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SUMMARY	
  

Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a 

group of abundant genetic sequences that significantly impact on mammalian development 

and genome regulation. In recent years, our understanding of how pre-existing TEs affect 

genome architecture, gene regulatory networks and protein function during mammalian 

embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in 

selected cell types has been shown to generate genetic variation during development and in 

fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs 

appears to provide a rich source of regulatory elements, functional modules and genetic 

variation that fuels the evolution of mammalian developmental processes. Here, we review 

the functional impact that TEs exert on mammalian developmental processes and how the 

somatic activity of TEs can influence gene regulatory networks.	
  

 

KEY WORDS: Retrotransposon; endogenous retrovirus; LINE-1; genome regulation; genetic 
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Introduction	
  

Genomes are the habitat in which genes reside, and their complexity is an indication 

of the number of biological processes that are required during the life of an organism. 

Comparative genomic studies have revealed that the proportion of the genome occupied by 

genes decreases as biological complexity increases (Boeke and Devine, 1998). Intriguingly, 

the opposite is observed for transposable elements (TEs) (Boeke and Devine, 1998), which 

are pieces of DNA that can move within genomes. Copies of these elements are typically 

interspersed throughout the genomes of most organisms examined to date. Up to 70% of the 

human genome is derived from TEs (de Koning et al., 2011), while genes occupy less than 

2% (Lander et al., 2001). These data imply that there has been a significant activity of TEs 

during evolution but that most of the genetic changes caused by TEs are not detrimental. 

Rather, the high percentage of TE-derived sequences in mammalian genomes could indicate 

their inherent potential to create and diversify biological processes, as proposed 60 years 

ago by McClintock, Britten and Davidson (Britten and Davidson, 1969; McClintock, 1956). 

The proposal that TEs have a present day function in host genomes to provide cis-regulatory 

elements that co-ordinate the expression of groups of genes (Britten and Davidson, 1969) is 

starting to be tested on a genome-wide scale with the advent of next generation sequencing. 

Furthermore, recent findings showing that TEs mobilize much more frequently in 

development than previously anticipated suggest that these sequences may have additional 

present-day functions in host genomes (recently reviewed in (Hancks and Kazazian, 2016; 

Munoz-Lopez et al., 2016; Richardson et al., 2015)). 

In this Review, we cover the functional impact that TEs exert on gene regulatory 

networks operating during mammalian embryogenesis but also in somatic adult tissues. We 

also review some of the recent evidence outlining the myriad of ways that TEs can further 

increase functional variability in mammalian genomes, which may shed some light on why 

these elements have become so abundant in mammalian genomes.	
  

 



4	
  	
  

Types of TEs in the mammalian genome	
  

There are several classes of TEs (Fig. 1) that vary with regards to their structure, 

impact and regulation in mammalian genomes (as reviewed in (Hancks and Kazazian, 2016; 

Munoz-Lopez et al., 2016; Richardson et al., 2015)). These include DNA transposons as well 

as retrotransposons, which can be further sub-divided into long terminal repeat (LTR) 

retrotransposons and non-LTR retrotransposons (Hancks and Kazazian, 2016; Munoz-Lopez 

et al., 2016; Richardson et al., 2015).  

Briefly, approximately 3% of a typical mammalian genome is made of DNA 

transposons (Lander et al., 2001; Waterston et al., 2002). However, with the exception of 

some bat species, DNA transposons no longer mobilize in mammals (Mitra et al., 2013; Ray 

et al., 2007). In contrast, LTR retrotransposons and non-LTR retrotransposons comprise 

more than 40% of a typical mammalian genome and are still active in most mammalian 

species (Hancks and Kazazian, 2016; Lander et al., 2001; Richardson et al., 2015). LTR 

retrotransposons are similar to retroviruses in terms of their structure and mechanism of 

retrotransposition (Fig. 2A) and are hence often called endogenous retroviruses (ERVs; 

reviewed in (Mager and Stoye, 2015)). Full-length ERVs are flanked by LTRs that promote 

the transcription and maturation of ERV RNAs, and they also contain functional Gag and Pol 

genes, which encode structural proteins and enzymes involved in retrotransposition. 

However, ERVs often lack a functional Env gene, which encodes the envelope protein that 

retroviruses typically use to exit cells (Lee and Bieniasz, 2007). Furthermore, recombination 

between LTRs occurs frequently, deleting the intervening internal ERV sequence and 

generating solo LTRs (Belshaw et al., 2007). The mobilization of active ERVs involves an 

RNA intermediate and a copy-and-paste mechanism that is similar to the initial steps of 

retroviral infection (Fig. 2A). ERV mobilization in mice is responsible for nearly 10% of 

spontaneous mutations in this species; by contrast, ERVs generally no longer mobilise in 

humans (Mager and Stoye, 2015; Maksakova et al., 2006). However, recent reports have 

identified polymorphic HERV-K insertions in humans ((Wildschutte et al., 2016), reviewed in 

(Hohn et al., 2013)) suggesting recent mobilisation activity and the possibility that some 
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HERV-K copies might retain capability to mobilize in present day humans. Hundreds of 

different types of ERVs are present in a typical mammalian genome, some of which are 

autonomous and encode the functional retroviral proteins required for their mobilization (Fig. 

2A), while others are non-autonomous and rely on retroviral proteins encoded by active 

ERVs to mobilize (Mager and Stoye, 2015; Maksakova et al., 2006). Notably, two types of 

ERVs – IAP elements and MusD/ETn - appear to be the most active ERVs in mice and their 

activity can vary among inbred mouse strains (Maksakova et al., 2006).	
  

Mammalian non-LTR retrotransposons are exemplified by long interspersed element 

class 1 (LINE-1 or L1) retrotransposons, which are the only active autonomous 

retrotransposons in the human genome (Hancks and Kazazian, 2016; Munoz-Lopez et al., 

2016; Richardson et al., 2015). LINE-1 retrotransposons make up 17% of the human 

genome and, although most LINE-1s are molecular fossils that have lost their ability to move, 

80-100 LINE-1 copies retain retrotransposition potential (Beck et al., 2010; Brouha et al., 

2003). In mice, LINE-1 elements comprise a similar fraction of the genome to humans 

(Waterston et al., 2002) but a few thousand LINE-1 elements may retain the capacity to 

retrotranspose (reviewed in (Richardson et al., 2015)). Mammalian genomes also contain 

numerous short interspersed element (SINE) non-LTR retrotransposons, exemplified by Alu 

and SVA (SINE-VNTR-Alus) in the human genome (Lander et al., 2001). SINEs are non-

autonomous retrotransposons that use LINE-1 proteins in trans to mobilise (Dewannieux et 

al., 2003; Dewannieux and Heidmann, 2005; Hancks et al., 2011; Raiz et al., 2011). Non-

LTR retrotransposons also move by a copy-and-paste mechanism (Fig. 2B), but one that is 

fundamentally different from that used by LTR-retrotransposons (Richardson et al., 2015). 

Notably, active LINE-1 elements code for two protein products termed Open Reading Frame 

(ORF) 1 and ORF2 that are strictly required for LINE-1 mobilization (Moran et al., 1996). 

While ORF1 encodes an RNA binding protein with nucleic acid chaperone activity (Hohjoh 

and Singer, 1997; Martin and Bushman, 2001), ORF2 codes for a protein with endonuclease 

and reverse transcriptase activity (Feng et al., 1996; Mathias et al., 1991) (Figs. 1 and 2).	
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The regulation of TE activity in the mammalian genome	
  

The activity of TEs is tightly regulated in mammals to control the number of 

insertions accumulated in genomes (Hancks and Kazazian, 2016; Munoz-Lopez et al., 2016; 

Richardson et al., 2015). Mechanisms that restrict TE expression and mobilization are likely 

to be particularly important in germ cells, as well as in the pluripotent cells in early embryos 

that act as germ cell precursors, as new TE insertions in these cells can potentially be 

transmitted to the next generation and increase TE copy number during evolution (Crichton 

et al., 2014). However, the differential activity of these restriction mechanisms in different cell 

types can influence the ability of TEs to impact gene regulatory networks. Given that these 

topic have been extensively reviewed recently (Goodier, 2016; Hancks and Kazazian, 2016; 

Heras et al., 2014; Munoz-Lopez et al., 2016; Pizarro and Cristofari, 2016; Richardson et al., 

2015), below we provide just an overview of some of the main mechanisms used to control 

TE activity.  

 

Transcriptional repression of TEs  

Transcriptional repression is a major mechanism of defense against 

retrotransposons. In mice, the transcriptional regulation of LINE-1 and ERVs is dynamic 

during development, and different mechanisms contribute to the repression of these TEs in 

different cell types. Histone modifications and DNA methylation, for example, both play 

important roles, although the relative importance of each of these mechanisms may depend 

on both the TE and the cell type (Crichton et al., 2014; Gerdes et al., 2016; Rowe and Trono, 

2011; Schlesinger and Goff, 2015). DNA methylation plays a role in repressing both mouse 

and human LINE-1 elements, and some mouse ERVs including IAP elements (Bourc'his and 

Bestor, 2004; Karimi et al., 2011; Walsh et al., 1998). Multiple histone modifications, 

including methylation at histones H3K4, H3K9, H2A/H4R3 and H3K27 as well as histone 

acetylation, have also been implicated in TE transcriptional repression (Brunmeir et al., 2010; 

Di Giacomo et al., 2014; Karimi et al., 2011; Kim et al., 2014; Leeb et al., 2010; Macfarlan et 

al., 2011; Matsui et al., 2010; Reichmann et al., 2012). One of the major histone 
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modifications used to repress a large number of TEs in pluripotent mouse embryonic stem 

cells (ESCs) is H3K9me3 (Karimi et al., 2011; Matsui et al., 2010; Rowe et al., 2010). This 

modification is largely deposited at TE sequences by the histone methyltransferase Setdb1, 

which is recruited to TEs by Krüppel-associated box-containing zinc-finger proteins (KRAB-

ZFPs) and their associated co-repressor KAP1 (Castro-Diaz et al., 2014; Ecco et al., 2016; 

Karimi et al., 2011; Matsui et al., 2010; Rowe et al., 2010; Wolf and Goff, 2009; Wolf et al., 

2015b). KRAB-ZFPs provide the sequence specificity to target repression to TEs, and some 

KRAB-ZFPs that target specific types of TE have been identified (Castro-Diaz et al., 2014; 

Ecco et al., 2016; Wolf and Goff, 2009; Wolf et al., 2015a). However, as a reflection of the 

parasite/host battleground, young and presumably active TEs escape KAP1-mediated 

silencing as KRAB-ZFPs have not yet evolved to target these sequences (Castro-Diaz et al., 

2014; Jacobs et al., 2014). Thus, KAP1 does not control expression of all mammalian TEs 

and alternate mechanisms exist to control the expression of young and active TEs (Castro-

Diaz et al., 2014; Jacobs et al., 2014). Intriguingly, tissue-specific expression of some KRAB-

ZFPs may underlie tissue-specific host gene expression in somatic tissues through their 

effects on TEs (see below) (Ecco et al., 2016).	
  

 

Co-transcriptional repression of TE expression  

In addition to transcriptional repression, splicing has been shown to regulate LINE-1 

mobilization in cultured cell lines and somatic tissues by generating non-functional LINE-1 

transcripts (Belancio et al., 2006; Perepelitsa-Belancio and Deininger, 2003). In addition, 

Microprocessor – a complex that naturally processes structured pre-microRNAs (pre-

miRNAs) to generate miRNAs - can also process LINE-1 and SINE RNAs, thereby reducing 

their retrotransposition activity (Heras et al., 2014; Heras et al., 2013).  

	
  

Post-transcriptional control of TEs  
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A number of viral restriction factors have also been shown to act post-

transcriptionally to regulate the activity of retrotransposons (reviewed in (Goodier, 2016; 

Pizarro and Cristofari, 2016)). Some factors such as RNaseL (Zhang et al., 2014), SAMHD1 

(Zhao et al., 2013), hnRNPL and nucleolin (Peddigari et al., 2013), MOV10 (Goodier et al., 

2012), UPF1 (Taylor et al., 2013), Pin1 (Cook et al., 2015) and ZAP (Goodier et al., 2015) 

has been implicated in post-transcriptionally regulating TE RNAs or post-translationally 

modifying TE proteins. Others including SAMHD1 (Zhao et al., 2013) and PCNA (Taylor et 

al., 2013) have been implicated in modulating reverse transcription. Finally, APOBEC 

proteins (Richardson et al., 2014b; Schumann, 2007) and PCNA (Taylor et al., 2013) have 

been shown to interfere with later steps of the retrotransposition cycle. We speculate that the 

pattern of expression of TE-restriction mechanisms may impact human biology, as this will 

establish a level of TE activity in different cell types. Furthermore, the use of proteomics has 

resulted in a list of host factors that interact with LINE-1 and may regulate its 

retrotransposition (Goodier et al., 2013; Moldovan and Moran, 2015; Taylor et al., 2013). 

However, the role of most of these identified LINE-1 interactors remains to be determined 

and future studies will help to understand the dynamic interaction between TEs and cellular 

host factors.	
  

 

TEs can impact developmental processes via various mechanisms	
  

When expressed, TEs can affect developmental processes either via their gene 

products, which can influence the behavior of host cells, or through new insertions that cause 

genetic changes in the host genome (Fig. 3). Not surprisingly, therefore, the dysregulated 

expression of TEs has been linked with defects in various developmental processes in mice, 

including aberrant proliferation of male germ cells (Galli et al., 2005), defects in oogenesis 

(Malki et al., 2014; Su et al., 2012), disruption of homologous chromosome synapsis during 

meiosis (reviewed in (Crichton et al., 2014; Ollinger et al., 2010)), activation of the unfolded 

protein response during differentiation of B lymphocytes (Pasquarella et al., 2016), and 

inappropriate activation of innate immune responses (Herquel et al., 2013; Stetson et al., 
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2008). On the other hand, new TE insertions into genes can act as insertional mutagens in 

mammalian genomes and interfere with gene function (Fig. 3, reviewed in (Hancks and 

Kazazian, 2016; Heras et al., 2014; Munoz-Lopez et al., 2016; Pizarro and Cristofari, 2016; 

Richardson et al., 2015)). Such insertions can, for example, introduce actively transcribing 

promoters into genes and cause transcriptional interference. They can also induce premature 

termination of transcription via the incorporation of TE-derived polyadenylation sites 

(Perepelitsa-Belancio and Deininger, 2003). In addition, inefficient transcriptional elongation 

through the AT-rich LINE-1 sequence can modulate gene expression levels (Han et al., 

2004). TE insertions can also introduce TE-derived splice acceptor or donor sites that alter 

splicing, generating non-functional or nonsense transcripts (Belancio et al., 2006) (Fig. 3A), 

or can be incorporated into mRNAs and introduce frameshifts or premature termination 

codons (Fig. 3A). However, it should be noted that many of these mechanisms can also 

potentially confer new properties and functions to a host gene rather than simply inactivate it 

(Fig. 3B-D). Below, we examine how the present day functions of TEs can affect 

developmental genes and processes in mammals. 

 

TEs as promoters that drive the transcription of host genes 	
  

TEs contain transcription factor binding sites that promote transcription by RNA 

polymerase II (in the case of DNA transposons, ERVs, LINE-1s, primate SVAs and even 

SINEs (Lai et al., 2009)) or RNA polymerase III (in the case of short SINEs such as human 

Alu, and murine B1 and B2). As such, if a TE integrates into or near host genes, its 

promoters can drive the expression of novel transcripts that encompass part of the coding 

region (Fig. 3B-D). The co-option of TE-derived sequences as gene promoters can allow a 

gene to be expressed in new cell types or contexts (Fig. 3B, D) and can generate truncated 

or extended protein products, potentially allowing host genes to acquire new functions (Fig. 

3B-D). Indeed, LTR sequences frequently act as promoters for host genes (Cohen et al., 

2009). One example of a TE-derived promoter generating a cell-type specific isoform of a 

host gene with novel properties is mouse Dicer1 (Flemr et al., 2013). Dicer1 encodes an 
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RNA endonuclease that generates small regulatory RNAs during oogenesis and in other cell 

types. However, due to an intragenic insertion of an MT-C ERV retrotransposon, a truncated 

form of mouse Dicer1 is expressed specifically in oocytes. This truncated ERV-driven form of 

Dicer1, which is essential for oogenesis, lacks a potentially autoinhibitory helicase domain 

present in the N-terminal region of the full-length protein and is more enzymatically active 

than full-length Dicer1 (Flemr et al., 2013). Many genes in mouse oocytes and zygotes are 

similarly expressed from ERV insertions acting as promoters for nearby genes (Peaston et 

al., 2004), including Gata4 and Tead4, which encode key transcription factors that drive the 

specification of primitive endoderm and trophectoderm, respectively (Macfarlan et al., 2012). 

It will be of interest to investigate if there are additional examples in which co-option of ERV 

promoters modifies the function of host genes in cells. Interestingly, the expression of 

selected TE-derived transcripts can be used to track cell types during development and 

possibly also in adult tissues (see Box 1).	
  

ERVs are also able to drive host gene expression in differentiating somatic tissues. 

Transcription of Bglap3, which encodes an osteocalcin-related protein, originates from a 

nearby IAP element in mouse ESCs and in some differentiated somatic tissues (Ecco et al., 

2016). The regulation of Bglap3 expression depends on the activity of a KRAB-ZFP that 

targets KAP1 and H3K9me3 repressive histone modifications to this IAP element, and 

conditional deletion of either the KRAB-ZFP or KAP1 post-natally in the liver results in 

transcriptional activation of Bglap3 in a tissue where it is normally repressed (Ecco et al., 

2016). In sum, the developmental regulation of KRAB-ZFPs, and potentially other regulators 

of TE expression, can therefore impact on host gene expression via the regulation of ERVs 

in embryonic development but also in fully differentiated somatic tissues. Furthermore, some 

ERVs appear to acquire epigenetic silencing marks early in development that maintain their 

repression even when KRAB-ZFPs or the KAP1 co-repressor is deleted later in differentiating 

tissues (Rowe et al., 2013; Rowe et al., 2010; Wolf et al., 2015a).  

Variable epigenetic silencing of ERV-derived alternative promoters in somatic tissues 

can also contribute to the regulation of host genes. This mechanism is exemplified by the 
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mouse Agouti gene. Agouti encodes a signaling molecule that is expressed in hair follicles 

and inhibits the Mc1r melanocortin receptor in melanocytes (Voisey and van Daal, 2002). 

During the hair growth cycle, a burst of Agouti expression causes melanocytes to change the 

type of melanin they produce from black eumelanin to yellow phaeomelanin, resulting in a 

sub-apical yellow band on an otherwise black hair (Blewitt and Whitelaw, 2013). A naturally 

occurring mouse mutant exhibiting an insertion of an IAP element immediately 5' and 

antisense to the first coding exon of Agouti produces mice with yellow coats. A cryptic 

antisense promoter in this IAP element drives constitutive expression of functional Agouti 

transcripts in these mutants (Michaud et al., 1994), but variable DNA methylation of this IAP 

element between individuals means that these genetically identical mice display a continuous 

spectrum of coat colour phenotypes from yellow to agouti. Offspring arising from yellow 

mothers, but not yellow fathers, are more likely to have yellow coats suggesting that there 

can be some trans-generational inheritance of the epigenetic state of this IAP insertion 

(Morgan et al., 1999). Thus, mechanisms that regulate ERV expression are able to impact on 

ERV promoter-driven host gene expression and the development of somatic tissues.	
  

SINE and LINE-1 TEs can also act as alternative promoters to drive the expression 

of host genes (Fig. 3B,D). SINE elements typically contain an internal RNA polymerase III 

promoter that transcribes these elements, but some also carry an active RNA polymerase II 

promoter that drives transcription in an anti-sense orientation (Lai et al., 2009). Transcripts 

originating from the anti-sense RNA polymerase II promoter in these elements can drive the 

expression of nearby host genes (Ferrigno et al., 2001). Full-length LINE-1s contain 

conserved sense and an anti-sense promoters (Speek, 2001; Swergold, 1990), and recent 

studies have shown that the anti-sense promoter in primate LINE-1 drives the expression of 

a trans-acting polypeptide, ORF0, that can stimulate LINE-1 mobilization in trans (Fig. 3D) 

(Denli et al., 2015). For some host genes, the majority of their transcripts in induced 

pluripotent stem cells (iPSCs) originate from a nearby LINE-1 antisense promoter and 

contain ORF0 peptide sequences that can be spliced on to the host-derived protein (Denli et 

al., 2015). 
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The exaptation of TEs as alternative promoters thus appears to be a relatively simple 

way to alter the pattern or level of expression of host genes during development (Fig. 3). 

There are also examples of convergent exaptation of TEs as promoters of specific 

developmental genes. In some mammals, the gene encoding the hormone prolactin is 

expressed in the pituitary gland but is also expressed from an alternative promoter in the 

maternal endometrial decidua during pregnancy, regulating immune cells, angiogenesis and 

invasion of the fetal placenta into maternal tissues (Jabbour and Critchley, 2001). In humans, 

the transcription of decidual prolactin initiates from an upstream MER39 ERV. In contrast, the 

transcription of decidual prolactin in mice originates from a MER77 ERV located further 

upstream, whereas elephants transcribe decidual prolactin from an elephant-specific LINE-1 

insertion (Emera et al., 2012; Emera and Wagner, 2012). Thus, the independent evolution of 

TE-derived prolactin promoters at multiple points in mammalian evolution suggests that TEs 

provide a rich source of transcription factor binding sites that allows host genes to acquire 

expression and function in new cell types and tissues (Fig. 3).	
  

 

TEs as tissue-specific enhancers of host genes	
  

In addition to acting as promoters that drive the expression of alternative isoforms of 

host genes, transcription factor binding sites within TEs can act as host gene enhancers in 

specific tissues or developmental contexts (Fig. 3B, D). Indeed, conserved non-exonic TEs 

in the human genome tend to cluster within 1 Mb of developmental genes and transcriptional 

regulators, suggesting that this may be a common mechanism for TEs to impact mammalian 

development (Lowe et al., 2007). Several examples of TEs acting as enhancers have been 

noted. In trophoblast stem cells, for example, the mouse-specific RLTR13 ERV recruits the 

trophoblast transcription factors Eomes, Cdx2 and Elf5, and appears to act as a trophoblast 

enhancer for around 100 host genes (Chuong et al., 2013). ERV-derived enhancers have 

also been reported in developing primordial germ cells (Liu et al., 2014), and in ESCs 

(Kunarso et al., 2010). TEs, particularly ERVs, are present in 5-25% of the genomic regions 

bound by pluripotency-associated transcription factors OCT4 or NANOG in human and 
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mouse ESCs, and in mouse ESCs ERV elements provide binding sites for the pluripotency-

associated transcription factor SOX2 (Bourque et al., 2008; Kunarso et al., 2010).	
  

Additionally, TEs, especially ERVs, are also able to act as tissue-specific enhancers in the 

innate immune system (Fig. 3B, D), where they act to mediate part of the interferon 

response (see Box 2). 	
  

SINEs are also able to act as enhancers for host genes, particularly during brain 

development. The gene encoding the LIM homeobox transcription factor ISL1, which is 

required for motor neuron development, has a nearby conserved exapted LF-SINE TE 

insertion that can drive gene expression in neural tissues (Bejerano et al., 2006). Similarly, 

AmnSINE1 TE insertions are associated with genes involved in brain development, such as 

FGF8, and act as neural-specific enhancers in transgenic mice (Sasaki et al., 2008). 	
  

DNA transposons, too, can act as enhancers to influence host gene expression and 

contribute to gene regulatory networks in development, even though they no longer mobilize 

in most mammals. The MER130 DNA transposon appears to act as a neocortical enhancer 

for a number of genes involved in neural development including Robo1 and Id4 (Notwell et 

al., 2015). Similarly, DNA transposons are strongly represented amongst the large number of 

TEs that contribute to gene regulatory networks in the mammalian endometrium during 

pregnancy. The MER121 and MER97C DNA transposons are enriched in regions bound by 

activated progesterone receptor in human endometrial cells and appear to contribute to 

progesterone-responses in this tissue (Lynch et al., 2015). 	
  

 

TEs as regulators of chromosome organization	
  

In addition to their more direct roles in regulating host gene expression, TEs can 

influence the organization of mammalian chromosomes. One of the major regulators of 

mammalian chromosome organization is CTCF, which can act as an insulator to block the 

interaction between an enhancer and a promoter, as a barrier to prevent the spreading of 

chromatin domains, and as an anchor that assembles chromatin into loops or domains within 

which regulatory elements can interact (reviewed in (Merkenschlager and Nora, 2016)). In 
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combination with cohesin, CTCF plays an important role in allowing developmental 

enhancers to regulate gene expression, particularly in the context of long-range enhancers 

(Fig. 3D) (Merkenschlager and Odom, 2013). TEs are strongly enriched within regions of 

mammalian genomes that bind CTCF, and in mice B2 SINEs are enriched in these regions 

and carry a CTCF binding motif (Bourque et al., 2008; Schmidt et al., 2012; Sundaram et al., 

2014). One example of a context in which a B2 SINE insertion influences developmental 

gene regulation through effects on chromatin domains occurs during the expression of 

growth hormone (GH) in the developing pituitary (Lunyak et al., 2007). During the early 

stages of pituitary development, when GH is not expressed, a repressive chromatin domain 

extends across the GH locus. However, this domain becomes restricted as pituitary 

development proceeds. A boundary element located upstream of GH marks the edge of the 

chromatin domain, and a B2 SINE TE in this region is both necessary and sufficient for the 

insulating activity that prevents repressive chromatin from extending into the GH domain 

during late pituitary development (Lunyak et al., 2007). The insulating activity of this SINE TE 

requires its RNA polymerase II and RNA polymerase III transcripts, suggesting that 

bidirectional transcription of this element causes a local change in chromatin structure that 

prevents repressive chromatin from spreading across it (Lunyak et al., 2007; Ponicsan et al., 

2010). Notably, additional examples of human and rodent SINEs containing defined 

transcription factor binding sites have been previously documented (Morales-Hernandez et 

al., 2016; Roman et al., 2011). Future research will help to define the full-repertoire of effects 

that TEs can exert on mammalian chromosome organization.   

 

The domestication of TE-derived proteins and processes in development	
  

TEs can also impact on mammalian development through their proteins becoming 

domesticated, i.e. performing functions for the host organism. The human genome contains 

around fifty genes that are probably domesticated TEs (Lander et al., 2001). One developing 

tissue that appears to rely significantly on domesticated TEs is the placenta. Domestication 

of Gag-Pol regions of sushi-ishi-derived ERVs has generated the paternally imprinted Peg10 
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and Peg11 genes that have essential functions in mouse placenta development. Peg10 plays 

a role in the development of the trophectoderm-derived spongiotrophoblast and labyrinth 

layers of the placenta, the latter being the site in which components are exchanged between 

maternal and fetal circulatory systems (Ono et al., 2006), while Peg11 functions in 

extraembryonic mesoderm-derived endothelial cells that line the fetal capillaries of the 

placenta. Domestication of the Env regions of ERVs has also generated genes with essential 

functions for placenta development. The fetal capillaries in the labyrinth are surrounded by 

syncytial trophoblast cells that play an important role in allowing the exchange of 

components of the maternal and foetal circulatory systems. This epithelial layer is formed via 

inter-cellular fusion between trophoblast cells in a process involving proteins known as 

syncytins (Dupressoir et al., 2009; Dupressoir et al., 2011). These syncytins are co-opted 

fusogenic Env proteins derived from ERVs (Blond et al., 2000; Mi et al., 2000). Remarkably, 

mouse, human and rabbits have all independently co-opted Envs from different ERVs to act 

as syncytins, and independent capture of syncytins has occurred at least six times during 

mammalian evolution (Dupressoir et al., 2012). Even marsupials, which have a relatively 

transient placenta that is in contact with the maternal endometrium for a short period of time, 

may have domesticated a fusogenic placentally-expressed ERV Env protein (Cornelis et al., 

2015).	
  

DNA transposons can also undergo domestication, as exemplified by the RAG1 and 

RAG2 genes that have essential functions during development of the adaptive immune 

system (see Box 2). Finally, in what may be a form of domestication, recent data suggests 

that LINE-1 retrotransposons may have a present day function during oogenesis in mice as a 

quality control mechanism that eliminates defective oocytes, suggesting a function for LINE-1 

in regulating the ovarian oocyte pool (Malki et al., 2014). The ovarian oocyte pool gradually 

declines with age, and the size of the oocyte pool at birth is thought to be a major 

determinant of reproductive success in older women. It will therefore be of interest to test if 

LINE-1 plays a similar role in human oogenesis. 	
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Diversification of the mammalian transcriptome by TEs	
  

TEs often insert into introns or untranslated regions of genes, and this can 

sporadically result in the exonization of TEs (Fig. 3B). Indeed, exonized TEs can expand the 

mammalian transcriptome and proteome but can also be used to fine tune gene regulation 

(Piriyapongsa et al., 2007a). The accumulation of TE-derived sequences in cellular mRNAs 

can lead to their differential regulation due to TE control mechanisms targeting these TE-

portions or structures (Heras et al., 2014; Heras et al., 2013).  Notably, several classes of 

TEs have been found inserted within mammalian RNAs (Piriyapongsa et al., 2007a; 

Piriyapongsa et al., 2007b; Zarnack et al., 2013) and it is likely that their presence may 

impact gene regulation and function by providing or interfering with regulatory elements in 

those RNAs (Fig. 3).	
  	
  

Another way that TEs diversify the mammalian transcriptome is by generating long 

non-coding RNAs (lncRNAs) from their promoters (Fig. 3D). Remarkably, almost 2/3 of all 

known human lncRNAs contain TE fragments in their sequences (Kapusta et al., 2013; 

Macia et al., 2011). LncRNAs are more abundant than known genes and are involved in 

multiple biological processes including gene regulation, maintenance of nuclear architecture 

and splicing (Macia et al., 2015; Mercer et al., 2009; Moran et al., 2012). The existence of 

functional lncRNAs was discovered in the early 1990’s, with the characterization of the Xist – 

a lncRNA involved in X chromosome inactivation ((Brown et al., 1992), reviewed in (Moran et 

al., 2012)). This X chromosome-encoded lncRNA is thought to interact with LINE-1 elements 

to bring about X chromosome inactivation in females (Lyon, 2003). LINE-1 elements are 

over-represented on the X chromosome (Lander et al., 2001), and it has been suggested that 

evolutionary older silent LINE-1 elements are involved in assembling a Xist-dependent 

repressive domain on the inactive X chromosome, while evolutionary younger transcribed 

LINE-1 elements help spread this repressive domain into adjacent chromosomal regions 

(Chow et al., 2010). The over-representation of LINE-1s on the X chromosome may therefore 

reflect a present-day function for these sequences in X chromosome inactivation. 
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Intriguingly, despite a lack of sequence conservation, unexpected roles for multiple 

human and mouse TE-derived lncRNAs in regulating pluripotency have also recently been 

described (Fort et al., 2014; Guttman et al., 2011; Lu et al., 2014). Multiple mechanisms may 

be involved, and some of these TE-derived lncRNAs represent transcripts originating from 

ERV elements acting as enhancers or promoters in these cells (Fort et al., 2014). However, 

lncRNAs derived from HERV-H ERVs in human ESCs appear to act in trans via physical 

association with chromatin modifiers (Guttman et al., 2011; Lu et al., 2014; Wang et al., 

2014). Future research will likely reveal how these diverse species-specific TE-derived 

sequences can regulate conserved developmental processes.	
  

TEs can also influence developmental processes in trans through the LINE-1-

dependent generation of processed pseudogenes (Esnault et al., 2000). Although LINE-1 

encoded proteins tend to bind to their encoding mRNA in cis (Esnault et al., 2000; Wei et al., 

2001) (Fig. 2A), they occasionally bind to cellular host mRNAs in trans and catalyze their 

insertion into the genome as processed pseudogenes (Fig. 3C). Over evolution, mammalian 

genomes have accumulated more processed pseudogenes than annotated genes (Zhang et 

al., 2004). Although most inserted processed pseudogenes lack a functional promoter upon 

insertion, a promoter can evolve, be captured by a new TE insertion, or be generated by 

recombination resulting in a new functional gene (Ji et al., 2015) (Fig. 3C). In dogs, the 

expression of a LINE-1-generated pseudogene derived from the FGF4 gene is strongly 

associated with a short-legged phenotype selected in dogs (Parker et al., 2009). Thus, the 

activity of TEs can mediate the duplication and subsequent diversification of key 

developmental regulators. 

Finally, ongoing LINE-1 retrotransposition itself can generate new genes by a 

mechanism termed exon shuffling (Moran et al., 1999). Exon shuffling occurs when an active 

LINE-1 within a gene retrotransposes to a new genomic location and delivers nearby coding 

sequences to the new locus. Indeed, LINE-1-mediated exon shuffling has likely increased the 

repertoire of the human proteome but, due to frequent 5’ truncation during retrotransposition 

(Grimaldi et al., 1984; Kazazian et al., 1988), its overall contribution to the human genome 
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remains elusive. Notably, known examples of LINE-1-exon shuffling generated genes have 

been found in primate species, and include the generation of a new gene product that can 

restrict HIV infection in new world monkeys (Sayah et al., 2004).	
  

 

LINE-1 activity in humans  

LINE-1 elements, which are the only active autonomous retrotransposons in 

humans, are thought to mobilize during at least two different developmental contexts: the 

early embryo and the developing/adult brain (Hancks and Kazazian, 2016; Munoz-Lopez et 

al., 2016; Richardson et al., 2015). By contrast, the expression and mobilization of TEs in 

other somatic cells in humans appears to be low. 

 

Retrotransposition in the early embryo	
  

Studies of transgenic mice carrying engineered human LINE-1 retrotransposition 

reporters suggests that LINE-1 mobilizes in pre-implantation embryos (Kano et al., 2009; 

Muotri et al., 2005). Some of this LINE-1 mobilization could potentially reflect activity in the 

trophectoderm, which gives rise to the extra-embryonic component of the placenta (Fig. 4A). 

Indeed, the placenta has more limited TE restriction mechanisms than other hypomethylated 

cell types (Reichmann et al., 2013), although LINE-1 mobilization in these cell types has not 

been directly assessed. However, at least some of the LINE-1 mobilization in pre-

implantation embryos occurs in the pluripotent epiblast, which gives rise to all embryonic 

tissues (Fig. 4A). Notably, such LINE-1 mobilization in pluripotent cells in pre-implantation 

embryos could result in the new insertion being a mosaic within somatic and germline cells in 

adults.  

LINE-1 is also highly expressed, and new insertions of endogenous LINE-1 and 

LINE-1 reporters can accumulate, in human pluripotent cell lines that mimic some aspects of 

embryonic pluripotent cells (Garcia-Perez et al., 2007; Garcia-Perez et al., 2010; Klawitter et 

al., 2016; Wissing et al., 2011; Wissing et al., 2012). The LINE-1 transcripts expressed in 

pluripotent cell lines represent a restricted subset of the genomic LINE-1 repertoire, 
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suggesting that the surrounding chromatin environment of a LINE-1 locus might contribute to 

local activation of these elements in this cell type (Karimi et al., 2011; Macia et al., 2011; 

Philippe et al., 2016). Notably, the analysis of a new LINE-1 insertion in humans is also 

consistent with mobilization of this element occurring in pluripotent cells early in 

embryogenesis (van den Hurk et al., 2007). However, the frequency and specific timing of 

when retrotransposition takes place in early embryos and during gametogenesis remain to 

be determined.  

 

Retrotransposition in the brain 

Both endogenous and engineered LINE-1s have also been shown to mobilize in the 

mammalian brain (Fig. 4A) (Muotri et al., 2005). Surprisingly, LINE-1 mRNAs are expressed 

in neuronal precursor cells (NPCs) in the mammalian brain and new LINE-1 insertions can 

accumulate in NPCs, at least in mouse models of human LINE-1 retrotransposition and in 

cultured human NPCs (Fig. 4A) (Coufal et al., 2009; Muotri et al., 2005). Notably, a study 

that analyzed LINE-1 expression in fetal NPCs and in other somatic cells (skin) isolated from 

the same donor demonstrated that a subtle change in LINE-1 promoter DNA methylation 

levels in brain cells might explain why LINE-1 mRNAs are expressed selectively in NPCs 

when compared to other tissues such as skin (Fig. 4A) (Coufal et al., 2009). However, the 

availability of transcription factors can also contribute to this phenomenon (Richardson et al., 

2014a; Thomas et al., 2012). 

More recently, the development of next generation DNA sequencing and single cell 

genomics-based studies have allowed researchers to demonstrate that the human brain is in 

fact made of a mosaic of genomes (Baillie et al., 2011; Erwin et al., 2016; Evrony et al., 

2012; Evrony et al., 2015; Upton et al., 2015), although there is an ongoing debate about the 

frequency of retrotransposition in this tissue (Evrony et al., 2016; Richardson et al., 2014a). 

Furthermore, while retrotransposition has been proposed to be ubiquitous in the 

hippocampus of the human brain (Upton et al., 2015), we know little about other brain 

regions or neuronal cell types that may support elevated levels of retrotransposition. 
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Nonetheless, it is clear that the ongoing activity of LINE-1s in the brain could provide a 

mechanism to ensure that no two human brains - even those of identical twins - are 

genetically identical.  

The functional impact of LINE-1 retrotransposition in the brain is less clear 

(Richardson et al., 2014a; Singer et al., 2010). Indeed, it is possible that LINE-1 expression 

and mobilization in the brain could be a consequence of LINE-1 elements having a present 

day function as enhancers or promoters for host genes in this tissue. However, it is possible 

that LINE-1 activity in mammalian brains might be on its way to domestication and that, like 

the domestication of DNA transposons in the immune system, the ability of TEs to increase 

genetic diversity beyond that encoded by the germline genome is providing some benefit to 

the development or function of this highly complex organ. Constructing a map of LINE-1 

expression and retrotransposition in the different human brain areas and cellular types will 

help understand both the magnitude and impact of somatic retrotransposition on brain 

biology.  

LINE-1 retrotransposition in the brain is potentially mutagenic, although de novo 

somatic LINE-1 insertions disrupting brain development or function in patients remains to be 

demonstrated. Recent studies suggest that the ongoing activity of LINE-1s in the healthy 

brain can result in the generation of genomic rearrangements that could delete genomic 

regions proximal to genes, although any functional significance remains to be determined 

(Erwin et al., 2016). Similarly, it remains to be elucidated whether dysregulated LINE-1 

expression or retrotransposition could contribute to brain disorders, although data acquired in 

models of Rett syndrome, Ataxia Telangiectasia and Schizophrenia suggest that 

retrotransposition is indeed associated with these syndrome (Bundo et al., 2014; Coufal et 

al., 2011; Muotri et al., 2010) (reviewed in (Richardson et al., 2014a)).	
  

 

The expression and mobilization of TEs in other somatic human cells	
  

The description of LINE-1 activity in the human brain raises another important 

question: are LINE-1 elements expressed and mobilized in other somatic tissues? Although 
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more research is needed, several studies suggest that the somatic activity of TEs might be 

restricted to the human brain. Notably, in a recent study it was reported that human tissues 

including esophagus, prostate, stomach and heart muscle express relatively low levels of 

LINE-1 mRNAs whereas expression in the adrenal gland, kidney, spleen and cervix was 

below the detection limit (Belancio et al., 2010). Whether part of the expressed LINE-1 

mRNAs corresponds to active retrotransposition-competent LINE-1 mRNAs is unknown. 

More recently, and exploiting the inherent capability of human ESCs to differentiate into 

somatic stem cells, the expression level of human LINE-1s as well as putative engineered 

LINE-1 retrotransposition has been explored in a panel of human somatic stem/progenitor 

cells, including human NPCs, human mesenchymal stem cells (MSCs), hematopoietic stem 

cells (HSCs) and progenitor keratinocytes (Macia et al., 2016) (Fig. 4B). These data suggest 

that NPCs are the only analyzed population of somatic stem/progenitor cells in which LINE-1 

expression levels are significant (Macia et al., 2016). In addition, efficient retrotransposition 

was only detected in NPCs and mature neuronal cells (Macia et al., 2016) (Fig. 4B). These 

data suggest that retrotransposition in human somatic tissues might be restricted to the brain 

(Baillie et al., 2011; Erwin et al., 2016; Evrony et al., 2012; Evrony et al., 2015; Macia et al., 

2016; Upton et al., 2015). However, additional research is required to define if additional 

LINE-1-dependent TEs are also mobilising in the human brain, the extent of that mobilization, 

and to fully understand the phenotypic consequences of TE activity in the human brain.	
  

 

Conclusions	
  

While our understanding of the precise role of TE expression and mobilization during 

human development still remains limited, recent studies have provided key insights into the 

regulation of TEs. Indeed, future studies analysing the impact that the ongoing activity of TEs 

during embryogenesis and in the adult brain exert, in a healthy or disease genetic 

background, will shed light into the unknown functions of TEs in normal mammalian 

development and biology. Recent studies suggest that there are multiple ways in which a TE 

derived sequence, either at the RNA or DNA level, can affect gene regulatory networks and 
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gene function during mammalian development. Thus, these present day functions of TEs 

may underlie their abundance in mammalian genomes by providing a convenient mechanism 

for host genes to evolve new expression patterns and isoforms. In addition, independent 

convergent exaptation of different TEs as developmentally-regulated gene regulatory 

sequences has occurred in multiple mammalian species during evolution, and TE 

domestication has been key in generating a functional placenta. In the future, additional 

genomics and genome-wide epigenetic maps from multiple cell types across multiple 

species, in combination with CRISPR/Cas9-driven functional genomics, will more clearly 

define the role of TEs in mammalian development. 

Notably, the existence of active TEs in mammals implies that the mammalian body is 

a mosaic of gene regulatory networks. On one hand, the mobilization of TEs during early 

embryogenesis results in the generation of mosaic bodies with respect to their TE content. 

Whether this mosaicism impacts on human homeostasis or predisposition to disease is 

currently unknown. Future studies exploiting single-cell genomics and animal models of de-

regulated retrotransposition will clearly help to define the contribution of active TEs to 

mammalian biology and disease. On the other hand, in humans LINE-1 mobilization is not 

equally distributed in the body and seems to be restricted to the brain, suggesting that any 

functional consequences of LINE-1 mobilization are likely impacting on this tissue. The 

somatic activity of LINE-1 generates genetic variation in the human brain and it is possible 

that this activity might be undergoing domestication in mammals. However, many questions 

remain unanswered: can LINE-1s move equally well in all neuronal and glial cell types 

present in a vertebrate brain? Do all vertebrate species contain active TEs in their brains? 

And of course, the most important question in current TE biology: what is the role of the 

somatic activity of TEs in the vertebrate brain? 
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Boxes 

 

Box 1. Using TEs as markers of cell identity or fate 

The expression of individual TEs can be used to distinguish and/or isolate specific cell types 

during development. For example, the knowledge that MERVL ERVs are highly expressed in 

totipotent 2-cell stage mouse zygotes has recently been used to isolate sub-populations of 

ESCs in culture with totipotent rather than pluripotent developmental potential (Macfarlan et 

al., 2012). A similar strategy has been used to show that depletion of the chromatin assembly 

factor CAF1 promotes the generation of 2-cell-like cells from mouse ES cells (Ishiuchi et al., 

2015). Similarly, the transcription of select primate-specific ERVs has also been used to 

isolate populations of naïve-like pluripotent stem cells from human ESCs cultures (Wang et 

al., 2014). It will be of interest to see whether this approach may facilitate the identification of 

other transient or low abundance cell populations in developing tissues. 

	
  

Box 2. TEs in the immune system 

TEs can function as tissue-specific enhancers in the innate immune system, acting to 

mediate the response to interferons, which are pro-inflammatory signalling molecules that 

are secreted in response to infection, inhibit viral replication in nearby cells and activate 

immune cells. Specific TEs are enriched close to genes that are activated by interferon 

(interferon-stimulated genes, ISGs) in human cells (Chuong et al., 2016). One of the most 

enriched TEs, MER41B ERV, contains interferon-inducible binding sites for the STAT1 

transcription factor, which mediates part of the interferon response (Chuong et al., 2016).  A 

MER41B insertion upstream of AIM2, a human ISG, is required for AIM2 expression in 

response to interferon, and deletion of this element impairs the anti-viral response of human 

cell lines (Chuong et al., 2016).  Interestingly, there is no copy of MER41B upstream of AIM2 

in mice, and AIM2 is constitutively expressed rather than interferon-inducible in this species. 

Notably, RLTR30B ERVs in mice also contain interferon-inducible STAT1 binding sites and 
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are enriched near functionally annotated immunity genes in this species (Chuong et al., 

2016). It's possible that the infectious ancestors of these ERVs possessed interferon-

inducible STAT1-binding sites in order to exploit the host's innate immune system to promote 

their own transcription, and that this innovation has now been repeatedly and independently 

co-opted by mammals in order to drive evolution of the innate immune system (Chuong et 

al., 2016).  

Domesticated TEs also play a role in the generation of antibody repertoires during 

development of the adaptive immune system (Teng and Schatz, 2015). The breaking and 

rejoining of DNA molecules that occurs during diversification of antibody genes by V(D)J 

recombination has some similarities to the cut-and-paste mobilization of DNA transposons 

(Melek et al., 1998; Teng and Schatz, 2015; van Gent et al., 1996). Indeed, it has been 

suggested that the RAG1 and RAG2 genes that are required for V(D)J recombination in 

developing lymphocytes were derived nearly 500 million years ago from a Transib 

superfamily DNA transposon (Kapitonov and Jurka, 2005). The domestication of TE-derived 

sequences in this developmental context thus appears to play an important role in increasing 

genetic diversity in this somatic lineage beyond that encoded by the germline genome. 	
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Figure Legends 

 

Figure 1. The structures of key classes of TEs found in mammalian genomes. 

 Different types of TEs (DNA transposons; LINE-1, long interspersed element class 1; SINE, 

short interspersed element; ERV, endogenous retrovirus) found in mammalian genomes are 

represented. The percentage of the human and mouse genomes occupied by each TE is 

indicated in blue. Abbreviations: IR, inverted repeat; UTR, untranslated region; EN, 

endonuclease; RT, reverse transcriptase; LTR, long terminal repeat; ORF, open reading 

frame. 

 

Figure 2. Modes of TE mobilization in mammalian genomes 

(A) The LTR retrotransposition cycle (adapted from (Mager and Stoye, 2015)). The ERV 

RNA is transcribed from the 5’ LTR and transported to the cytoplasm, where Gag and Pol are 

translated and processed into mature proteins including protease, integrase and reverse 

transcriptase (not shown in the figure but see (Mager and Stoye, 2015) for further details). 

These ERV proteins and RNAs are then packaged into a virus-like particle (VLP; blue opal 

surrounded by Gag molecules) and reverse-transcribed (RT) by Pol. The resulting ERV 

dsDNA is then processed by the integrase activity of Pol to generate a pre-integration 

complex (PIC), which is imported to the nucleus. Here, the integrase activity of Pol inserts 

the ERV dsDNA into the genome. New ERV insertions are often flanked by target site 

duplications (blue or green arrowheads). Host factors (HF; pink circles) also participate in 

several steps of the retrotransposition process. (B) The non-LTR retrotransposition cycle 

(adapted from (Macia et al., 2015)). The full-length active LINE-1 RNA is transcribed and 

transported to the cytoplasm where ORF1p and ORF2p are translated (Alisch et al., 2006; 

Dmitriev et al., 2007). These proteins preferentially bind to their encoding mRNA, generating 

a ribonucleoprotein particle (RNP), which is imported into the nucleus. The EN activity of 
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ORF2p generates a single strand (SS) break in genomic DNA that is used by the RT activity 

of ORF2p to generate the first strand cDNA (red arrow). How second strand synthesis occurs 

is not well understood. New LINE-1 insertions are often flanked by TSDs (blue or green 

arrowheads) and are also often 5’-truncated (not shown). As is the case for the LTR 

retrotransposition cycle, host factors (pink circles) are involved in several steps of the non-

LTR retrotransposition process. 

 	
  

Figure 3. The impact of TEs on mammalian genomes.  

(A) Deleterious effects of TE insertions on host gene expression. A cartoon of a host gene 

containing an upstream promoter (black arrow), exons (blue tubes) and introns (grey lines) is 

shown. TEs are inserted in sense or antisense orientations (blue arrows). Red arrows on TEs 

denote promoter sequences. Various RNA transcripts (wavy lines) can be produced, based 

on the location/orientation of the TE and the promoter used. The left side indicate the type of 

mechanism that is responsible for the generation of each type of transcript. Asterisk indicates 

a premature termination codon or frameshift. For full details see main text. (B) De novo TE 

insertions (grey) can impact genes (blue) in various ways. Shown are examples where a new 

TE insertion can act as: i) an enhancer; ii) a TE insertion within the gene body can lead to 

exonization of the TE and this can lead to a new protein product with an alternative function; 

iii) additionally, exonized TE sequences can induce premature termination of translation 

(PTC, premature termination codon); and iv) a full-length TE insertion within the gene can 

generate a shorter gene transcript when the TE promoter is used (new transcript) that could 

have an alternative function. t, denotes evolutionary time. (C) LINE-1 elements can generate 

processed pseudogenes. Shown are a cellular gene (green) and an active LINE-1 (blue). 

Upon transcription (mRNAs, green and blue lines) and translation, the LINE-1 RNP can 

generate a new insertion by conventional cis retrotransposition. However, the cellular RNA 

could be occasionally transferred to the LINE-1 RNP, generating a gene RNP that can be 

inserted into the genome by trans retrotransposition. The potential consequences are 
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indicated below: i) using a nearby promoter (red arrow), a new transcript (grey/green wavy 

line) can be generated and this can have an alternative function or could also interfere with 

the regulation of the parental gene; ii) the pseudogene can acquire mutations (red lines and 

dots in the pseudogene) over evolution and thus acquire a new cellular function. t, denotes 

evolutionary time. (D) TE insertions can impact gene regulation and chromosome 

architecture. The cartoon shows the possible outcomes of a gene (A, purple) that 

accumulated two new TE insertions. The upstream TE, if full-length, could generate 

antisense transcripts (grey wavy line) that act as long non coding RNAs (New lncRNAs) or 

that could be translated into a protein product as recently described (New protein (LINE-1 

ORF0) (Denli et al., 2015)). Note that these antisense RNAs could also alter chromosome 

architecture and gene regulation by interfering with: gene A (cis interference) or with a gene 

located elsewhere in the genome (gene B, green, trans interference).  Additionally, the 

upstream TE can generate new chimeric RNAs (grey/purple wavy line) that can induce 

deregulation of gene A expression (altered expression) or that could induce expression of 

gene A in a different cell type (altered cell type expression). Similarly, the TE inserted within 

the gene could also generate antisense RNAs (purple wavy line) that can interfere with gene 

A regulation (antisense expression and gene regulation). Finally, the TE inserted within the 

gene can generate a chimeric RNA using the TE promoter (grey/purple wavy line) that could 

have an alternative function (chimeric RNA and alternative function). 	
  

 

Figure 4. LINE-1 expression and activity in humans: from tissues to cells. (A) TE and 

LINE-1 (L1) expression and activity during embryogenesis and in adult humans. Pre-

implantation, post-implantation embryos and a scheme of an adult human are shown. (B) 

LINE-1 (L1) expression and activity in different types of cultured human stem cells are 

shown. The developmental relationships between these cell types are also shown. In A and 

B, each blue box indicate the level of TE/L1 expression. On top of each box, it is indicated if 

new insertions in each tissue/cell type can be transmitted to the next generation (Heritable) 
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or not (Somatic). Data on embryogenesis has been mostly analysed using mouse models, 

while expression in adult tissues has been analysed using mostly human samples. 
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