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Abstract 

The initially very promising transport properties of glassy high free volume polymers deteriorate 

rapidly over time. In this work, we focused on this aging phenomenon in two polymers of intrinsic 

microporosity (PIMs), namely PIM-1 and PIM-EA-TB. To identify the main mechanisms involved, we 

studied the time-declines of permeability and diffusivity of methanol vapours in flat membranes with 

approximately equal thicknesses. The permeation measurements were carried out using a 

continuous flow permeation method with carrier gas, where the methanol vapours were held at 

constant activity 0.2 at 25°C. Two different experimental modes were used: (i) continuous 

experiments that consisted of one long experiment with a duration of over 650 hours for each 

polymer and (ii) momentary experiments that consisted of a vast number of short (ca. 6 hours) 

consecutive measurements of transient permeation. The observed decreases of methanol 

permeability due to aging were more intense in the case of continuous mode for both polymers. In 

other words, the aging was ca. 1.3 times faster in the continuous mode in comparison with the 
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momentary mode.  Using time-aging time superposition, we successfully predicted the continuous 

experiments from the momentary experiments. 

Keywords: Polymer of intrinsic microporosity, aging, infrared 

spectroscopy, methanol vapour permeation 

 

Nomenclature 

Roman symbols 

  active surface of the membrane 

  activity 

  molar concentration 

  heat of adsorption of the sorbate from the bulk phase to the second and higher monolayers 

  diffusion coefficient 

  thermodynamic diffusion coefficient 

  heat of adsorption of the sorbate from the bulk phase to the first monolayer 

  mobility coefficient of the diffusing molecules 

  molar flow of vapours 

  flux of vapours 

  adjustable parameter in Eq. (2) 

  thickness of a membrane 

  mobility of polymer chains 

 ̇ molar flow 

  pressure 

  permeability 

  correlation coefficient 

  universal gas constant 
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  sorption coefficient 

  time 

  thermodynamic temperature 

  sorption capacity of sorbent (in units gpenetrant/gpolymer) 

  weight fraction of vapours 

  molar fraction of vapours 

  position in membrane 

Greek symbols 

  vertical shift factor 

  effective time 

  double-logarithmic shift rate, defined by Eq. (8) in [36], or ,in Appendix, chemical potential 

  volume fraction of vapours 

Subscripts 

    atmospheric 

     carrier gas 

     feed/retentate/upstream part of a measuring cell 

  first adsorption monolayer 

    molar 

     permeate/downstream part of a measuring cell 

    reference 

    saturated vapour (used in connection with presure) 

    standard temperature and pressure (273.15 K, 101.325 kPa) 

   steady state 

    volumetric 

  elapsed from the start of aging (used only in connection with time) 
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1 Introduction 

The polymers of intrinsic microporosity (PIMs) represent a novel class of the glassy high free volume 

polymers. Thanks to their high permeabilities and moderate selectivities, PIMs exhibit very good 

perm-selective properties [1]. Recently, several PIMs have overcome Robeson’s 2008 upper bound 

[2] for certain pairs of gases [3-6]. This achievement makes PIMs potentially very attractive for 

industrial use. However, PIMs also exhibit two quite challenging issues. The first one is their very 

complex transport behaviour [7]. For example, their transient sorption kinetics cannot be described 

by the commonly used Fick’s second law of diffusion. The second problem is the aging phenomenon 

[8], which causes a significant decrease of PIMs permeability over time [3, 6, 9-13]. 

The first issue can be addressed using non-Fickian models, for instance see literature [14-21]. As a 

first approximation, we used an improved Fick’s law with activity corrected diffusion coefficient, 

which is also known as the thermodynamic Fick’s law [19-22]. For more insight into the derivation of 

the thermodynamic Fick’s law, see Appendix A.1. 

        ( 
    

  
)

  

  
 (1) 

The Eq. (1) provided an improved description of the transient permeation kinetics in comparison with 

the plain Fick’s law. A more detailed study on this topic could provide some insight into the polymer, 

which is of interest in the academic point of view. We, however, focused on the aging phenomenon, 

which is of major concern from the industrial point of view. 

It was shown in recent works [23-27] that PIMs aging can be tackled using organic additives such as 

porous organic molecular crystals [28] (cages), porous aromatic frameworks [29] (PAFs) [28]or 

hypercrosslinked polystyrene fillers [27] (HCP). The decline of material permeability was lower than 

10% of the initial permeability over one year for PIM-1 membrane with PAFs [25], lower than 60% for 

PIM-1 with cages [26] and about 40% over half a year for PIM-1 with HCP [27] , while the usual 

decline over one year is about 70% [26].  Furthermore, an increase in absolute permeability was 

observed for all the types of additives [27]. Thus, such an approach represents a convenient way to 

mitigate the effect of aging and even improve the membrane separation properties [24]. Despite all 

this progress, there are still some missing pieces in the puzzle of aging of PIMs, such as the influence 

of the permeating compounds. To explore the aging phenomenon, various authors use different 

methods to monitor the aging of polymeric membranes. Some studies were focused on changes in 

the physical structures of polymers, detected using SAXS/WAXS [12] or PALS [9, 30], while others 

were focused on the influence of aging on the permeability [10, 11, 30-32]. Furthermore, theoretical 
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computation methods [13] were reported as well. However, only a few of the aforementioned 

studies mention the aging phenomenon in PIMs [9-12]. Moreover, to the best of our knowledge, 

there are neither studies about the nature (chemical or physical) of aging of PIMs, nor on the 

influences of the permeating compounds. 

 

 

 

 

Figure 1 – Schematic structures of studied polymers: PIM-1 (upper), PIM-EA-TB (lower). 

 

 

In this work, PIM-1 [3] and PIM-EA-TB [5] (see Figure 1) were chosen from the family of polymers of 

intrinsic microporosity. PIM-1 is an archetypal polymer, which was the first prepared PIM and is 

currently the most studied one [3, 7, 9-12, 33-35]. PIM-EA-TB was chosen because of its unique 

properties, especially for its gas separation ability [5]. To the best of our knowledge, the aging of 

PIM-EA-TB has not yet been systematically studied, with a few basic details described in the 

literature [5, 6].  

To the best of our knowledge, the aging measurements are commonly carried out only by measuring 

a series of consecutive short-term measurements, for examples see [10, 24-26, 31, 32]. Moreover, 

the measurement protocols are far from being comparable (time intervals between two consecutive 

measurements differ widely). On the other hand, in the industrial applications, the membrane 

separation processes run continuously for months. Struik [36] described significant differences 
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between these two modes of measurements for the rheological behaviour of polymeric materials. In 

this study, we thus focused on the comparison of these two modes of measurement. 

At first, we used infrared transmission spectra to validate the assumption that PIMs undergo only the 

physical aging. Then, methanol (MeOH) vapour permeability experiments were performed using 

a flow permeameter with carrier gas (often referred to as Wicke-Kallenbach technique). This 

apparatus was used because (i) it provides stable boundary conditions, (ii) the studied membrane is 

under no mechanical stress and (iii) it enables continuous long-term permeation tests to be 

performed as well as the short-term ones. The measurements were carried out in two different 

modes: continuous mode (one experimental run lasted more than 650 hours) and momentary mode 

(numerous short-term experimental runs, each of which lasted about 6 hours). Moreover, as the 

measurements were conducted using MeOH vapours, long-term effects similar to that of the so 

called MeOH treatment [6] can be expected and were, indeed, also observed in this work. 

The principal aim of this study is to improve understanding of the time-dependent transport 

properties of the PIM-1 and PIM-EA-TB with the following objectives: (i) to validate the assumption 

of physical aging of PIMs; (ii) to elucidate the rate of the aging process under different measurement 

conditions (comparison of the momentary and the continuous modes) and thus to detect if there is 

a contribution of the permeating compound; (iii) to identify whether the decline of permeability is 

caused by the changes in diffusion coefficient or sorption coefficient; and (iv) to predict the 

continuous permeation behaviour of PIM membranes using correlative models. 

1.1 Theoretical treatment of physical aging 

Although the aging process can be caused by several different chemical or physical processes, the 

most important one and possibly the only one occurring in PIMs is the physical aging. Thus, 

theoretical backgrounds of physical aging are given here. 

The physical aging of glassy polymers was thoroughly studied by Struik [36]. This author described 

short-term (momentary) rheological measurements of glassy polymers and from these predicted the 

long-term (continuous) behaviour of polymers. He concluded that a glassy polymer exposed to 

a constant long-term stress ages much slower in comparison to a situation when it is under 

periodically applied short-term stresses. This effect is very beneficial and allows glassy polymers to 

be used, for instance, as building materials. 

For the prediction, Struik used time-aging time superposition in the effective time domain. This 

approach was improved in more recent studies by Joshi et al. [37, 38]. Moreover, Joshi et al. studied 

not only the rheological properties of glassy polymers but also properties related to polarization (see 
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Figure 11 in literature [38]). These authors concluded that their approach can be used to model, in 

principle, any time dependent process in polymers. Thus, we used their approach to predict the 

polymer aging connected with the decline of material permeability in continuous mode from the 

experimental data obtained in momentary mode. 

[36][37][39][40]Further, an alternative approach to the description of physical aging in glassy 

polymers was reported by Zhou et al. [41]. They used the following equation for the description of 

aging: 

             (2) 

Both parameters are adjustable, positive, temperature dependent and possess some physical 

meaning. The parameter   , as Zhou stated, possibly corresponds to the logarithm of approximate 

reference starting value of permeability during the aging process [41]. Thus,    is not very important 

for this study. Parameter    corresponds to the rate of aging at a temperature below the glass 

transition [41], which can be used for the comparison of aging rates of the studied polymers. The 

most important benefits of this equation are its simplicity and applicability to quite a long time range 

of data. Interestingly, as Eq. (2) does not explicitly involve any free volume characteristics of the 

polymer, this model can be utilized even if these characteristics are not known. However, a relation 

of parameter    to the rate of contraction of free volume of the polymer can indeed be expected. 

2 Experimental part 

2.1 Chemicals 

The chemicals used for the permeation experiment were MeOH (Penta, min. 99.8%) as a penetrant, 

chloroform stabilized with amylene (Lach-ner, 99.88%) as a solvent, hydrogen (SIAD Czech, 

99.9995%) and helium (SIAD Czech, 99.998%) as the carrier gases. All chemicals were used without 

further purification. 

2.2 Membrane preparation 

Polymers were prepared according to the procedures previously described in [5, 42] for PIM-EA-TB 

and [43] for PIM-1. Thin flat membrane samples were prepared by the solvent evaporation method 

from 2 – 3 wt.% polymer solutions in chloroform and dried in partially covered Petri-dishes under 

ambient temperature and pressure for at least 12 h. In order to remove the residual solvent (for 

details see Appendix A.2 for PIM-1 and the literature [6] for PIM-EA-TB) and to rejuvenate the 

polymer structure, the as-cast films were treated with liquid MeOH. The treatment was performed 

by immersing the membrane overnight in MeOH and then allowing it to dry for 1 h under ambient 
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conditions. Then the membrane was then placed into a permeameter, where it stayed another ca. 2 

h under pure carrier gas, whose continuous streams were conducted to both sides of the membrane, 

as the used type of detector needs this period of time to stabilize its signal. In order to obtain aged 

samples, two different membranes were kept overnight at a temperature of 125 °C (in air); thus, so 

called thermally-aged (annealed) samples were obtained. The thicknesses of studied membranes 

were determined by a dial comparator (Somet) and are stated in Table 1. Additionally, this table 

contains the type of permeation experiment for which each membrane was used. 

Table 1 – A list of samples, their thicknesses (measured after MeOH treatment) and the mode of experiment in which they 
were used 

Material Thickness (μm) Type of experiment 

PIM-1 241±4 Momentary 

PIM-1 183±5 Continuous 

PIM-EA-TB 147±4 Momentary 

PIM-EA-TB 152±7 Momentary 

PIM-EA-TB 123±4 Continuous 

 

2.3 Infrared spectroscopy 

The infrared (IR) transmission analysis of as-cast and MeOH treated samples was done using a 

NICOLET 670 FTIR spectrometer (Thermo Fisher Scientific Inc.) equipped with a transmission 

accessory (Thermo Fisher Scientific Inc.). A heated ceramic (Globar) source of infrared beam, KBr 

beam splitter and DTGS (Deuterated TriGlycin Sulfate) detector were used in this setup. The spectra 

were collected in the range 4000 – 400 cm−1 and evaluated in Omnic software. A total of 64 scans at a 

resolution of 2 cm−1 were recorded for each spectrum. 

IR surface analysis of samples kept at 25°C and of thermally aged samples was carried out using 

a NICOLET IS-50 FTIR spectrometer (Thermo Fisher Scientific Inc.) equipped with a built-in diamond 

ATR sampling station (Thermo Fisher Scientific Inc.). Polaris™ source of infrared beam, KBr beam 

splitter and Dedicated DLaTGS (Deuterated Lanthanum α Alanine doped TriGlycine Sulphate) 

detector were used in this setup. The spectra were collected in the range 4000 – 400 cm−1 and 

evaluated in Omnic software. A total of 64 scans at a resolution of 2 cm−1 were recorded for each 

spectrum. 

2.4 Permeation experiment 

The permeation experiments were carried out using a continuous flow permeameter [44-46], for 

detailed scheme see Figure 2. The measuring cell of this apparatus is divided into two parts by the 
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tested flat sheet membrane. The upper part is in contact with the gas mixture of exactly defined 

degree of saturation maintained at atmospheric pressure. The lower part is in contact with the pure 

carrier gas which sweeps permeate from the cell and is maintained at atmospheric pressure. The 

resulting permeate mixture is then analysed using a thermal conductivity detector (TCD), for which 

hydrogen and helium are common carrier gases. 

 

Figure 2 – Schematic diagram of differential flow permeameter. TCD – thermal conductivity detector. 

Hydrogen and helium were used as the carrier gases because of their high thermal conductivity. For 

frequent short measurements hydrogen was used, because it is cheaper, and for the long-term (non-

stop) experiments helium was used in order to avoid any dangerous situations connected with 

potential leaking of flammable explosive hydrogen during periods with no attendance of researchers 

in lab. The carrier gas was fed into the mass flow controller (MFC, producer Aalborg). One stream of 

carrier gas was led from the MFC into a double-jacketed saturator maintained at (25.0±0.1) °C using 

a circulation bath (Huber ministat 125), where it was saturated with the vapours of MeOH. The 

resulting stream of the fully saturated carrier gas was then diluted with the pure carrier gas, to a set 

MeOH concentration (and thus MeOH vapour activity). Such mixture was led to the upstream part of 

the cell. The measuring cell was thermostated at (25.0±0.1) °C using the same circulation bath (Huber 

ministat 125). Because the signal of TCD is sensitive to temperature disturbances, the whole 

apparatus (except computer) was enclosed in a thermostated air box (29.8±0.1) °C. All temperatures 

were checked using a platinum resistivity thermometer (Pt 100-Testo 735-2).  

 

Figure 3 – Mass balance schema for correction of boundary conditions 

This setup ensures stable boundary conditions at both sides of the membrane. However, the 

upstream concentration is lowered and the downstream concentration is increased (see Figure 3) by 

the vapour flux through the membrane, when compared to a (very) low permeable membrane. Thus, 
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as a first approximation, the concentration in the upstream part equals the set MeOH concentration 

in the feed mixture and in the downstream part equals zero. As PIMs are highly permeable 

membranes, corrections devised from mass balance were used [44] (for details see Figure 3). The 

corrections were estimated using the following equations 

      

[         (                 )]
 

⁄  

[         (                 )]
 

⁄     ̇         

, (3) 

      
        

 
⁄  

        
 

⁄      ̇         

. (4) 

Permeability coefficients were calculated from Fick’s first law 

  
  

                   

        

 
 
      

    
, (5) 

where          is molar flow of vapours in steady state in the lower part of the cell. This quantity was 

obtained from the calibration of the TCD, whose signal is proportional to this quantity. The 

calibration was carried out by weighing the permeate condensed in a liquid nitrogen cold trap [47] 

over a certain period of time. The weighing was carried out using the Ohaus DV215CD laboratory 

balance.  

In order to assess the diffusion coefficients of momentary experiments, the thermodynamic Fick’s 

diffusion flux Eq. (1) was used together with the sorption model named after Guggenheim, Anderson 

and de Boer, which is usually abbreviated as the GAB model [7, 48-50]. The thermodynamic Fick’s 

second law then has the form  

  

  
 

 

  
[  ( 

    

  
)

  

  
]. (6) 

In Eq. (6), the volume fractions   were approximated by weight fractions   (the same way as in the 

literature [51]). Therefore, the GAB model was used in the following form: 

  
     

                      
  (7) 

The term ( 
    

  
) in Eq. (6), which describes the dependence of the overall diffusion coefficient on 

concentration, was obtained, keeping in mind the substitution    , from Eq. (7) in the following 

form: 
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( 
    

  
)  

   

√  
                               

 (8) 

In order to assess the improvement of the description of the transient permeation kinetics, we also 

computed diffusion coefficients using the plain Fick’s second law [52] 

  

  
  

   

    . (9) 

The boundary conditions, for Eqs. (6) and (9), were computed from Eq. (7). For the numerical 

computation, Python programming language and its libraries included in the scientific package 

Anaconda [53] were used. Space discretization of Eq. (6) was performed using linear finite element 

method on one dimensional mesh with non-equidistant spacing, which corresponded to Chebyshev 

nodes. Time discretization was performed using Sundials’ solver IDA from the Python package 

Assimulo [54]. Finally, the model was fitted to the transient permeation data using the Nelder-Mead 

method and subsequently refined by the least-squares method, both from lmfit package [55].  

When compared, Eq. (6) described all kinetic curves better than Eq. (9), as can be seen from Figure 4, 

Table A.1 and A.2. Moreover, the advanced diffusion model provided a more realistic non-linear 

steady state concentration profile (see Figure 10), in comparison with the classic Fickian behaviour. In 

fact, the concave tendency of non-linear steady state can possibly describe the inner swelling 

phenomena. 
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Figure 4 – Example of fitted experimental data (PIM-EA-TB, MeOH 20%, day 2) using Eq. (6) and Eq. (9) (upper plot) and the 
residuals between the experimental data and Eq. (6) and Eq. (9), respectively (lower plot). Adjusted R

2
 are 0.998 for Eq. (6) 

and 0.989 for Eq. (9). 

2.5 Sorption experiment 

In order to assess the diffusion coefficient of Eq. (6), it was necessary to obtain coefficients of Eq. (7). 

The activity of MeOH vapors was estimated by the following equation. 

  
 

    ⁄  (10) 

For PIM-1, the coefficients were found in the literature [7]. Those for PIM-EA-TB were calculated 

from the experimentally determined sorption isotherm, which was measured using the same 

gravimetric apparatus and at the same conditions as in the literature [7]. Hence, we only state the 

resulting sorption plot (see Figure 5 and Table A.3) and the coefficients of Eq. (7)    = 0.237 ± 0.008 

g/g,   = 23.7 ± 2.4,   = 0.628 ± 0.018. The sorption experiments were conducted within the course of 

8 days, no changes of sorption uptake imposed by aging were observed by means of re-measuring 
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the point at   = 0.2, see Fig. 5. Similar time-invariability of sorption isotherms was also reported for 

PIM-1 [7, 56]. 

 

Figure 5 – Sorption isotherm of MeOH in PIM-EA-TB at 25°C. The experimental data (dots) were fitted with GAB model 
(solid line) Eq. (7). 

3 Results and discussion 

3.1 Chemical vs. physical aging 

Aging of PIM-1 membrane, which was simulated by the thermal treatment (for more information see 

section 2.2), was studied using ATR-FTIR spectroscopy. Average spectra from two measurements of 

the membrane exposed to 25°C and to 125°C showed no distinguishable spectral differences in the 

chemical composition of the “new” membrane (presented by the temperature 25°C) and the “old” 

membrane (presented by the temperature 125°C).  

 

A similar comparison was made also for a PIM-EA-TB membrane, where the average spectra (of the 

membrane exposed to 25°C and to 125°C) showed no distinguishable differences between the two 

spectra as well. For more details see the spectra in Supporting information (Figures S1 and S2). 

 

 

The ATR-FTIR spectroscopy showed no distinguishable chemical changes between the new and the 

old membrane for both PIM-1 and PIM-EA-TB. Thus, it can be concluded that the physical aging, 

which is undetectable using IR spectroscopy, largely dominates the aging process in PIMs. Hence, in 

this work, the theoretical treatment of aging is focused only on the physical aging phenomenon. 
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3.2 Permeability and diffusivity decline 

3.2.1 Aging in the momentary and continuous mode 

During the continuous mode of measurement, strong declines of MeOH permeabilities were 

observed for both studied membranes (see Figure 6). PIM-1 exhibited lower initial permeability, but 

aged more slowly in comparison with PIM-EA-TB. More specifically, the parameter    of Eq. (2) was 

roughly two times higher for PIM-EA-TB than for PIM-1 (see Table 2). This observation coheres with 

that observed in the literature [57]. The authors proposed an explanation that materials with stiffer 

polymer chains (PIM-EA-TB has stiffer chains than PIM-1 [5]) have higher initial permeability but age 

faster. 

For both polymers, it was possible to clearly distinguish three stages of the diffusion process (see 

lower plot of Figure 6). In the first stage, ranging from the beginning to 0.6 hours, the transitional 

diffusion process took place. In this time range, diffusion started and reached steady state. In the 

second stage, ranging from 0.6 to 2 hours, the diffusion was in a normal steady state. In the last and 

longest stage, which started at about 2 hours, the long-term aging phenomenon occurred. In the log-

log plot (lower plot of Figure 6), one can see that the aging slowly accelerated and reached steady 

exponential decrease at about 100 hours. Such aging should reach, according to Eq. (2), the 

permeability of 0 Barrer in infinite time. 
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Figure 6 – Continuous aging experiments for PIM-1 and PIM-EA-TB membranes (MeOH activity 0.2, 25 °C) in linear (upper 
plot) and log-log (lower plot) scale. Both plots show the same data. Dashed lines are fitted using Eq. (2) 

During the momentary mode of measurement, we observed a strong decline in transport properties 

that was very similar to that seen in the continuous mode (see Figure 7). However, for PIM-1 

membrane, the momentary experiments departed from the exponential trend and stabilized at 

about 1000 hours (see upper plot in Figure 7). Moreover, such a disproportion was also noticeable 

for some other points (namely at 99, 267, 314, 795 and 2835 hours, see the encircled points in the 

upper plot of Figure 7), which appeared above the curve of continuous experiment. These 

experiments were carried out after a longer interval between the two consecutive measurements 

(   ) than the other experiments (see Table A.1).  

For PIM-EA-TB, the difference between the continuous and momentary mode was even more 

pronounced (see lower plot in Figure 7). These observations for both membranes indicate a negative 

dependence of aging on    ; i.e. the longer the     is, the slower the aging is. 
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Figure 7 – Relative comparison of momentary (points) and continuous (line) experiments for PIM-1 (upper plot) and PIM-
EA-TB (lower plot) membrane (MeOH activity 0.2). Permeabilities (left axis) were evaluated using Eq. (5) and diffusivities 

(right axis) using Eq. (6). The continuous measurements were adjusted to match the momentary data using Eq. (13) with  = 

0.925 for PIM-1 and  = 0.372 for PIM-EA-TB. 

In conclusion, from our observations it follows that the process of physical aging of polymers with 

intrinsic microporosity is faster in the continuous than in the momentary mode.   

3.2.2 [37][37][58][59]Aging related to decline in diffusion coefficient 

The third aim of this study was to look at the internal cause of aging. In other words, at the question 

of whether the decline in permeability ( ) is caused by the decline of diffusion coefficient ( ) or of 

sorption coefficient ( ) or both. In Figure 7, the permeability and diffusivity coefficients appear to be 

very well correlated. This is also confirmed by a numerical evaluation of the correlation coefficient ( ) 

between permeability and diffusivity. For PIM-1,   reached 0.973 and for PIM-EA-TB 0.961. In both 

cases, strong outliers were omitted (see the crossed values in Tables A.1 and A.2) and diffusion 
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coefficients obtained from Eq. (6) were used. Such a correlation supports the possibility that the 

decline in permeability could be caused only by the decline in diffusion coefficient. 

This finding was supported by fitting Eq. (2) to the experimental data obtained during momentary 

experiments as well as by the repeatability of sorption tests (section 2.5). The fit was carried out for 

both the permeability and the diffusion coefficients. The resulting parameters    are stated in Table 

2. 

Table 2 – Parameters    of Eq. (2) evaluated for diffusion and permeability coefficients for both tested membranes. 

   (permeability, 

continuous) 

  (permeability, 

momentary) 

  (diffusivity, 

momentary) 

PIM-1 0.152 0.136 0.128 

PIM-EA-TB 0.312 0.205 0.198 

From Table 2, one can see, that the rate of aging (parameter   ) of permeability in momentary mode 

almost equals that of diffusivity; hence, we reach the same conclusion as in the previous paragraph: 

drop of permeability is governed only by the drop of diffusion coefficient. 

Moreover, this conclusion was supported by the good reproducibility of the first and the last sorption 

point (see Figure 5 and Table A.3), which was re-measured at the same vapor activity after 193 hours 

of aging and rendered the same sorption uptakes (i.e. constant sorption coefficient). Constant 

sorption uptakes over more than 1000 days were also observed by other authors and a study on that 

topic is being prepared [56]. 

3.2.3 Prediction of permeability 

For the prediction of continuous permeability data from the momentary experimental data, the 

procedure of Joshi et al. [37, 38] was used. Concretely, the approach used in the study of Joshi et al. 

consists of several steps. The experimental data obtained in momentary mode are transformed to 

the effective time domain   using the following equation 

   
       

   

   
, (11) 

where   is the actual time of an experiment,    is the aging time (time since the last rejuvenation) 

and   is double log shift rate 

   
    

       
 (12) 

as defined by Eq. (3) in [36], where   denotes mobility of polymeric chains and    has the same 

meaning as in Eq. (11). Thanks to this transformation, one can see the steady-state parts of each 
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momentary experiment no matter the length of experimental time nor the aging time (cf. upper and 

lower plot in Figure 8).  

 

 

Figure 8 – Momentary data of PIM-1 with respect to aging time    (upper plot) and transformed into the effective time 
domain   (lower plot). 

After the transformation of permeability data into the effective time domain    it is possible to 

vertically shift the permeability signal using the following equation 

      . (13) 

The parameters   and   should be adjusted in such a way that the steady-state parts of consecutive 

momentary experiments lie on one smooth curve (so-called master curve). These adjustments are 

carried out in log-log coordinates. Subsequently, the master curve is used for the predictions of 

continuous permeabilities by the transformation from the effective time domain back to normal time 

using the following equation 
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  [          
   ]

 
   ⁄ ,  (14) 

where    is substituted with an aging time, from which we want to predict the continuous 

behaviour. For more details of this procedure see the literature [37, 38]. In this work, for the 

momentary experimental data obtained, the optimal value of parameter   was found to be −15 for 

both studied membranes. The parameters   differed for each permeability experiment and are 

stated in Table A.1 for PIM-1 and Table A.2 for PIM-EA-TB. 

If       is substituted into Eq. (12), an interesting paradox arises. With   lesser then 0, the 

mobility   should increase as the polymer ages. This is in stark contrast with the theory of Struik, 

who states that with decreasing free volume the mobility should decrease over time [36]. A possible 

explanation to that observation could be in the different nature of processes observed in this work 

and by Struik. Struik observed creep compliance, which generally increases over the measurement 

time and decreases over aging time. However, permeability decreases over both the measurement 

time as well as the aging time. This could explain the opposite sign of   than is expected from the Eq. 

(12) and not violate the assumption that   decreases over aging time. Generally, this could imply 

that permeability of any glassy polymer decreases faster in the continuous mode than in the 

momentary mode. 

This procedure led to a very good agreement between the predicted (black solid line) and 

experimental (red solid line) continuous behaviour (see Figure 9).  
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Figure 9 – Comparison of momentary experiments (grey dots), transformed momentary experiments (grey lines), predicted 
continuous experiments (black lines) and measured continuous experiments (red lines) for PIM-1 (upper plot) and PIM-EA-
TB (lower plot). 

The value of the parameter   corresponds to the different regimes of aging. Values of   equal to zero 

mean that there is no aging,   being between zero and unity means the so called “sub-aging” [37],   

equal to unity mean regular aging, and values of   greater than unity mean so called “hyper-aging” 

[37]. All of these values also mean that the continuous mode is beneficial for the material; i.e. aging 

is slower under continuous loading than under repeated momentary loadings. However, in the case 

of permeation, the trend seems to be quite the opposite. Thus, the opposite (negative) value of   can 

be justified. The very high absolute value of   indicates high sensitivity to the length of    . 

Further evidence favouring the idea of some dependence of aging rate on    , was found in a 

correlation between   and    . For PIM-1, the correlation coefficient reached −0.470 and for PIM-

EA-TB −0.555. In both cases, strong outliers were omitted (see the crossed values in Tables A.1 and 

A.2). This means the higher    , the more it was necessary to vertically adjust experimental curves. 
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As the last indication that aging in the continuous mode is faster than in the momentary mode, we 

compared the parameters    of Eq. (2). For both tested membranes,    reached higher values (faster 

aging) in the continuous mode (see Table 2) than in the momentary mode. Numerically, the aging 

was accelerated by ca. 1.3 times in the continuous mode. 

The effect of continuous mode on permeation could be explained by the permanent presence of 

penetrant itself. MeOH readily swells both PIM-1 [58] and PIM-EA-TB [6]. In the swollen state, the 

polymer chains are probably much more mobile; thus, it is easier for them to move towards their 

equilibrium (aged) conformation. However, this is in strong contrast with the rejuvenation capability 

of the MeOH treatment [59]. This discrepancy could be caused by the difference in activities of 

MeOH. During the MeOH treatment, the membrane is immersed in liquid MeOH (a = 1), while during 

our permeation experiments the activity was around 0.2 on the upstream side of the membrane and 

decreased with the decreasing concentration throughout the membrane (see Figure 10). Thus, MeOH 

could probably not swell the polymer structure enough and only helped the polymer chains to reach 

more packed conformation.  

  

Figure 10 – Computed concentration profiles throughout the membranes in steady state. The computation was performed 
for MeOH using Eq. (9) (dashed line) and Eq. (6) (solid line), upstream activity 0.2, downstream activity 0.0, thickness 147 

m, and D = 4.0 10
−12

 m
2
/s. 

As the parameter   is negative, the predicted continuous data describe shorter time interval than the 

original momentary data.  Although this fact makes this procedure unusable for extrapolation, it is 

invaluable for the transformation of experimental data obtained in the momentary mode to 

continuous mode. 
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In order to extrapolate the experimental data in continuous mode, we used Eq. (2)  (see Figure 11). 

Using the fitted parameters (see Table 2), we computed the time at which the aging could be 

neglected (loss of permeability less than 1% per week). For PIM-1, this occurs after 102 days and for 

PIM-EA-TB after 214 days. The expected permeability at these times were 4.5·104 Barrer for PIM-1 

and 2.0·104 Barrer for PIM-EA-TB. In comparison with the maximum permeability, this means a loss 

of the initial permeability of 55% for PIM-1 and of 80% for PIM-EA-TB. 

 

 

Figure 11 – Prediction of permeability decline using Eq. (2) in linear (upper plot) and log-log (lower plot) scale. The solid line 
represents the experimental behaviour and the dashed line the predicted behaviour. Both plots show the same data. 

4 Conclusion 

For the first time, we provide an evidence that aging of both PIM-1 and PIM-EA-TB is mostly of a 

physical nature. Using the theory from analogical rheological studies, we show that the aging in 

continuous mode of permeability measurement was faster than in the momentary mode. This was 

probably caused by the permanent presence of MeOH inside the tested membrane during the 



23 
 

continuous measurement, thus causing an additional contribution to aging. In this case, MeOH seems 

to increase the mobility of polymeric chains, allowing them to pack more rapidly. In general, our 

findings show that all aging measurements should be carried out with special care and preferably in 

the continuous mode of measurement or, at least, in such a way that it is possible to predict the 

continuous, industrially interesting, behaviour. From the very high correlation coefficients between 

diffusion and permeation coefficients, we suggest that the aging process of PIMs is predominately 

influenced by the decrease of diffusion coefficient. This could possibly be caused by the decrease of 

the mobility of polymer chains over time. The less mobile chains then block the penetrants path and 

thus lower the diffusion coefficient, while the sorption capacity stay at the same level. After all, the 

determined findings can improve the knowledge of the aging phenomenon in the glassy high free 

volume polymers and contribute to the improvement of aging predictions for PIMs and potentially 

for other glassy polymers. 
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A Appendix 

A.1 Derivation of thermodynamic Fick’s law 

In this section, the background of thermodynamic Fick’s diffusion flux based on irreversible 

thermodynamics [60] is revealed. The starting point is the rate of entropy production per unit 

volume. For an isothermal, isobaric process in the absence of an external force field, the rate of one-

dimensional entropy production due to diffusion is given by 

 (
  

  
)
   

        (15) 
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where      is the molar diffusion flux with respect to the molar average reference velocity and 

     ⁄   is the chemical potential gradient, which may be interpreted as the driving force for 

diffusion. In the case of thermodynamic Fick’s diffusion flux, a linear relationship between total flux 

and driving force is postulated as follows 

 

 (
  

  
)
   

         (16) 

where   is a coefficient measuring the mobility of the diffusing molecules. Since the chemical 

potential and the activity of substance in the polymer are related by             , equation 

(16) can be rewritten as follows  

        
    

  

  

  
 

where      ⁄  is the thermodynamic diffusion coefficient. If the diffusing substance has a 

constant value of density and the system meets the Amagat’s law, then the amount of penetrant can 

be expressed by the volume fraction instead of molar concentration, hence 

        ( 
    

  
)

  

  
 (17) 

A.2 Methanol treatment 

To the best of our knowledge, the removal of residual solvent (chloroform) was studied only for PIM-

EA-TB (see the literature [6]). Hence, in order to have a complete picture, we provide transmission IR 

spectra of as-cast and MeOH treated PIM-1 membrane. 

The most intensive vibration modes characteristic for chloroform are usually at ca. 3020, 1216, 760 

and 670 cm-1. In the spectrum of PIM-1 as-cast we observed these bands at 3026, 757 and 669 cm-1 

(grey spectrum in Figure A.1). In an average spectrum of a membrane after the MeOH treatment, 

chloroform bands were reduced (for details see Figure A.1). The bands at 3026 and 669 cm-1 were 

minimized completely and the width of the band at 757 cm-1 decreased because of the 

disappearance of chloroform.  This indicates very strong, if not complete, removal of the residual 

solvent. 
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Figure A.1 – Comparison of cut-offs of IR transmission spectra of as-cast (grey line) and MeOH treated (black line) PIM-1 
membrane. 

A.3 Transport coefficients 

Table A.1 – Permeabilities and diffusivities of momentary experiments (MeOH activity 0.2) on PIM-1. The data are shown in 
Figure 7 (upper). The crossed out values were not included in correlations. 

tw (h) 
P (104 
Barrer) 


Eq. (13) 

D Eq. (9) 
(10-12 m2/s) 

adj. R2 
Eq. (9) 

  Eq. (6) 
(10-12 m2/s) 

adj. R2 
Eq. (6) 

3 9.8 1.00 16.2 0.997 13.7 0.991 

27 8.4 0.97 13.7 0.998 11.6 0.993 

99 7.8 0.89 12.1 0.986 10.2 0.978 

125 6.7 0.99 11.8 0.997 9.9 0.992 

146 6.6 0.98 11.3 0.997 9.5 0.991 

194 6.4 0.95 11.2 0.999 9.3 0.995 

267 6.3 0.93 10.1 0.986 8.6 0.979 

314 5.9 0.94 9.5 0.991 8.0 0.984 

362 5.4 1.02 9.7 0.992 8.1 0.987 

438 5.4 1.01 9.4 0.997 7.9 0.992 

458 5.2 1.04 9.2 0.997 7.7 0.990 

484 5.1 1.05 9.2 0.998 7.7 0.992 

531 5.4 0.98 8.7 0.997 7.3 0.992 

603 5.1 1.00 8.8 0.997 7.3 0.991 

795 5.1 0.95 8.3 0.995 6.9 0.988 

939 4.7 0.99 8.2 0.993 6.9 0.986 

1179 4.6 0.98 8.4 0.998 7.0 0.992 

1275 4.7 0.95 8.1 0.996 6.8 0.992 
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2835 4.6 0.85 7.9 0.998 6.6 0.992 
 

Table A.2 – Permeabilities and diffusivities of momentary experiments (MeOH activity 0.2) on PIM-EA-TB. The data are 
shown in Figure 7 (lower). The crossed out values were not included in correlations. 

tw (h) 
P 
(104 Barrer) 


Eq. (13) 

D Eq. (9) 
(10-12 m2/s) 

adj. R2 
Eq. (9) 

  Eq. (6) 
(10-12 m2/s) 

adj. R2 
Eq. (6) 

27 3.3 1.00 5.3 0.989 3.9 0.998 

31 3.0 1.08 5.0 0.988 3.7 0.998 

52 2.9 1.02 4.1 0.991 3.0 0.999 

55 2.8 1.04 4.5 0.991 3.3 0.999 

123 2.6 0.95 3.9 0.992 2.8 0.999 

147 2.7 0.87 3.9 0.989 2.9 0.999 

172 2.4 0.92 3.9 0.991 2.8 0.999 

196 2.3 0.91 3.7 0.992 2.6 0.999 

220 2.4 0.88 3.4 0.993 2.6 0.999 

292 2.3 0.84 3.6 0.987 2.6 0.998 

315 2.0 0.94 3.3 0.993 2.4 0.999 

339 2.2 0.85 3.3 0.992 2.3 0.998 

362 2.1 0.87 3.1 0.995 2.3 0.999 

391 2.0 0.87 3.0 0.995 2.2 0.999 

459 2.0 0.85 3.2 0.991 2.3 0.999 

483 1.9 0.87 3.2 0.991 2.3 0.999 

508 1.7 0.94 3.0 0.992 2.2 0.998 

530 1.9 0.87 3.2 0.990 2.2 0.999 

555 1.8 0.87 2.9 0.996 2.1 0.999 

628 1.8 0.83 2.9 0.994 2.1 0.998 

653 1.8 0.84 2.8 0.993 2.0 0.998 

677 1.6 0.90 2.7 0.996 1.9 0.998 

700 1.6 0.91 2.7 0.997 1.9 0.996 

725 1.6 0.91 2.6 0.996 1.9 0.998 

795 1.7 0.84 2.7 0.996 2.0 0.999 

819 1.6 0.88 2.5 0.994 1.8 0.998 

3 13.3 0.32 9.6 1.000 7.7 0.996 

 

A.4 Sorption data 

Table A.3 – Sorption of MeOH in PIM-EA-TB. 

tw (h) 
p/psat 
(-) 

w 
(-) 

3 0.198 0.173 
7 0.147 0.153 

26 0.053 0.103 
31 0.098 0.132 
51 0.310 0.199 
74 0.418 0.224 

147 0.634 0.272 
171 0.802 0.316 
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175 0.879 0.338 
196 0.202 0.175 

 

 

 

 

Highlights 

 For the first time, we show continuous aging experiments 

 PIM-1 and PIM-EA-TB undergo mostly physical aging, no chemical changes were detected 

 Aging rate is the highest for permeation operated continuously 

 Aging is driven by the decrease in diffusion coefficient 

 Aging during the continuous permeation was successfully predicted from momentary 

experiments 
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