targeted at TLB operations.

TLB Eviction: This benchmark tests TLB eviction opera-
tions. This is similar to the ‘cold’ memory access benchmark,
except that it evicts the accessed page of memory from the
data TLB after each iteration.

TLB Flush: The same as the TLB Eviction benchmark,
except that the entire data TLB is flushed after each iteration.

Machine ODROID-XU3 HP z440
CPU Exynos 5422 Xeon E5-1620 v3

CPU GHz 2.0 (A15) 1.4 (A7) 3.5 (3.6 Boost)
Memory 2GB 16GB
Compiler gcc 4.8.2 gcc 5.3.1
OS Name Ubuntu 14.04 Fedora 21
OS Kernel 3.10.53 4.1.13

Fig. 5: Details of the real ARM and x86 hardware platforms
used during our experiments. Only the Cortex-A15 cores of
the ODROID platform are used.

C. Porting SimBench

When developing the SimBench suite, one of the main
challenges was ensuring that the desired behaviour was ob-
tained without making the suite difficult to port. None of
the benchmarks themselves contain any architecture specific
assembly or platform specific code – all such operations
are handled by architecture and platform support packages.
Porting SimBench to a new architecture or platform requires
only that the new support packages are written, rather than
requiring that each benchmark be individually ported.

Since each benchmark is written in standards-compliant C,
several benchmarks contain structures designed to deliberately
defeat compiler optimisations, especially when measuring
control flow handling. This can make the benchmark code
somewhat more difficult to produce and to understand, but
cannot be avoided while still maintaining portability.

Porting to a new platform is straightforward – for example,
each ARM platform library is made up of around 200 lines of
C code. To implement the current benchmark set, the platform
library must primarily manage the serial connection to the
host, provide information on the system’s memory layout,
and provide an interface for platform specific operations such
as triggering external software interrupts. Porting to a new
architecture is more complex – the ARM architecture library
is 570 lines of C and 400 lines of assembly. This mainly deals
with bringing the machine out of reset, and managing the
MMU and caches. The architecture library must also provide
several architecture-specific operations such as executing a
syscall, an undefined instruction, coprocessor accesses, etc.

III. EVALUATION

In this section we evaluate SimBench on several simulators
and hardware platforms. We begin by describing the simulators
and hardware platforms we used. We then discuss the capa-
bility of SimBench to explain well-know performance gaps in
the simulation landscape. Finally, we perform a more detailed
analysis of the results for the popular QEMU simulator.

A. Environments

We evaluated SimBench on a variety of simulated and real
platforms. We used x86 and ARM for the host platforms,
detailed in Figure 5. We select QEMU-DBT (QEMU which
utilises Dynamic Binary Translation), QEMU-KVM (QEMU
with hardware-assisted virtualization support), SimIt-ARM
(which, in our configuration, does not use DBT) and Gem5



QEMU-DBT SimIt-ARM Gem5 QEMU-KVM Native
Execution Model DBT Fast Interpreter Interpreter Direct Direct

Memory Access Multi-level Page Cache Single Level Cache Modelled TLB Direct Direct
Code Generation Block-based None None None None

Control Flow
Inter-Page Block Cache Interpreted Interpreted Direct Direct
Intra-Page Block Chaining Interpreted Interpreted Direct Direct

Exception Modelling
Interrupts Block Boundaries Insn. Boundaries Insn. Boundaries Via Emulation Layer Direct
Synchronous Exceptions Side Exit Interpreted Interpreted Direct Direct
Undefined Instruction Translated Interpreted Interpreted Hypercall Direct

Fig. 4: Table showing examples of how certain features are implemented on different evaluated platforms. These features
should be picked up by SimBench as differences in the runtime of specific benchmarks.

(non cycle accurate version) as our simulators. Overall results
for each experiment can be seen in Figure 7. Many popular
or well known simulators only support user-mode simulation,
and so SimBench cannot be used with these simulators.

B. Analysis

In this section we evaluate the capability of SimBench to
explain performance gaps rather than just identify them. We
first explain two well-known performance gaps in the domain
of simulation: we compare two classical simulation techniques,
Dynamic Binary Translation (DBT) and Interpretation, and
use SimBench to explain the performance gaps between them.
Then, we use SimBench to identify and explain benefits and
weaknesses of executing code natively, versus using hardware-
assisted virtualization. Finally we will evaluate the QEMU
simulator with SimBench and SPEC over 20 different versions.

1) DBT vs Interpretation: Generally we would expect
QEMU to significantly outperform SimIt-ARM and Gem5, due
to its use of Dynamic Binary Translation (DBT), and this is
reflected in most of the SimBench benchmark runtimes.

Since QEMU performs DBT, we expect workloads contain-
ing a lot of new or self-modifying code to perform slowly
(since new/modified code must be translated when it is first
encountered). This is indeed shown by SimBench: the Code
Generation benchmarks are executed much more quickly on
SimIt-ARM (which in our case executes instructions via a
fast interpreter) than on QEMU. Gem5 also performs poorly
on these benchmarks, despite also using an interpreter. This
is due to the Gem5 interpreter being much more detailed in
nature than that of SimIt-ARM (as it is intended to be used
for cycle-accurate simulation).

Another situation where SimIt-ARM outperforms QEMU
is the Cold Memory Access benchmark. The MMU model of
SimIt-ARM is simpler than that of QEMU, and takes less time
to evaluate on each TLB miss. QEMU supports multiple ARM
architecture versions, including many extensions and variants,
making page table lookups quite complex. However, SimIt-
ARM supports only the ARMv5 architecture.

We would also expect QEMU to outperform SimIt-ARM
and Gem5 on the Control Flow benchmarks, due to QEMU’s
use of block chaining, block caching, etc. However, the
performance difference between QEMU and SimIt-ARM is not
as great as might be expected. These benchmarks are intended

to stress translation lookup systems, so actually having trans-
lations is not necessarily an advantage. However, QEMU’s use
of block chaining allows it to obtain a good speedup against
SimIt-ARM on the Intra-Page Direct benchmark.

To conclude, SimBench is able to identify reasons for
the performance gap between DBT and interpretation-based
simulation tools.

2) Virtualization against Native Performance: The per-
formance of the SPEC benchmark using QEMU-KVM are
comparable to those using native hardware on ARM and x86.

By using SimBench on ARM we note that the performance
of QEMU-KVM and Native Hardware are fairly similar in
most benchmarks except Control Flow, External Software
Interrupt, and I/O. We believe that the poor performance
of KVM in the Control Flow benchmarks is due to KVM
being relatively unstable in our selected kernel version on the
ODROID-XU3 platform. The External Software Interrupt and
I/O benchmarks also run significantly faster on real hardware
when compared against QEMU-KVM. Both of these bench-
marks involve accesses to external devices. In a virtualized
environment, accesses to emulated devices are trapped and
handled by the virtualization infrastructure, which is much
more costly than accessing actual hardware. On investigating
the External Software Interrupt benchmark result for QEMU-
KVM, we found that the result was particularly poor due to
‘unsupported operation’ messages being written to the system
log (despite the correct behaviour being performed by KVM).

On x86, KVM and native hardware obtain similar results,
with a few exceptions. First, in some cases the QEMU-KVM
results are slightly faster. This is likely to be due to the use
of Intel SpeedStep (frequency boosting) by the KVM host
operating system, which is not enabled on the bare metal plat-
form. Several benchmarks have fairly significant performance
differences, particularly the Undefined Instruction, External
Software Interrupt, and Memory Mapped Device benchmarks.
These benchmarks all include operations which involve trap-
ping into KVM, which has a performance overhead.

To conclude, SimBench successfully identified a well-
known caveat of virtualization, when using application bench-
marks would lead us to consider them as equivalent.

3) SPEC performance variation in QEMU: We ran both
the SPEC2006 Integer suite and SimBench on each version of
QEMU, going back several years, using an x86 host (outlined
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Fig. 6: Graphs showing the performance of the QEMU-DBT simulator on each category of the SimBench benchmarks. For
the Data-Fault Exception benchmark we observed a speedup of around 8x on ARM and 4x on x86 for the 2.5.0 versions of
QEMU-DBT (result which is off the scale on the corresponding graphs). The host (an HP z440 workstation) is specified in
Figure 5.



Benchmark ARM Guest (seconds) x86 Guest (seconds)
QEMU-DBT SimIt-ARM Gem5 QEMU-KVM Hardware QEMU-DBT QEMU-KVM Hardware

Code Generation
Small Blocks 7.758 0.453 18.667 4.377 1.914 6.201 1.533 0.029
Large Blocks 10.609 0.778 47.612 2.048 0.560 9.222 0.319 0.068

Control Flow
Inter-Page Direct 11.766 14.388 656.301 124.209 32.229 7.601 0.877 0.966
Inter-Page Indirect 10.134 12.885 495.388 138.231 61.367 8.643 0.419 0.492
Intra-Page Direct 11.320 70.440 2478.621 823.059 52.005 9.898 2.091 2.236
Intra-Page Indirect 9.476 10.038 394.483 104.974 29.505 6.907 0.335 0.336

Exception Handling
Data Access Exception 7.290 11.499 114.562 6.023 6.286 16.975 6.503 6.219
Insn. Access Exception 8.114 23.444 218.416 7.372 9.062 11.094 7.679 7.120
Undefined Instruction 9.286 22.393 207.291 3.368 6.702 13.691 54.549 8.629
System Call 8.621 23.657 276.409 3.494 6.952 11.898 8.063 7.898
Ext. Software Interrupt 10.584 42.094 -† 2817.653 21.670 14.414 112.843 6.571

I/O
Memory Mapped Device 12.777 16.681 -† 4407.052 16.502 29.358 316.737 0.112
Coprocessor Access 8.166 9.883 441.189 96.406 6.001 17.469 438.045 493.731

Memory System
Hot Memory Access 9.879 90.705 4886.551 17.504 35.006 10.422 7.833 7.826
Cold Memory Access 9.844 3.222 117.099 12.303 6.943 13.788 0.558 0.518
Nonprivileged Access 10.227 123.741 824.847 8.067 1.051 - - -
TLB Eviction 13.998 1.777 29.093 1.952 1.150 1.511 0.666 0.602
TLB Flush 12.728 1.572 26.854 4.891 3.069 11.120 1.030 0.582

Fig. 7: Results from running SimBench on a variety of platforms. The target machines are outlined in Figure 5. QEMU Version
2.5.0-rc2 was used for all experiments involving QEMU. † The functionality is not implemented in the Gem5 simulator.
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Fig. 8: Graph of geometric mean of speedup of QEMU
(baseline is v1.7.0) running SPEC2006 Integer benchmarks,
and SimBench, across a range of QEMU versions.

in Figure 5) and an ARM Linux host. As can be seen in
Figure 8, QEMU is generally decreasing in performance with
each released version. This is reflected in both SPEC and
SimBench results. Although the performance of SimBench
does not precisely reflect that of SPEC (i.e., you could not
accurately use one to predict the other), some general trends
and interesting features can be observed.

Firstly, version 2.0.0 of QEMU provides a large improve-
ment in most SimBench categories, as well as an improvement
in SPEC performance. The QEMU v2.0 Change Log [1]
notes that this version includes “Improvements to the TCG
optimiser” which may explain this performance improvement.

Version 2.5.0-rc0 sees a significant improvement in data
fault handling performance (as can be seen in Figure 6).
However, this is not matched by any improvement in SPEC

performance. Such data access faults are uncommon so it
would not be expected that an improvement in data fault
handling performance would produce a significant improve-
ment in overall application performance. However, data fault
handling performance might be more important when dealing
with memory constrained systems where pages of data are
frequently swapped out to disk.

Finally, a degradation in performance on control flow bench-
marks can be observed. This is perhaps the most problematic
issue revealed by SimBench, since control flow handling is
fundamental to simulation. Although some of the control
flow benchmarks also contain computation (in order to defeat
compiler optimisation), this does not account for the large
degradation observed. Exception handling also shows a signif-
icant and consistent reduction in performance (except for data
fault exception handling). Although this makes up a smaller
component of overall simulation performance (as shown by
the operation densities shown in Figure 3), it may become
significant if performance in this area continues to degrade.

IV. RELATED WORK

While there has been no prior work on benchmarks specif-
ically aimed at full-system simulators, numerous benchmark
suites and methodologies targeting applications, kernels and
virtualization have been developed. We review the related
work on these benchmarking approaches and briefly sum-
marise current practice of simulator benchmarking.

A. Application and kernel benchmarks

Probably the most widely used application benchmark is the
SPEC [14] suite, which contains modified versions of existing
large programs such as Perl and gcc, along with several data



sets. SPEC is typically used for evaluating improvements
in computer architecture and compiler technologies. Other
benchmark suites include EEMBC [21], which contains a large
suite of kernels representing a range of embedded applications,
PARSEC [4], which is designed to measure the performance of
CMP systems and PARBOIL [29] which contains a number of
throughput-computing benchmarks suitable for evaluating e.g.
GPU performance. There are a large number of other bench-
mark suites, and a general survey on performance evaluation
can be found in e.g. [18].

B. Virtualization benchmarks

The Kernel-based Virtual Machine (KVM) [13] is a virtu-
alization infrastructure for the Linux kernel that turns it into a
hypervisor. It requires a processor with hardware virtualization
extensions and has been ported to a variety of architectures,
including ARM [12].

VMmark [30] is virtual machine benchmark suite, which
measures the performance of virtualized servers while running
under load on physical hardware. VITS [34] is a micro-
benchmark suite designed to measure cache, memory band-
width, CPU, network and disk performance in virtualized
environments. Whilst these categories broadly match our
SimBench benchmarks, the overheads for virtualization and
simulation are quite different and demand specialised tests. For
example, Dynamic Binary Translation is usually not used in
virtualization systems (which instead use hardware extensions
to provide virtualization). Similarly, the host system MMU
can be used in a virtualized context, whereas in a simulator,
memory accesses must usually be completely emulated.

C. DBT and simulator benchmarking

The main sources of DBT overhead are characterised in
[9]. Furthermore, operations and associated overheads are
classified into five categories, and their contribution to the
overall overhead quantified. SimBench builds on this work
and provides measurements for each of the five categories
and beyond. Generally, simulators are benchmarked using
standard benchmark suites, such as those described above. The
integer portion of SPEC2006 is popular (used in e.g. [32, 24]).
Targeted microbenchmarks are occasionally provided [19]
although precise details of these benchmarks are not always
available. The EEMBC suite has been used for simulator
evaluation in e.g. [31]. SimIt-ARM [26] is benchmarked
against a mix of applications from Media Bench and SPEC
INT 2000. [27] considers performance changes of simulator
benchmarks when context switches are incorporated.

V. CONCLUSION

In this paper we have presented a methodology for the
systematic performance evaluation of full-system instruction
set simulators. Rather than relying on application benchmarks,
which only measure a fraction of performance-critical features
we use a set of micro-benchmarks specifically aimed at those
operations, which are costly to implement in simulation.

We have applied SimBench to QEMU, targeting the ARM
and x86 architectures, Gem5 and SimIt-ARM. In addition,
we have performed additional evaluations against QEMU-
KVM virtualized platform as well as native execution. We
show that the ARM port of QEMU suffers from a continuous
performance degradation issue, which we are able to pinpoint
to central simulation operations impossible to detect using
e.g. SPEC CPU2006 benchmarks. Future work includes the
development of additional targeted benchmarks as well as the
application of SimBench to full-system DBT virtualization
systems like STAR [25]. We might also investigate the use
of SimBench-like kernels for sandbox detection.

VI. AVAILABILITY

SimBench is available at https://bitbucket.org/simbench/
simbench, under a New BSD license.
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