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Abstract We introduce a density regression model for
the spectral density of a bivariate extreme value distri-
bution, that allows us to assess how extremal depend-
ence can change over a covariate. Inference is performed
through a double kernel estimator, which can be seen as
an extension of the Nadaraya–Watson estimator where
the usual scalar responses are replaced by mean-
-constrained densities on the unit interval. Numerical ex-
periments with the methods illustrate their resilience in
a variety of contexts of practical interest. An extreme
temperature dataset is used to illustrate our methods.

Keywords Bivariate extremes values · Nonstationary
extremal dependence structures · Spectral density ·
Statistics of extremes

1 Introduction

Extreme values play a key role in environmental research
and risk assessment (see for instance Wang et al., 2014;
Fernández-Ponce and Rodŕıguez-Griñolo, 2015; Hainy et
al., 2016). Modeling nonstationarity in marginal distri-
butions has been the focus of much recent literature in
applied extreme value modelling. The simplest approach
was popularized long ago by Davison and Smith (1990),
and it is based on indexing the location and scale para-
meters of the generalized extreme value distribution by
a predictor, say by considering

G(µ
x

,�
x

,⇠)(y) = exp[�{1 + ⇠(y � µx)/�x}�1/⇠
+ ]. (1)
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See also Coles (2001, Ch. 6), Chavez-Demoulin and Dav-
ison (2005), Eastoe and Tawn (2009), and Chavez-Demoulin
et al. (2015), for related approaches.

In areas such as environmental impact assessment or
financial risk management, one is often concerned in as-
sessing how extreme outcomes of two or more variables
are related, and the mathematical basis for such mod-
eling is that of statistics of bivariate extremes. In such
contexts, extremal dependence is often interpreted as a
synonym of risk, and when modeling bivariate extremes
we are naturally led to the bivariate extreme value dis-
tribution. It is well known that the bivariate extreme
value distribution, depends on an infinite-dimensional
parameter (H) (Coles, 2001, Thm 8.1), and it can be
written as

GH(y1, y2) = exp

⇢
� 2

Z 1

0
max

✓
w

y1
,
1� w

y2

◆
dH(w)

�
,

(2)

for y1, y2 > 0, where H is the so-called spectral distri-
bution function, which is a distribution function on the
unit interval obeying the moment constraint
Z 1

0
w dH(w) =

1

2
. (3)

Roughly speaking, the more mass H puts close to 1/2
the higher the level of extremal dependence, whereas the
more mass H puts close to 0 and 1 the more independent
the extremes are. Since the object of interest in bivariate
extremes is intrinsically nonparametric, nonparametric
methods have become a natural tool for estimation. A
survey on nonparametric estimation of extremal depend-
ence can be found in Kiriliouk et al. (2015).

And how to model ‘nonstationary bivariate extremes’
if one must? Surprisingly, by comparison to the mar-
ginal case, approaches to modelling nonstationarity in
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the extremal dependence structure have received relat-
ively little attention. However, in many settings of ap-
plied interest, it seems natural to regard risk from a
covariate-adjusted viewpoint, allowing for extremal de-
pendence to increase/decrease according to a covariate.
But to develop ideas of covariate-adjusted risk using stat-
istics of bivariate extremes we need to allow for non-
stationary extremal dependence structures, so to assess
the dynamics governing extremal dependence of pairs of
variables of interest.

In this paper we discuss methods for modeling non-
stationary extremal dependence structures. Our approach
can be regarded as an analogue to the bivariate set-
ting of the Davison–Smith approach in (1), and it is
based on indexing the parameter of the bivariate extreme
value distribution (H) with a covariate, i.e. considering
{Hx : x 2 X ⇢ R}, and taking

GH
x

(y1, y2) = exp

⇢
�2

Z 1

0
max

✓
w

y1
,
1� w

y2

◆
dHx(w)

�
,

(4)

for y1, y2 > 0. Obviously, the Hx—to which we refer
as predictor-dependent spectral measures—will need to
obey the moment constraints (3), for every x, so that
GH

x

is a valid bivariate extreme value distribution.

A main goal of this paper is on modeling families of
spectral densities indexed by a covariate, and we refer
to our approach as a spectral ‘density regression.’ In
terms of estimation, we propose a nonparametric estim-
ator, that has connections with the Nadaraya–Watson
estimator (Nadaraya, 1964; Watson, 1964). While ‘dens-
ity regression,’ could sound like a misnomer, we under-
score that similar terminology has been used on related
topics for referring to contexts where the interest is in
estimating a predictor-dependent family of densities; see
Dunson et al. (2007). A related approach to the one dis-
cussed here has been recently proposed by de Carvalho
and Davison (2014) who introduced a model for the case
where several bivariate extremal distributions are linked
through the action of a covariate. A challenge with their
model is however that inference entails intensive con-
strained optimization problems. In comparison with
de Carvalho and Davison (2014) approach, our model
avoids the need of specifying a tilting function, it allows
for straightforward extrapolation to unobserved covari-
ate values, it allows for estimation of covariate-adjusted
spectral densities (and not only spectral measures), and
it is computationally straightforward. Another related
approach is that of Huser and Genton (2016) who use
nonstationary max-stable dependence structures to de-
velop nonstationary models for spatial extremes in which
covariates can be incorporated.

In Sect. 2 we introduce spectral density regression,
propose a method for inference and estimation, and give
details on computational implementation. A simulation
study is conducted in Sect. 3, while an application to ex-
treme forest temperatures is given in Sect. 4. Section 5 of-
fers conclusions. Online supplementary materials include
additional empirical reports.

2 Spectral density regression model

2.1 Bivariate statistics of extremes and K-sample
setting

Let {(Yi,1, Yi,2)}Ni=1 be a sequence of independent identic-
ally distributed random vectors with unit Fréchet mar-
ginal distributions, F1(y) = F2(y) = exp(�1/y), for
y > 0. The underlying theory for modeling bivariate
extremes is based in the so-called Pickands’ (1981) rep-
resentation theorem, a convergence result which provides
the limiting distribution of the componentwise standard-
ized maximum,

(M1,N ,M2,N ) = N�1

✓
max

i=1,...,N
{Yi,1}, max

i=1,...,N
{Yi,2}

◆
.

Pickands (1981) established that

P (M1,N 6 y1,M2,N 6 y2) ! GH(y1, y2), (5)

as N ! 1, where y1, y2 > 0, provided the limit exists
and is non-degenerate; see also Coles (2001, Thm 8.1).
HereGH is the bivariate extreme value distribution defined
in (2) and is in one to one correspondence with H, the
spectral distribution function that is mean-constrained
according to (3). The spectral measure H provides rel-
evant information on extremal dependence, and can be
used to describe the extremal dependence structure of
the random vector (Y1, Y2). This can be understood
through a pseudo-polar transformation, where we map
(Y1,1, Y1,2), . . . , (YN,1, YN,2), to pseudo-angular and ra-
dial variates

(Wi, Ri) =

✓
Yi,1

Yi,1 + Yi,2
, Yi,1 + Yi,2

◆
, i = 1, . . . , N.

de Haan and Resnick (1977) showed that Wi has meas-
ure H on [0, 1] conditional on Ri ! 1. If W and R

are general terms of the sequence {(Wi, Ri)}Ni=1, the lat-
ter result tells us that when the radius R is large, the
pseudo-angle W is approximately distributed according
to H, and approximately independent of R. The lim-
iting cases of the distribution H are given by asymp-
totic independence, whereby all mass is placed at the
boundaries of [0, 1], giving GH(y1, y2) = exp{�(y�1

1 +
y�1
2 )}, and by complete dependence, whereby all mass is
placed at the centre of the interval, yielding GH(y1, y2) =
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exp{�max
�
y�1
1 , y�1

2

�
}. We refer to situations where H

has mass away from the vertices as asymptotic depend-
ence, and this will be the framework of our modeling.
Throughout we assume that H is absolutely continuous
with spectral density h(w) = dH(w)/dw.

Given a sample {(Y1,1, Y1,2), . . . , (YN,1, YN,2)}, we may
construct proxies for the unobservable pseudo-angles Wi

by setting

(Wi, Ri) =

✓ bYi,1

bYi,1 + bYi,2

, bYi,1 + bYi,2

◆
, i = 1, . . . , N.

where

bYi,1 = �1/{log bF1(Yi,1)}, bYi,2 = �1/{log bF2(Yi,2)},

and where bF1 and bF2 are estimators of the marginal dis-
tribution functions F1 and F2. A robust choice for bF1

and bF2 is the pair of univariate empirical distribution
functions, normalized by N + 1 rather than by N to
avoid division by zero. For a high enough threshold u,
the collection of angles {Wi : i 2 IN}, where IN = {i =
1, . . . , N : Ri > u}, can be regarded as an approximate
sample from the spectral measure H. Parametric or non-
parametric inference on H may then be based upon the
sample {Wi : i 2 IN}.

Similarly to de Carvalho and Davison (2011, 2014),
below we work under the so-called K-sample setting for

bivariate extremes. Indeed, our applied setting of interest
in Sect. 4 is one where the raw data consists of

{(Y1,1,k, Y1,2,k), . . . , (YN
k

,1,k, YN
k

,2,k)}, k = 1, . . . ,K,

plus a covariate xk. Applying similar principles as dis-
cussed above, the collection of angles wk = {Wi,k : i 2
IN

k

}, where IN
k

= {i = 1, . . . , Nk : Ri,k > uk}, can
be regarded as an approximate sample of nk = |IN

k

|
pseudo-angles from the spectral measure corresponding
to the kth population, Hk, for k = 1, . . . ,K. Thus, in
the K-sample setting for bivariate extremes, data are of
the type {(xk,wk)}Kk=1. Throughout, we assume that Hk

is absolutely continuous with spectral density hk(w) =
dHk(w)/dw. The combined sample size is denoted by
n = n1 + · · ·+ nK .

2.2 Predictor-dependent spectral measures

Formally, {Fx : x 2 X} is a set of predictor-dependent
(henceforth pd) probability measures if the Fx are prob-
ability measures indexed by a covariate x 2 X ✓ R.
Analogously, we say that the family

{Hx : x 2 X}

is a set of pd spectral measures if
Z 1

0
dHx(w) = 1,

Z 1

0
w dHx(w) =

1

2
, x 2 X. (6)
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Figure 1. (a) Histograms for set of pseudo-angles and (b) in-
terpolated spectral surface. Both figures were generated from
h

x

(w) = �(w;x, x) with x taking values in a grid between 0.85
and 2.

Pd spectral measures allow us to assess how extremal
dependence evolves over a certain covariate x, i.e., they
allow us to model nonstationary extremal dependence
structures; further details on pd spectral measures can
be found in de Carvalho (2016, Sect. 2.3).

SupposeHx is absolutely continuous for all x 2 X. We
define the pd spectral density as hx(w) = dHx(w)/dw,
and following de Carvalho (2016) we refer to the set

{hx(w) : w 2 [0, 1], x 2 X}

as the spectral surface. Spectral surfaces can be read-
ily constructed from parametric models for the spectral
density; see, for instance, Coles (2001, Sect. 8.2.1). Ex-
amples of spectral surfaces can be found in Figs. 1(b), 3,
and 6.

By using pd spectral measures we are essentially in-
dexing the parameter of the bivariate extreme value dis-
tribution (H) with a covariate, and thus the approach in
(4) can be regarded as an analogue of the Davison–Smith
paradigm in (1), but for the bivariate setting.
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In practice we need to obtain estimates which obey
the marginal moment constraint, and which define a dens-
ity on the unit interval, for all x 2 X. It is challenging to
construct nonparametric estimators able to yield valid pd
spectral densities. Indeed, any such estimator, bhx, needs
to obey the moment constraint, i.e.,

R 1
0 wbhx(w) dw =

1/2, for all x 2 X. In the next section we introduce one
such estimator.

2.3 Double kernel estimator

Figure 1 resumes key ideas underlying the construction
of our estimator. Figure 1(a) shows histograms for sets
of pseudo-angles generated from hx(w) = �(w;x, x) with
x taking values in a grid between 0.85 and 2. For each
value of x in the grid (xk), we would like to estimate
the associated spectral density, and then interpolate for
unobserved values of x, as shown in Fig. 1(b).

Suppose that we have a method to compute ehk, the
spectral density estimates at every xk; in Fig. 1(a) ehk

would correspond to the histogram estimates, but for
reasons that will become obvious below we will not work
with these estimates. Estimation of the pd spectral dens-
ity on the basis of data available on theK-sample setting,
{(xk,wk)}Kk=1, entails two challenges:

1. Although we want to estimate hx at every x 2 X, we
only have data at x1, . . . , xK .

2. We need to impose to bhx and ehk the corresponding
moment constraints.

To estimate the spectral surface, hx, we propose the es-
timator

bhx(w) =

PK
k=1 Kb(x� xk)ehk(w)PK

k=1 Kb(x� xk)
, (7)

for w 2 (0, 1), where Kb is a kernel density estimator
and b > 0 is a bandwidth parameter controling smooth-
ing in the x-direction. The estimator in (7) is similar to
the well-known Nadaraya–Watson estimator (Nadaraya,
1964; Watson, 1964), but here—contrary to the usual
nonparametric regression setting—the responses are spec-
tral densities, and hence infinite-dimensional objects; fur-
ther details on kernel regression can be found in Wand
and Jones (1994, Ch. 5). If the spectral density estimates
at every xk are such that
Z 1

0

ehk(w) dw = 1,

Z 1

0
wehk(w) dw = 1/2,

for k = 1, . . . ,K, then
Z 1

0

bhx(w) dw =

PK
k=1 Kb(x� xk)

R 1
0
ehk(w) dw

PK
k=1 Kb(x� xk)

= 1,

Z 1

0
wbhx(w) dw =

PK
k=1 Kb(x� xk)

R 1
0 wehk(w) dw

PK
k=1 Kb(x� xk)

= 1/2,

for all x 2 X. Put di↵erently, valid spectral surfaces can
be obtained from our estimator in (7) if at every xk we es-
timate a valid spectral density, ehk, i.e. a density on [0, 1]
obeying the moment constraint; an histogram estimate
ehk would not however obey the moment constraint, and
would lead to a nonsmooth estimate. To ensure that each
spectral density estimate, ehk, obeys the normalization
and marginal moment constraints, we use the smooth
Euclidean likelihood estimator (de Carvalho et al., 2013),
which for a sample of nk pseudo-angles is defined as

ehk(w) =
n
kX

i=1

epi,k�(w;Wi,k⌫, (1�Wi,k)⌫), (8)

for w 2 (0, 1), where

epi,k =
1

nk
{1� (W k � 1/2)S�2

k (Wi,k �W k)}, (9)

for i = 1, . . . , nk and k = 1, . . . ,K. Here, � denotes the
Beta density and W k and S2

k denote the sample mean
and sample variance of W1,k, . . . ,

Wn
k

,k, that is,

W k =
1

nk

n
kX

i=1

Wi,k, S2
k =

1

nk

n
kX

i=1

(Wi,k �W k)
2.

The parameter ⌫ > 0 in (8) is a concentration parameter,
responsible for controlling the amount of smoothing, in
the w-direction. A method for parameter selection using
cross-validation is discussed in Sect. 2.4. The estimator
in (9) can be understood as an empirical likelihood-based
kernel density estimator (Chen, 1997); the weights in
(9) di↵er from the usual 1/nk appearing in kernel dens-
ity estimation, as they are obtained through an empir-
ical likelihood-based method, in order to produce estim-
ates which obey the moment constraint. Specifically, the
epi,k in (9) are Euclidean likelihood weights (Owen, 2001,
pp. 63–66), i.e., are the solution to the optimization prob-
lem

max
p

k

2Rn

k

� 1
2

Pn
k

i=1(nk pi,k � 1)2

s.t.
Pn

k

i=1 pi,k = 1Pn
k

i=1 Wi,kpi,k = 1/2.

(10)

Finally, our estimator in (7) can be rewritten as a double
kernel estimator

b
h

x

(w) =

P
K

k=1

P
n

k

i=1 epi,kKb

(x� x

k

)�(w;W
i,k

⌫, (1�W

i,k

)⌫)
P

K

k=1 Kb

(x� x

k

)
.

(11)

Next we provide details on practical aspects and com-
puting.
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Figure 2. True (left) cross sections of the spectral surface and corresponding estimates (right) from the symmetric (top) and
asymmetric (bottom) Dirichlet predictor-dependent models, for K = 20 values of the predictor and Configuration 1.

2.4 Details on implementation

We select the tuning parameters via leave-one-out cross-
validation for each parameter separately. Specifically, for
the concentration parameter ⌫ we choose

⌫? = argmin
⌫>0

KX

k=1

n
kX

i=1

� log{eh�i(Wi,k)}, (12)

where

eh�i(w) =
X

j 6=i

epj,k�(w;Wj,k⌫, (1�Wj,k⌫)),

whilst for the bandwidth b we select

b? = argmin
b>0

Z 1

0

KX

k=1

{ehk(w)� bh�k(w)}2dw, (13)

with

bh�k(w) =

P
j 6=k Kb(xj � xk)ehj(w)P

j 6=k Kb(xj � xk)
.

In principle, Kb should be a symmetric and unimodal
density. While there are many kernel functions that verify
these basic requirements, it is well known that the choice

of the kernel has little impact on the corresponding es-
timators; see Wand and Jones (1994, Ch. 2) and refer-
ences therein. In practice, we use a normal kernel.

Next, we give computational details on how to im-
plement the double kernel estimator using ksmooth from
the R package stats (R Core Team, 2014).

Pseudocode for double kernel estimator

1. Compute ⌫? and b? using optim according to (12)
and (13), respectively.

2. Construct a grid {wj}Jj=1 2 (0, 1) and compute
ehk(wj) according to (8).

3. for j = 1, . . . , J , do:
Compute bhx(wj) using ksmooth with data

{(xk,ehk(wj))}Kk=1.
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True spectral surface
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Figure 3. On the top: true spectral surface from the symmetric Dirichlet predictor-dependent model detailed in Sect. 3.1, followed
by spectral surface estimates for Configurations 1 (above) and 2 (below).

3 Simulation study

3.1 Models, configurations, and preliminary
experiments

We construct samples of pseudo-angles {wk}Kk=1 from
the Dirichlet spectral surface, a covariate-adjusted ex-
tension of the Dirichlet model (Coles and Tawn, 1991),
based on the pd spectral density

hx(w) =
axbx� (ax + bx + 1)(axw)ax

�1{bx(1� w)}bx�1

2� (ax)� (bx){axw + bx(1� w)}ax

+b
x

+1
.

(14)

Here ax : X 7! (0,1), bx : X 7! (0,1), and � (t) =R1
0 xt�1e�x dx. The values of the parameters in (14) are
chosen to produce two scenarios: a symmetric Dirich-
let spectral surface with (ax, bx) = (x, x), where x 2
XsDir = [1.5, 4]; an asymmetric Dirichlet spectral surface
with (ax, bx) = (x, 100), where x 2 XaDir 2 [0.9, 4]. For
each of the two scenarios, we consider K 2 {20, 50, 100},
and for every K, the values for {nk}Kk=1 are chosen as
follows:

– Configuration 1: nk = 50 for k = 1, . . . ,K.
– Configuration 2: nk = 500 for k = 1, . . . ,K.

This gives rise to six di↵erent simulation schemes for each
of the two predictor-dependent models.
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Cross sections of symmetric Dirichlet spectral surface
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Cross sections of asymmetric Dirichlet spectral surface
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Figure 4. Trajectories of 100 randomly selected estimates of
cross sections of the spectral surface (gray lines), using K =
100 and Configuration 1, as well as their corresponding true
values (solid line) and Monte Carlo means (dashed line).

We start with a single-run experiment. Figure 2 shows
true and estimated spectral densities from the symmet-
ric (top) and asymmetric (bottom) Dirichlet models de-
scribed above, for K = 20 values of the predictor and
Configuration 1. Spectral density estimates were com-
puted using the smooth Euclidean estimator in (8). If
Kb is chosen as a normal kernel with standard deviation
b, and if we smooth over all the predictor space using
the double kernel estimator for both configurations and
K 2 {20, 50, 100}, we obtain what is shown in Fig. 3.
Figure 3 corresponds to the symmetric Dirichlet spec-
tral surface, where extremal dependence increases as a
function of the predictor. The analogue of Fig. 3 for the
asymmetric Dirichlet spectral surface is displayed in the
Supplementary Materials.

The single-run experiment in Figure 3 allows us to il-
lustrate strengths and limitations of the double kernel es-
timator. Pointwise estimation is troublesome at the edge
of the predictor space, due to boundary bias of Kb which
is well-known issue for many kernel-based estimators on
bounded domains (Hardle, 1990, Sect. 4.4, and references
therein). The double kernel estimator seems to have more
di�culties estimating the asymmetric spectral surface,
probably due to the need to recover a more complicated
surface. In spite of these limitations, our estimator recov-
ers satisfactorily the shape of the true spectral surface,

and thus is able to reproduce satisfactorily the evolution
of extremal dependence over the predictor. Another in-
teresting aspect is that the performance of the estimator
seems to be more sensitive to changes in nk (the number
of pseudo-angles for every value of the predictor) rather
than changes in K (the number of predictor values).

3.2 Simulation results

Cross sections of the spectral surface give rise to (valid)
spectral densities. To assess the precision of the estimates
of such cross sections, we display in Fig. 4 trajectories
of 100 estimates of these cross sections along with their
Monte Carlo means, for K = 100 and Configuration 1
detailed above. These trajectories allow us to illustrate
the performance of our estimator under di↵erent depend-
ence dynamics. The top panel of Fig. 4 displays the res-
ults for the symmetric Dirichlet spectral densities, where
we can see the limitations due to boundary bias that
were discussed in Sect. 3.1, mostly for x = 3. The same
plot shows that extremal dependence is underestimated
by the simulations, whereas it is slightly overestimated
for x = 2. The asymmetric Dirichlet spectral densities,
presented in the bottom panel of Figure 4, display less
dispersed estimates than their symmetric counterparts,
and the asymmetry does not seem to be a major issue.
All in all, the estimator shows a positive performance in
recovering the di↵erent shapes of the cross sections of
the spectral surfaces, and Monte Carlo means produce
reasonable estimates.

Table 1. Mean integrated absolute error estimates of the
spectral surface computed over 1000 samples for the data-
generating configurations discussed in Sect. 3.1.

Model Conf. K = 20 K = 50 K = 100

Symmetric 1 0.287 0.279 0.260
Dirichlet 2 0.219 0.131 0.129

Asymmetric 1 0.499 0.438 0.416
Dirichlet 2 0.221 0.182 0.168

In Table 1 we present the mean integrated absolute
error computed from 1000 samples for the data-
generating configurations discussed in Sect. 3.1. Results
are coherent with what we already anticipated from the
single-run experiment in Fig. 3; under the same config-
uration for K, increasing the number of pseudo-angles
yields great improvements in the performance of the es-
timator. On the other hand, if we fix the number of
pseudo-angles and increase K, gains are not as signific-
ant. Overall, simulations confirm that the double kernel
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estimator produces reasonable estimates of the spectral
surface. Monte Carlo mean spectral surfaces are reported
in the Supplementary Materials.

4 Extreme forest temperature illustration

4.1 Data description and preprocessing

The data were gathered from the Long-term Forest Eco-
system Research database maintained by LWF (Lang-
fristige Waldökosystem-Forschung), and consist of daily
average air temperatures under the forest canopy and in
a nearby open field at 14 monitoring stations in Switzer-
land. At each site, data are recorded at two meteorolo-
gical stations close to each other and with comparable
topographic characteristics (Ferrez et al., 2011, p. 3),
one under the forest cover and one in an open field; the
sample period ranges 1997 to 2007. The location and
altitude (above sea level) of the monitoring stations is
detailed in Table 2. Our aim is to assess the dynamics
governing dependence between extremely high temper-
atures in the open and under the canopy as a function
of the altitude, and this is motivated by previous exper-
iments conducted by Ferrez et al. (2011, p. 999), who
suggested that extremal dependence between temperat-
ures under the canopy and in the open field could be
linked to altitude. The raw data consist of two series
of air temperature per site, measured in circular metal
shelters two meters above ground every 10 minutes. The
number of observations di↵er from one station to the
other, but comprise a total of 38.923 observations.

We use the same preprocessing steps as in Ferrez et al.
(2011); in particular, we take daily maxima of the resid-
ual series resulting from removal of the annual cycle in
both location and scale, i.e., we subtract a periodic mean
and divide by a periodic standard deviation. Following
Section 2.2, after transforming the bivariate sample at
each station to unit Fréchet margins, we threshold the
pseudo-radius (Ri,k) at the 98% empirical quantile (uk)
of each population, reducing the initial 38.923 observa-
tions to a total of 785 pseudo-angles. The number of
pseudo-angles for each station (nk) is detailed in Table 2.

4.2 Altitude-adjusted extremal dependence

We first estimate extremal dependence of temperatures
in the open and under the canopy in every site. Fig-
ure 5 shows spectral density estimates using the smooth
Euclidean likelihood estimator in (8). As it can be ob-
served in Fig. 5, di↵erent levels of extremal dependence
seem to be observed over di↵erent altitudes. Particu-
larly, altitudes between 1400 m and 1650 m present more

Table 2. Locations of monitoring stations, along with the cor-
responding number of pseudo-angles and altitude.

Location nk Altitude (m)

Beatenberg 57 1500
Bettlachstock 54 1150
Celerina 53 1890
Chironico 45 1350
Isone 45 1200
Jussy 62 500
Lausanne 63 800
Nationalpark 59 1900
Neunkirch 41 600
Novaggio 65 950
Othmarsingen 57 490
Schänis 58 750
Visp 64 700
Vordemwald 61 480

dispersion—as can be seen for example in the spectral
density estimate corresponding to Beatenberg—but, in
general, strong dependence of extreme temperatures is
noted in all sites. One could wonder whether there could
be something particularly di↵erent about the features of
Beatenberg compared to those of Chironico (1350 m) and
Celerina (1890 m). Beatenberg, Chironico, and Celerina
have similar slopes (from 33–35), equal soil types (Pod-
zolic), and a similar management system (high forest)
(Ferrez et al., 2011, Table 2). Beatenberg and Chironico
are also mainly composed of the same species (Spruces),
while Celerina is mainly composed of Larch and Arolla
Pine. Thus, while other important characteristics—beyond
altitude—could be driving the shape of the spectral dens-
ities in Fig. 5, from the point of view of the character-
istics above Beatenberg is similar to Chironico and not
that di↵erent from Celerina.

In Fig. 6 we present the spectral surface estimate
computed through our double kernel estimator in (11).
In a similar way that a regression line provides a graph-
ical summary of the association between response and
covariate, the spectral surface provides a graphical sum-
mary of the association between extremal dependence
and a covariate. All in all, we see substantial changes in
the extremal behavior, and it is not possible to identify a
pattern that indicates a monotone evolution of extremal
dependence. Indeed, extremal dependence seems to de-
crease with altitude (for moderate altitudes), and then
to increase again on higher altitudes, but to levels of ex-
tremal dependence which are lower than those for mod-
erate altitudes. Our spectral surface in Fig. 6 provides
evidence reasonably compatible with the findings in Fer-
rez et al. (2011, p. 1000) who claim that:
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Figure 5. Spectral density estimates using the smoothed Euclidean likelihood estimator in (8) in increasing order of altitude.
The associated pseudo-angles are plotted using a rug at the bottom of every plot.

“Thus at high altitudes [...] extreme maximum tem-
peratures under cover depend less on those in the open
than at lower altitudes, indicating that the forest cover
sheltering e↵ect seems to be more e�cient at higher
altitudes.”

Similarly to Ferrez et al. (2011), we have however no
physical interpretation on the reason justifying these dy-
namics. Without Beatenberg we would recover similar

dynamics to those in Ferrez et al. (2011) but the kink in
Fig. 6 would be gone (results available from the authors).

In agreement with Fig. 5, the spectral surface in Fig. 6
also reveals strong dependence for almost all altitudes,
with the exception of values between and 1400 m and
1650 m, where we can see more dispersion and con-
sequently a decrease in the extremal dependence. In ad-
dition to this, the spectral surface in Fig. 6 provides a
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Figure 6. Spectral surface estimate using the double kernel
estimator in (11); pseudo-angles are overlaid on the bottom of
the box.

more complete portrait of ‘altitude-adjusted’ extremal
dependence of these temperature data, than the spec-
tral density estimates in Fig. 5, and for example it al-
lows us to extrapolate into unobserved altitudes. Still,
other covariates, beyond altitude, could be playing a
role on determining the shapes of the spectral densit-
ies in Fig. 5—and thus the expression ‘altitude-adjusted’
should be here interpreted with this in mind.

5 Final remarks

We propose a density regression model that allows us
to assess the changes in the extremal dependence struc-
ture over the values of a discrete predictor. This is a
first step to tackle the gap between the developments in
non-stationary marginal distributions and bivariate dis-
tributions. We perform inference by introducing a non-
parametric double kernel estimator that smooths in two
steps: first in the pseudo-angles direction using the Euc-
lidean likelihood estimator of de Carvalho et al. (2013),
and then in the covariate direction through an approach
similar to the Nadaraya–Watson estimator, but where re-
sponses are spectral density estimates. Extensions can be
found in Castro (2015). This paper treats the bivariate
case only. While smoothing along covariates should work
similarly as in the bivariate setting—in the sense that an
analog of Eq. (7) can still be of use in the D-dimensional
setting—a resilient extension of the smooth Euclidean
likelihood estimator of de Carvalho et al. (2013) to the
D-dimensional setting is nontrivial and it requires fur-
ther investigation.

Our model is related to the spectral density ratio
model of de Carvalho and Davison (2014) in the sense
that covariates can be incorporated, but rather than just
linking extremal distributions, our model assesses dir-
ectly the evolution of extremal dependence over a pre-
dictor. Furthermore, implementation of our estimator is
straightforward, and inference is computationally con-
venient.

We illustrate our methods in a temperature data ap-
plication where altitude is considered a variable of in-
terest. Results suggest an impact of the altitude on the
extremal dependence of temperatures under the forest
and on a open field, illustrating the need to consider
covariate-adjusted extreme value dependence structures.
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