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Abstract

This paper presents a comparative evaluation of methods for automated voxel-based spatial mapping in diffusion tensor imaging
studies. Such methods are an essential step in computational pipelines and provide anatomically comparable measurements across
a population in atlas-based studies. To better understand their strengths and weaknesses, we tested a total of eight methods for
voxel-based spatial mapping in two types of diffusion tensor templates. The methods were evaluated with respect to scan-rescan
reliability and an application to normal aging. The methods included voxel-based analysis with and without smoothing, two types
of region-based analysis, and combinations thereof with skeletonization. The templates included a study-specific template created
with DTI-TK and the IIT template serving as a standard template. To control for other factors in the pipeline, the experiments
used a common dataset, acquired at 1.5T with a single shell high angular resolution diffusion MR imaging protocol, and tensor-
based spatial normalization with DTI-TK. Scan-rescan reliability was assessed using the coefficient of variation (CV) and intraclass
correlation (ICC) in eight subjects with three scans each. Sensitivity to normal aging was assessed in a population of 80 subjects
aged 25 to 65 years old, and methods were compared with respect to the anatomical agreement of significant findings and the R2

of the associated models of fractional anisotropy. The results show that reliability depended greatly on the method used for spatial
mapping. The largest differences in reliability were found when adding smoothing and comparing voxel-based and region-based
analyses. Skeletonization and template type were found to have either a small or negligible effect on reliability. The aging results
showed agreement among the methods in nine brain areas, with some methods showing more sensitivity than others. Skeletoniza-
tion and smoothing were not major factors affecting sensitivity to aging, but the standard template showed higher R2 in several
conditions. A structural comparison of the templates showed that large deformations between them may be related to observed
differences in patterns of significant voxels. Most areas showed significantly higher R2 with voxel-based analysis, particularly when
clusters were smaller than the available regions-of-interest. Looking forward, these results can potentially help to interpret results
from existing white matter imaging studies, as well as provide a resource to help in planning future studies to maximize reliability
and sensitivity with regard to the scientific goals at hand.

Keywords: diffusion tensor imaging, spatial mapping, voxel-based analysis, skeleton-based analysis, region-based analysis, white
matter, reliability, reproducibility, normal aging

1. Introduction1

Diffusion MR imaging enables the quantitative measurement2

of water molecule diffusion, which exhibits anisotropy in brain3

white matter due to axonal morphometry and coherence [1].4

The diffusion tensor [2] is a commonly used model that re-5

flects aggregate properties of tissue microstructure [3] that are6

relevant to the studies of brain white matter, such as normal7

differences in age, sex, and cognition [4] [5] [6], as well as8

neuropsychiatric conditions, such as schizophrenia, depression,9

and bipolar disorder [7] [8]. Diffusion tensor imaging studies10

typically make anatomically-comparable measurements across11

participants through spatial normalization [9] to a template us-12

ing image registration [10]. Then, a spatial mapping step is used13

to probe features of white matter across the population, typ-14

ically with either voxel-based or tractography-based localiza-15

tion. Voxel-based analyses can either look at individual voxels16

or regions-of-interest (ROIs), while tractography-based analy-17

ses instead look at features of geometric models representing18

large-scale fiber bundle anatomy [11] [12]. While there are19

known limitations of tractography that warrant evaluation [13]20

[14], we restrict the scope of this paper to the evaluation of21

voxel-based methods.22

This paper is motivated by the general need to better under-23

stand the computational tools used in voxel-based diffusion ten-24

sor imaging studies [15]. As there are numerous choices at each25

step of the standard population imaging pipeline, there is value26

in understanding their net effect on the results [16]. While much27

is known about how data acquisition, preprocessing, and image28

registration affect results, fewer studies have evaluated the spa-29

tial mapping step. In this study, we examine a wide range of30

choices for this step and evaluate them with respect to scan-31

rescan reliability and sensitivity to normal aging.32

Prior Work33

Numerous studies have thoroughly examined the relation-34

ship between reliability and imaging data acquisition parame-35

ters. For example, several works have looked at variation across36
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scanner manufacturers and imaging units [17] [18] [19] and37

found acceptable reliability across sites with a common mag-38

net strength. Furthermore, other studies have also shown reli-39

ability across magnet strengths ranging from 1.5T to 4T [20]40

[21] [22]. Studies that tested gradient strength have found re-41

liable estimates of diffusion parameters in each of a variety of42

gradients encoding schemes [23]; however, there is evidence of43

possible bias in diffusion parameters when combining estimates44

from different voxel sizes and gradient encoding schemes [24],45

although bias correction [20] and covariate analysis [25] are46

possible solutions. Together, these results are especially impor-47

tant for conducting longitudinal and multi-center studies as well48

as accommodating scanner upgrades within an imaging unit.49

In addition, previous work has examined the effect of pre-50

processing and image registration algorithms on reliability. Ro-51

bust preprocessing that includes denoising, motion correction,52

and outlier rejection has been shown to improve reliability53

across scanners [26] [27]. The choice of registration algorithm54

has also been shown to greatly affect reliability, specifically55

when comparing linear, deformable, and tensor-based registra-56

tion [20] [21] [23]. Deformable tensor-based registration has57

been shown to perform better than registration with scalar maps,58

especially when used in combination with study-specific tem-59

plate construction [28]. Linear intra-subject registration has60

also been shown to improve reliability in longitudinal studies61

[26]. Overall, this indicates there is potential for significantly62

different outcomes based on the choice of preprocessing and63

registration, so it is important to have consistency in both appli-64

cations and evaluations.65

Each of these studies necessarily includes spatial mapping,66

either as a single method used in the pipeline or as part of a67

larger comparison of methods. The most common approaches68

are global histogram analysis [17], manually drawn ROIs [24]69

[23] [19], and standard atlas ROIs registered to each subject70

[18] [22] [29]. In addition to these studies, others have explic-71

itly evaluated methods for spatial mapping, with a similar goal72

to this paper. For example, evaluations of manually drawn ROI73

approaches have tested the reliability of different ROI shapes74

[30] and drawing methods [31] [32], and compared to a vari-75

ety of global histogram measures [25] . Voxel-based analysis76

has also been evaluated to quantify the effects of filter size [33],77

software package [34], and to compare results with ROI-based78

methods [35] [36]. There has also been extensive testing of79

skeleton-based analysis to understand its strengths and limita-80

tions [28] [26] [37] as well as comparing to voxel-based analy-81

sis and region-based analysis [20] [21]. Previous work has also82

evaluated the choice of template type, showing the advantages83

of study-specific and high-quality templates [38] [39] [40] [41].84

This paper builds on these prior findings by expanding the range85

of methods simultaneously compared in evaluation.86

Finally, the design of some of these studies not only included87

scan-rescan analysis, but also tested reliability in conjunction88

with applications to clinical and scientific studies. These stud-89

ies have included populations consisting of aging adults and90

children [30] [24] [36], as well as patients with schizophrenia91

[33] [34], Alzheimer’s disease [28], and multiple sclerosis [25].92

This kind of evaluation provides an additional benchmark for93

comparing the practical value of such methods, which is impor-94

tant, as a perfectly reliable measurement might still disregard95

anatomical features that are of scientific or clinical value. In96

this paper, we take a similar approach and test the sensitivity97

of each method to the anatomical effects of normal aging in an98

adult population.99

Contributions100

The main contribution of this paper is a comparative evalua-101

tion of spatial mapping in voxel-based diffusion tensor imaging102

studies. To avoid confounding effects, these tests were con-103

ducted with a common dataset and state-of-the-art tensor-based104

spatial normalization using DTI-TK. The evaluation includes105

experiments that examined reliability across scans and sensitiv-106

ity to normal aging in an adult population. The first experiment107

characterized scan-rescan reliability across eight subjects with108

three scans each using the coefficient of variation and intraclass109

correlation. The second experiment characterized sensitivity to110

normal aging in a population of 80 adult subjects aged from111

25 to 65 years old by examining the statistical relationship be-112

tween age and diffusion parameters across the brain. Both ex-113

periments included a quantitative analysis of performance in the114

various methods and a qualitative analysis showing the results115

in relation to brain anatomy. The experimental conditions in-116

cluded eight methods for spatial mapping, four commonly used117

diffusion parameters, and two types of templates. The tested118

spatial mapping methods included voxel-based with and with-119

out smoothing, two types of region-based analysis, and combi-120

nations of these with skeletonization-based analysis. The tested121

diffusion parameters included fractional anisotropy (FA), mean122

(MD), radial (RD), and axial (AD) diffusivity. The aging analy-123

sis presented in the paper only shows effects in FA due to space124

limitations; however, all results are available for download with125

the link provided at the end of the paper. The experiments were126

conducted using both a study-specific template and the IIT stan-127

dard template. In total, this represents a total of 64 conditions128

examined in each experiment.129

Method Dimension Mean Volume

VBA 353903 1 mm3

SMOOTH 353903 1 mm3

JHU 48 2814 mm3

SUPER 321 1098 mm3

VBA+TBSS 76586 1 mm3

SMOOTH+TBSS 76586 1 mm3

JHU+TBSS 48 648 mm3

SUPER+TBSS 318 240 mm3

Table 1: A summary of methods for spatial mapping that are compared in the
experiments. The dimensionality of the methods in the study-specific template
are listed, as well as the average volume of the voxels/regions representing each
measurement.
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Figure 1: The left panel shows an illustration of methods for spatial mapping compared in the experiments. Smoothing was included in voxel-based and skeleton-
based analysis but is not depicted here. The right panel illustrates the two template types tested.

2. Materials and Methods130

2.1. Data Acquisition131

Under an IRB-approved protocol, diffusion-weighted MR132

images were acquired from a population of healthy volunteers,133

including a group of 80 normal aging healthy controls and eight134

from a scan-rescan cohort. The 80 subjects comprised a cross-135

sectional normal aging population, which consisted of nearly136

equal number of each sex and roughly uniformly distributed137

ages ranging from 25 to 65 years old. The data from the other138

eight subjects were acquired for scan-rescan analysis and in-139

cluded three repeats each, except for one subject that only had140

two repeats (i.e. 23 sessions). Imaging was conducted on141

a GE 1.5T scanner with 2x2x2mm voxels and image resolu-142

tion 128x128x72. For each diffusion scan, seven baseline vol-143

umes were acquired, and the diffusion-weighted images used a144

single-shell high angular resolution diffusion encoding scheme145

with 64 distinct gradient encoding directions at a b-value of146

1000 s/mm2.147

2.2. Image Preprocessing148

The diffusion-weighted MR images were preprocessed using149

FSL 5.0 [42]. The first step included motion and eddy current150

correction by affine registration of each diffusion-weighted vol-151

ume to the baseline volume using FSL FLIRT with the mutual152

information criteria. Along with this step, the b-vectors were153

reoriented to account for rotation induced by each transforma-154

tion [43]. Skull stripping was performed using FSL BET with155

a threshold of 0.3. For each dataset, diffusion tensors were fit156

using FSL DTIFIT.157

2.3. Spatial Normalization and Template Construction158

Following this, a study-specific template [44] was created159

from the 80 normal subjects. This was performed using the160

tensor-based deformable registration algorithm in DTI-TK [45]161

with finite strain tensor reorientation and the deviatoric tensor162

similarity metric. Each subject’s tensor image was transformed163

to atlas space using the associated deformation and resampled164

to 1 mm3 isotropic voxels using Log-Euclidean tensor interpo-165

lation. This process was applied to both the scan-rescan cohort166

and the normal aging cohort.167

In addition, the study examined the use of a standard tem-168

plate. The IIT DTI template version 4.1 [46] [47] was used169

for this purpose due to its high quality and use in related eval-170

uation studies [40]. The imaging data was downloaded from171

the publicly available distribution on NITRC [48]. To facilitate172

the joint visualization and quantitative comparison of results173

from both templates, an additional deformable registration was174

performed between the IIT and study-specific template using175

DTI-TK. The study-specific analysis was conducted solely with176

the study-averaged imaging data, and the statistical results were177

deformed for comparison using nearest-neighbor interpolation.178

As there were shape differences between the study-specific and179

standard templates, the logarithm of the Jacobian determinant180

(LogJacDet) of the deformation was computed to show the spa-181

tial pattern of these shape differences.182

2.4. Spatial Mapping183

Next, eight methods of spatial mapping were applied (Table184

1 and Figure 1) using each of the two templates (study-specific185

and standard) and each of four diffusion parameters (FA, MD,186

RD, and AD), giving a total of 64 conditions. For consistency,187

the methods shared the same white matter mask in each tem-188

plate. The masks were created by applying a threshold of 0.2189

to the FA volume of each template and removing all but the190

largest connected component. The details of each method are191

described as follows.192

Voxel-based analysis was performed using the standard ap-193

proach [49] [50] in all white matter voxels. This included pro-194

cessing without smoothing (denoted VBA) and with smooth-195

ing (denoted SMOOTH) using an isotropic Gaussian filter with196

σ = 2, FWHM = 4.7, which is comparable to a previous VBA197

evaluation [36]. Region-based analysis [51] was also performed198

by averaging diffusion parameters within ROIs. This included199

two types of region-based analysis, described as follows.200

The first region-based method (denoted JHU) used manually201

defined regions from the Johns Hopkins University white mat-202

ter atlas [52] included in FSL. For each template type, the ROIs203

were deformed to the template volume using FNIRT. This was204

necessary as the JHU regions are defined in an FA atlas requir-205

ing scalar-based registration; however, the rest of the experi-206

ments used tensor-based registration between subject data and207

the templates.208



The second region-based analysis (denoted SUPER) used au-209

tomatically defined “supervoxel” ROIs that were computed for210

each template using a clustering algorithm [53]. The clustering211

algorithm includes parameters to control the relative contribu-212

tion the voxel positions (α), fiber orientations (β), and number213

of clusters (λ) make to the overall optimization. The parameter214

settings were α = 1, β = 15, and λ = 20, resulting in a total of215

321 study-template regions and 318 standard template regions.216

In addition, the supervoxel ROIs were post-processed to assign217

distinct labels to topologically disconnected regions with the218

same clustering label, e.g. in the cingulum, and to remove out-219

lier regions less than 50 mm3 in volume.220

These four methods were also each performed in conjunction221

with skeleton-based analysis using Tract-Based Spatial Statis-222

tics [54]. This was implemented in a custom VBA+TBSS223

pipeline modified to use the tensor-based registration algorithm224

in DTI-TK instead of the default scalar-based registration with225

FNIRT [42] [55]. The standard template analysis used the as-226

sociated skeleton available on NITRC, and the study-specific227

template analysis used a study-derived skeleton. Both template228

skeleton masks were created with an FA threshold of 0.2. This229

resulted in four additional skeleton-based methods: voxel anal-230

ysis without smoothing (denoted VBA+TBSS), voxel analysis231

with smoothing (denoted SMOOTH+TBSS), JHU ROI analysis232

(denoted JHU+TBSS), and supervoxel ROI analysis (denoted233

SUPER+TBSS).234

2.5. Scan-rescan Reliability235

Next, reproducibility and reliability were tested for each con-236

dition with the scan-rescan dataset, which consisted of eight237

subjects with three repeated scans each. This included two238

statistical evaluation metrics: the coefficient-of-variation (CV)239

[56] and intra-class correlation (ICC) [57]. The CV is a nor-240

malized measure of percentage change in each measurement241

across scans and is considered acceptable below 10%. Given242

the within-subject average µw and within-subject standard devi-243

ation σw, the CV is given by σw/µw. The ICC is a measure of244

reliability that gauges the fraction of variance between subjects.245

It is normalized between zero and one and is considered accept-246

able above 0.7. Given the between-subjects variance σ2
b and247

within-subjects variance σ2
w, the ICC is given by σ2

b/(σ
2
b +σ2

w).248

For each condition, CV and ICC were computed for individual249

voxels/regions and then aggregated across the whole brain to250

estimate mean performance and its uncertainty. All statistical251

analysis was implemented using R 3.1.1 [58], with the ggplot2252

package for plotting [59], and the ICC package from Wolack et253

al. [60].254

2.6. Sensitivity to Normal Aging255

Next, the methods were evaluated with respect to their sen-256

sitivity to normal aging in an adult population, a process which257

has been shown to include anatomical changes in white matter258

that are reflected in diffusion parameters [61] [62]. The ex-259

periments investigated the localization of age-related changes260

in specific areas of the brain. This was performed by fitting261

linear regression models in each voxel and region to relate the262

diffusion parameters to age. Sex and intracranial volume were263

included as covariates to control for changes not related to mi-264

crostructural decline due to aging. Specifically, this can po-265

tentially avoid attributing seemingly local changes in diffusion266

parameters to partial volume effects that can occur with global267

volumetric changes in brain size due to age. For each model,268

statistics of the regressions were retained for comparison, in-269

cluding the R2, as well as the coefficient estimate, standard er-270

ror, t-statistic, and p-value associated with age variable. Be-271

cause the methods differ largely in their dimensions (Table 1),272

they cannot be directly compared. To account for this, we used273

False Discovery Rate (FDR) with the Benjamini-Hochberg pro-274

cedure [63] to correct for multiple comparisons within each275

method. This procedure transforms the p-values to q-values that276

can be more fairly compared across methods. Volumetric maps277

representing the model parameters were created to explore the278

differences between methods. These images were manually re-279

viewed to identify brain areas with agreement among multiple280

methods. The comparison focused on FA only, which is the281

most commonly analyzed diffusion parameter; however, the re-282

sults for MD, AD, and RD are included as supplementary ma-283

terial. When clusters of significant voxels were encountered,284

the voxel with the lowest q-value was recorded to represent the285

result. This process resulted in a list of brain areas with signif-286

icant results for each experimental condition. The results were287

also quantitatively analyzed to assess the performance across288

the conditions. All statistical analysis was implemented in R289

3.1.1 [58], with the ggplot2 package for plotting [59].290

3. Results291

3.1. Scan-rescan Reproducibility292

Quantitative results of the scan-rescan experiment are shown293

in Figure 2, and qualitative results showing the spatial distribu-294

tion of scan-rescan reproducibility are shown in Figures 3 and 4.295

For both CV and ICC, statistical tests were performed to assess296

performance characteristics of the methods, including group-297

ings of methods by several factors: method type, region-based,298

skeleton-based, smoothed, and template type.299

The results in CV show reliability varies significantly across300

methods (one-way ANOVA, p< 1 × 10−15, η2 = 0.78). Smooth-301

ing was found to have a significant effect on CV (t-test,302

p < 1 × 10−15, d = 0.75, ∆CV = 3.3), with higher CV303

without smoothing (CV = 7.6 ± 1.0) than with smoothing304

(CV = 4.2 ± 0.5). Region-based analysis was also found to305

have a significant and large effect on CV (t-test, p < 1 × 10−8,306

d = 2.0, ∆CV = 3.4), with higher CV when analyzing single307

voxels (CV = 5.9 ± 0.8) compared to regions (CV = 2.5 ± 0.24).308

Template type was found to have a significant but small effect309

on CV (paired t-test, p < 1 × 10−7, d = 0.18, ∆CV = 0.44) with310

higher CV in the standard template (CV = 4.4 ± 0.9) compared311

to the study template (CV = 4.0 ± 0.8). From additional tests312

within each method, JHU, VBA+TBSS, and JHU+TBSS were313

not significantly different in CV between template types, unlike314

the main effect. Skeletonization was not found to have a signifi-315

cant effect on CV (paired t-test, p = 0.29). In reviewing the spa-316

tial distribution of CV across the brain, VBA and VBA+TBSS317



showed the greatest spatial variability, with better CV scores in318

deep white matter and worse CV in superficial and periventric-319

ular white matter. Smoothing tended to also smooth this spatial320

distribution of CV scores. Region-based analysis showed more321

spatially uniform CV results than voxel-based analysis, particu-322

larly in superficial white matter with supervoxel-based analysis.323

The results in ICC also show reliability varies significantly324

across methods (one-way ANOVA, p < 1 × 10−15, η2 = 0.90).325

Smoothing was found to have a significant effect on ICC (t-test,326

p < 1 × 10−15, d = 0.61, ∆ICC = 0.15), with lower ICC327

without smoothing (ICC = 0.50 ± 0.04) than with smooth-328

ing (ICC = 0.66 ± 0.04). Region-based analysis was also329

found to have a significant and large effect on ICC (t-test,330

p < 1 × 10−9, d = 2.1, ∆ICC = 0.17), with lower ICC when331

analyzing single voxels (ICC = 0.58 ± 0.04) compared to re-332

gions (ICC = 0.74 ± 0.02). Template type was found to have a333

significant but small effect on ICC (paired t-test, p < 1 × 10−4,334

d = 0.17, ∆ICC = 0.02) with lower ICC in the standard tem-335

plate (ICC = 0.65 ± 0.04) compared to the standard template336

(ICC = 0.67 ± 0.04). From additional tests within each method,337

JHU, VBA+TBSS, and JHU+TBSS were found not to have338

a significant difference in ICC between template types, un-339

like the main effect. Skeletonization was found to have a sig-340

nificant but small effect on ICC (paired t-test, p < 1 × 10−12,341

d = 0.66, ∆ICC = 0.07) with a lower ICC with skeletonization342

(ICC = 0.62 ± 0.04) than without (ICC = 0.70 ± 0.03). In re-343

viewing the spatial distribution of ICC across the brain, VBA344

and VBA+TBSS showed the greatest spatial variability, with345

a distinct pattern from CV and a more heterogeneous spatial346

distribution. Smoothing tended to also smooth this spatial dis-347

tribution of ICC scores. Region-based analysis showed more348

spatially uniform ICC results than voxel-based analysis, partic-349

ularly in superficial white matter with supervoxel-based analy-350

sis, although there was more variation than in CV.351

3.2. Sensitivity to Normal Aging352

The following nine brain areas were found to have a signifi-353

cant relationship between FA and age: right anterior pericallosal354

white matter (R PERI), the fornix (FORN), the left superior355

cerebellar peduncle (L SCP), left uncinate (L UNC), middle356

cerebellar peduncle (MCP), splenium (SPLN), right posterior357

thalamic radiation (R PTR), right superior frontal white mat-358

ter (R SUPF), and right inferior frontal white matter (R INFF).359

To varying extents, there were bilateral effects in the superior360

cerebellar penduncles, inferior frontal white matter, and percal-361

losal white matter, but the hemisphere with the larger effect is362

reported for brevity.363

Among these regions, the qualitative results (Figure 5) show364

agreement with respect to the general location of the effects,365

but some variation was found with respect to the fine anatom-366

ical differences. In pericallosal white matter, voxel-based anal-367

ysis exhibited a cluster that extended into the genu, an aspect368

that was not typical of most TBSS conditions. In the fornix, the369

study-specific results tended to show significant effects along370

the length of the bundle; however, most standard template con-371

ditions instead showed distinct clusters located at anterior and372

posterior positions along the visible portion of the bundle. In the373

middle cerebellar peduncle, there was high anatomical variabil-374

ity across methods, where some methods showed lateral con-375

centrations of significant results. In the uncinate, the models376

were less sensitive in the SUPER conditions, but the spatial pat-377

terns were similar across methods. Across all regions, smooth-378

ing was found to generally increase the size of the cluster of sig-379

nificant voxels. Regarding the direction of the change with age,380

the following areas showed decreased FA with age: R PERI,381

FORN, R PTR, R INFF, and the following areas showed in-382

creased FA with age: L SCP, MCP, L UNC, SPLN, R SUPF.383

384

A comparison of the study-specific and standard templates385

showed shape differences that varied with respect to anatomi-386

cal location (Figure 6). The LogJacDet maps were reviewed to387

determine the magnitude of local volumetric changes, where a388

negative value indicates that a contraction was required to de-389

form the standard template to the study template, and positive390

indicates that an expansion was required. The fornix showed391

the greatest difference between the template types, where the392

study-specific template had a substantially thinner fornix than393

the standard template (LogJacDet ≈ -1.5). The following re-394

gions also exhibited smaller local volumes in the study-specific395

template: genu of the corpus callosum (LogJacDet ≈ -1.0), sple-396

nium of the corpus callosum (LogJacDet ≈ -0.5), posterior limb397

of the internal capsule (LogJacDet ≈ -0.5), superior cerebellar398

peduncle (LogJacDet ≈ -0.5), and middle cerebellar peduncle399

(LogJacDet ≈ -0.4). Conversely, the following regions showed400

greater local volume in the study-specific template: body of the401

corpus callosum (LogJacDet ≈ 0.5) and palladium (LogJacDet402

≈ 0.5).403

Statistical tests were performed to assess performance char-404

acteristics of the methods according to R2 with groupings405

by the following factors: method type, region-based, skele-406

ton-based, smoothed, and template type (Figure 7, Table 2).407

The results show significant variation across methods (one-way408

ANOVA, p < 1 × 10−10, η2 = 0.38). Smoothing was not found to409

have a significant effect on R2 (t-test, p = 0.43). Region-based410

analysis was found to have a significant effect on R2 (t-test,411

p < 1 × 10−13, d = 1.50, ∆R2 = 0.10), with higher R2 when an-412

alyzing single voxels (R2 = 0.22 ± 0.01) compared to regions413

(R2 = 0.11 ± 0.01). Template type was found to have a small414

but statistically significant effect on R2 (paired t-test, p = 0.01,415

d = 0.18, ∆R2 = 0.016). When compared across methods, the416

difference in template type was significant only in SMOOTH417

(paired t-test, p = 0.02), VBA+TBSS (paired t-test, p = 0.05),418

and SMOOTH+TBSS (paired t-test, p = 0.01). When com-419

pared across anatomical region, the difference in template type420

was significant only in the superior cerebellar peduncle (paired421

t-test, p = 0.02) and left uncinate (paired t-test, p = 0.02).422

Skeletonization was not found to have a significant effect on423

R2 (paired t-test, p = 0.60 d = 0.03, ∆R2 = 0.01).424

4. Discussion425

Scan-rescan Reliability426

The first main finding in scan-rescan reliability was large427

variability in the overall reliability across methods despite us-428
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Figure 2: Results from the scan-rescan experiment in Sec. 3.1 showing reliability across methods and between the major factors among the methods. Panel A
shows the coefficient of variation (CV), which indicates the percentage of variation across scans of the same subject (smaller is better). Panel B shows the intraclass
correlation, which indicates what proportion of variance is between subjects (larger is better). Panel C shows the relative performance of study-specific and standard
templates in each of the tested methods. The results show high variation across methods. Among the major factors, smoothing and region-based analysis had large
effects related to reproducibility, while template type and skeletonization had smaller effects. Statistically significant differences (p ≤ 0.05) are marked with an
asterisk.
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Figure 3: Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the reliability an axial slice. The background image shows the
template T1-weighted map. The left panels show the coefficient of variation (CV), and the right panels show the intraclass correlation (ICC). Within each side, the
slices are organized to show a different method in each row and a different template type in each column. The results generally show large spatial variation across
methods, with higher variation in voxel-based than region-based methods. Voxel-based analysis tended to have higher reliability in deep white matter and lower in
superficial white matter. Region-based analysis tended to have more uniform error rates than methods analyzing individual voxels.
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Figure 4: Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the reliability a sagittal slice. The background image shows the
template T1-weighted map. The left panels show the coefficient of variation (CV), and the right panels show the intraclass correlation (ICC). Within each side, the
slices are organized to show a different method in each row and a different template type in each column. The results generally show large spatial variation across
methods, with higher variation in voxel-based than region-based methods. Voxel-based analysis tended to have higher reliability in deep white matter and lower in
superficial white matter. Region-based analysis tended to have more uniform error rates than methods analyzing individual voxels.
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Figure 5: Results from the aging analysis in Sec. 3.2 showing the spatial patterns of age-related change in FA for each method. The background shows the template
FA map, and the foreground shows the FDR q-value. Four areas are shown: right anterior pericallosal white matter (R PERI), the fornix (FORN), the superior and
middle cerebellar penduncles (SCP/MCP), and left uncinate fasciculus (L UNC). The plots are colored to show FDR q-value, with redness indicating greater signif-
icance. Note that there is transparency to show the FA map, which may slightly change the perceived q-value. The results show general agreement among methods,
although several differences can be noted. VBA, SMOOTH, and SUPER analysis of R PERI showed a greater extent of significant voxels than other methods.
The fornix showed distinct spatial patterns for each template type, namely a greater concentration of significant results in the anterior and posterior portions in the
standard template conditions.
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Figure 6: Results from aging analysis in Sec. 3.2 showing the structural differences between the study and standard templates. Eight regions are shown: right ante-
rior pericallosal white matter (R PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/MCP), left uncinate fasciculus (L UNC), splenium
(SPLN), right superior frontal white matter (R SUPF), right posterior thalamic radiation (R PTR), and right inferior frontal white matter (R INFF). The top row
shows the standard template FA map, and the second row shows the study template FA map, which has been deformed to the standard template. The third row
depicts the deformation field between the templates, with coloring to indicate the logarithm of the Jacobian determinant (LogJacDet). The LogJacDet measures the
local volumetric changes induced by the deformation, where blueness indicates that contraction was required to match the standard template to the study template
and redness indicates that expansion was required. The results show the greatest differences were in the region of the fornix, which was smaller in the study template.
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Figure 7: Results from the aging analysis in Sec. 3.2 showing a quantitative comparison of the methods. The plots show the R2 of linear regression models relating
age to FA. The left plot shows results aggregated for each method and template type. The right plot shows results aggregated for each region and template type. Nine
areas are shown: right anterior pericallosal white matter (R PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/MCP), left uncinate fas-
ciculus (L UNC), splenium (SPLN), right superior frontal white matter (R SUPF), right posterior thalamic radiation (R PTR), and right inferior frontal white matter
(R INFF). Statistically significant differences (p ≤ 0.05) are marked with an asterisk. The results show that single voxel analysis performed better than region-based
analysis. Skeletonization and smoothing did not significantly change performance, but the standard template performed better than the study template when used in
conjuction with single voxel-based TBSS. There was moderate variability in performance across regions, and models of L SCP and L UNC were found to perform
better with the standard template.



Standard Template Study Template

Region Method R2 t-value q-value R2 t-value q-value

R PERI VBA 0.28 −5.3 0.0049 0.26 −5.0 0.016
R PERI SMOOTH 0.32 −5.8 5.5 × 10−4 0.27 −5.2 0.0027
R PERI JHU 0.10 −2.9 0.037 0.096 −2.8 0.075
R PERI SUPER 0.15 −3.4 0.047 0.14 −3.4 0.041
R PERI VBA+TBSS 0.16 −3.9 0.077 0.17 −3.8 0.073
R PERI SMOOTH+TBSS 0.19 −4.1 0.027 0.20 −4.2 0.022
R PERI JHU+TBSS 0.077 −2.4 0.10 0.095 −2.8 0.087
R PERI SUPER+TBSS 0.14 −3.0 0.096 0.14 −3.5 0.031

FORN VBA 0.25 −5.0 0.0077 0.21 −4.4 0.041
FORN SMOOTH 0.32 −5.9 4.4 × 10−4 0.28 −5.4 0.0021
FORN JHU 0.14 −3.3 0.022 0.22 −4.3 7.9 × 10−4

FORN SUPER 0.20 −4.1 0.0078 0.24 −4.8 0.0029
FORN VBA+TBSS 0.24 −4.7 0.019 0.17 −3.9 0.068
FORN SMOOTH+TBSS 0.33 −5.9 0.0013 0.28 −5.4 0.0040
FORN JHU+TBSS 0.13 −3.0 0.041 0.21 −4.2 0.0010
FORN SUPER+TBSS 0.17 −3.7 0.026 0.18 −3.9 0.016

L SCP VBA 0.24 4.8 0.012 0.22 4.5 0.036
L SCP SMOOTH 0.23 4.7 0.0068 0.21 4.5 0.011
L SCP JHU 0.30 5.1 6.4 × 10−5 0.29 4.7 2.6 × 10−4

L SCP SUPER 0.16 3.8 0.017 0.13 3.3 0.044
L SCP VBA+TBSS 0.25 4.8 0.017 0.20 4.2 0.035
L SCP SMOOTH+TBSS 0.25 4.8 0.0065 0.23 4.7 0.0093
L SCP JHU+TBSS 0.33 5.5 1.1 × 10−5 0.34 5.8 6.1 × 10−6

L SCP SUPER+TBSS 0.19 4.1 0.012 0.15 3.5 0.031

L UNC VBA 0.22 4.5 0.022 0.22 4.3 0.045
L UNC SMOOTH 0.23 4.6 0.0074 0.18 3.8 0.039
L UNC JHU 0.13 3.1 0.031 0.086 2.4 0.16
L UNC SUPER 0.16 2.8 0.20 (n.s.)
L UNC VBA+TBSS 0.25 4.8 0.017 0.24 4.8 0.018
L UNC SMOOTH+TBSS 0.21 4.3 0.017 0.18 3.9 0.036
L UNC JHU+TBSS 0.14 3.1 0.041 0.087 2.4 0.16
L UNC SUPER+TBSS 0.14 2.6 0.17 (n.s.)

MCP VBA 0.25 4.4 0.024 0.21 4.3 0.045
MCP SMOOTH 0.19 4.0 0.025 0.18 3.9 0.030
MCP JHU 0.11 3.0 0.031 0.11 2.7 0.078
MCP SUPER 0.16 3.0 0.16 0.16 2.8 0.15
MCP VBA+TBSS 0.23 4.5 0.026 0.19 4.3 0.035
MCP SMOOTH+TBSS 0.22 4.6 0.0098 0.18 3.8 0.037
MCP JHU+TBSS 0.13 2.8 0.059 0.14 2.6 0.12
MCP SUPER+TBSS 0.12 2.9 0.11 0.12 3.1 0.079

SPLN VBA 0.22 4.4 0.025 0.27 5.1 0.015
SPLN SMOOTH 0.23 4.7 0.0068 0.13 2.8 0.18
SPLN VBA+TBSS 0.26 4.8 0.017 0.27 5.1 0.013
SPLN SMOOTH+TBSS 0.24 4.8 0.0068 0.22 4.5 0.012
SPLN JHU+TBSS 0.13 2.7 0.072 0.083 2.2 0.19
SPLN SUPER+TBSS (n.s.) 0.11 3.0 0.099

R PTR VBA 0.19 −4.0 0.053 0.17 −3.7 0.085
R PTR SMOOTH 0.21 −3.5 0.058 0.18 −3.1 0.12
R PTR SUPER (n.s.) 0.17 −2.7 0.20
R PTR VBA+TBSS 0.17 −3.9 0.077 0.14 −3.3 0.15
R PTR SMOOTH+TBSS 0.14 −3.2 0.11 0.12 −3.0 0.14

R SUPF VBA 0.26 4.7 0.014 0.29 5.2 0.013
R SUPF SMOOTH 0.23 4.6 0.0083 0.25 4.7 0.0063
R SUPF SUPER 0.25 4.7 0.0025 (n.s.)
R SUPF VBA+TBSS 0.33 5.5 0.0045 0.26 4.7 0.019
R SUPF SMOOTH+TBSS 0.29 4.9 0.0059 0.28 5.2 0.0040
R SUPF SUPER+TBSS 0.19 3.8 0.023 0.15 2.9 0.10

R INFF VBA+TBSS 0.13 −3.2 0.18 0.14 −3.1 0.19
R INFF SUPER+TBSS 0.11 −2.7 0.15 0.11 −2.5 0.18
R INFF SMOOTH+TBSS 0.13 −3.1 0.13 (n.s.)
R INFF VBA 0.19 −3.8 0.075 0.14 −3.0 0.19
R INFF SMOOTH 0.14 −3.2 0.094 (n.s.)

Table 2: A summary of findings from the evaluation in normal aging. The following regions had variation in FA that was related to age: right anterior pericallosal
white matter (R PERI), fornix (FORN), left superior cerebellar peduncle (L SCP), left uncinate (L UNC), middle cerebellar peduncle (MCP), splenium (SPLN),
right posterior thalamic radiation (R PTR), right superior frontal white matter (R SUPF), right inferior frontal white matter (R INFF). If a method is not shown or
marked (n.s.), it had q > 0.2. For comparison, each test is represented by the R2, t-value, and FDR q-value of the regression with age.



ing identical data, preprocessing steps, and registration. The429

most readily observed pattern was that methods looking at sin-430

gle voxels, e.g. VBA and VBA+TBSS, were less reliable than431

region-based methods, e.g. JHU and SUPER, as measured with432

both CV and ICC. Previous work has demonstrated a trade-off433

in spatial specificity between these methods [36], and the re-434

sults of this study further support a trade-off in reliability be-435

tween voxel-based and region-based analysis. This difference436

is perhaps due to the voxelwise averaging used in region-based437

analysis, which could also tend to average out the effects of438

noise. Smoothing is perhaps another way to accomplish this,439

but it includes a greater risk of mixing different tissues. Past440

work has also found that the results of voxel-based analysis de-441

pend greatly on the filter parameters and implementing package442

[34] [33], and the results of this study show related changes in443

reliability. Specifically, reliability in voxel-based and skeleton-444

based analysis tended to improve with smoothing, while per-445

formance depended on the particular diffusion parameter be-446

ing tested, which supports previous findings [36]. Regarding447

region-based analysis, the results were also comparable to pre-448

vious findings of intra-rater variability less than 3% in manually449

drawn ROIs [30] [17] [21], which is perhaps evidence that de-450

formable tensor-based registration is comparable in quality to451

anatomical matching of manually drawn region masks.452

The second main result was that all methods exhibited spa-453

tial variability in CV and ICC estimates of reliability. This rein-454

forces similar results demonstrated in prior work that examined455

the spatial distribution of reliability estimates [18] [22] [35],456

although these studies were typically limited to tests of only457

one or two methods for spatial mapping each. The results of458

this study show voxel-based methods tended to have the most459

spatial variability and had concentrated high reliability in deep460

white matter, similar to previous work [20]. This could be re-461

lated to higher registration accuracy in deep white matter, as462

seen in fiber coherence maps derived form population data [45].463

However, it could also be that reliability is highest where the464

tensor model is most representative of the underlying diffusion465

process, i.e. predominantly single fiber regions in deep white466

matter [64]. This could be more thoroughly studied by examin-467

ing reliability of multi-fiber extensions of TBSS [65], possibly468

with multi-compartment model smoothing [66]. Voxel-based469

analysis had low reproducibility in superficial and periventric-470

ular white matter, with CV above 7% and ICC below 0.5 in471

some cases; however, region-based analysis was found to have472

lower spatial variability and better performance in these areas.473

This is likely due to the variance reducing effects of averaging474

within each supervoxel, perhaps also indicating that the regis-475

tration quality in these superficial areas is at least as accurate as476

the supervoxel size. In general, ICC had more spatial variability477

than CV with a different spatial distribution. This demonstrates478

how CV and ICC reflect different aspects of reliability, as CV479

directly represents error, while ICC depends on the variation480

across subjects. For this reason, results in ICC may be more481

specific to the populations and datasets used for evaluation.482

Sensitivity to Normal Aging483

The first main result in aging was a substantial agreement of484

significant effects among methods, despite the differences in re-485

liability found in the previous experiment. However, there were486

differences in sensitivity between methods warranting discus-487

sion. The most prominent factor was whether individual voxels488

were analyzed, as most region-based conditions were less sen-489

sitive. An inspection of the spatial distribution of effects shows490

the significant clusters to be small and locally restricted effects491

not well characterized by the relatively larger ROIs available in492

the JHU atlas and supervoxels. This shows a major limitation493

of ROI analysis, as small local effects may be washed out by494

other voxels when the ROI is larger than the extent of the effect.495

One possible solution is to explore regions in a hierarchical way496

at varying levels of detail. Supervoxel-based analysis may of-497

fer a way to implement this by algorithmically varying the size498

of extracted regions. However, there were also brain areas in499

which region-based analysis performed best. These might rep-500

resent anatomical changes that are more distributed and charac-501

teristic of disconnection [67].502

Another main result was the negligible effect of skeletoniza-503

tion and smoothing. Previous evaluations have found skele-504

tonization to improve performance in deep white matter ROIs505

[37]; however, the improvement in models with FA here were506

not significant. This may support other results showing that507

high quality registration is as important as skeletonization in508

improving sensitivity [68] and related findings showing more509

heterogeneous results [37]. Smoothing tended to increase the510

size of the significant clusters, although the effect size did not511

change. Related to this, it is worth noting that the VBA and512

VBA+TBSS conditions still include smoothing to some extent,513

as the native data is interpolated to a considerably smaller tem-514

plate voxel resolution. While this may help to avoid possibly515

missing a small effect, it may also introduce further smoothing516

and spatial correlations of noise.517

In relation to template type, the observed differences are of518

interest, as previous findings have shown that study-specific519

templates provide greater sensitivity and accuracy than standard520

templates [39]. The results in this study show a slight improve-521

ment in reliability when using a study-specific template; how-522

ever, in three methods and two regions, age modeling slightly523

improved with the standard template. This perhaps supports524

previous findings that a high quality standard template com-525

bined with low-artifact data can provide comparable results to526

a study-specific template [40], unless a disease group is being527

studied [41]. However, we also found that the standard template528

was much sharper than the study template, so the consequent529

differences in white matter masks may have also been a fac-530

tor. Furthermore, there were significant structural differences531

between the template that may have influenced the results, for532

example, in the pattern of significant results in the fornix. The533

study template results in the fornix were perhaps more anatom-534

ically plausible, as they followed the trajectory of the bundle,535

while the standard template results were not significant in those536

voxels with the largest magnitude deformation.537

The biological significance of the results can also be related538

to previous studies of white matter aging. The pattern of the re-539



sults supports the anteroposterior gradient and frontocerebellar540

synergism hypotheses of aging [69]. The specific findings in the541

genu, anterior pericallosal white matter, fornix, and spelenium542

are consistent with previous work [70] [71] [72]. The results543

in the cerebellum also support recent findings in the superior544

cerebellar peduncles [73], perhaps adding related findings in the545

middle cerebellar peduncle. One general concern with the re-546

sults, however, is the effect of partial voluming, which may con-547

found microstructural changes with volumetric changes, partic-548

ularly in the fornix [74] [75]. Another consideration is the lim-549

itations of the aging population, specifically, the maximum age550

of 65 years, which is less than some previous studies [69].551

Limitations and Open Problems552

It is also worth discussing the design of the study. In par-553

ticular, the experiments were designed to control for a number554

of potential biases that could severely effect the results, such as555

dataset, preprocessing steps, and registration algorithm. This556

allows us to more certainly attribute the observed differences557

in reliability and predictive modeling to the choice of spatial558

mapping algorithm and not to other factors. This is a some-559

what stronger result than could be gained by summarizing the560

results of multiple studies, which inevitably have major differ-561

ences in data and implementation. However, the major limita-562

tion of this design is that only one factor of the pipeline was563

studied, and the results possibly depend on variation in these564

other factors, e.g. registration algorithm. A full factorial design565

is quite challenging due to the increasing number of choices566

available at each step of the pipeline; however, it is likely a fruit-567

ful avenue of research to pursue. Looking beyond voxel-based568

analysis, it would also be tremendously valuable to expand this569

kind of evaluation to include tractography-based spatial map-570

ping. However, a similar challenge is posed by the vast number571

of methods currently in use, as each tractography reconstruc-572

tion is a complex product of diffusion modeling, image interpo-573

lation, seed and selection masks, and termination criteria.574

The results of this study are also somewhat limited with re-575

spect to the VBA smoothing step. Only a single bandwidth and576

smoothing technique were tested, but a variety of approaches577

can be found in the literature [76] [77] [78]. While the effect578

of smoothing bandwidth has been well studied [33] [34], a rel-579

atively less understood aspect is the effect of filter type and the580

filtering domain. For example, smoothing can be done with581

a variety of types of filters, including Gaussian, median, and582

anisotropic filtering, and unlike some other modalities, there583

are several possible filtering domains, such as the diffusion-584

weighted signals, the diffusion models fitted to the signal, or585

scalar features derived from the models. Smoothing in the sig-586

nal domain is attractive for the theoretical guarantees of lin-587

ear systems and sampling theory, but it not commonly used in588

VBA, perhaps due to challenges inherent to reorienting q-space589

data after registration. Model-based smoothing of tensors can590

possibly preserve anisotropy and fiber orientation [79]; how-591

ever, the most common approach is to smooth in the feature592

domain [80]. Previous work has also shown that anisotropic593

smoothing in particular can offer improved accuracy and sen-594

sitivity [81]. This study aimed to represent the most common595

technique of feature-domain Gaussian smoothing with a band-596

width that is comparable to previous studies with comparable597

voxel size [82] [83] and recommended in a previous evaluation598

[36]; however, there remain many questions to answer related599

to these aspects of smoothing in VBA.600

5. Conclusion601

In conclusion, this paper presented a comparative evaluation602

of methods for voxel-based spatial mapping as measured by603

scan-rescan reliability and sensitivity to normal aging. The re-604

sults show reliability depends greatly on the method of spatial605

mapping, as well as anatomical location. The largest differ-606

ences were found when adding smoothing and comparing sin-607

gle voxel and region-based methods. In contrast, skeletoniza-608

tion and template type were found to have either a small or neg-609

ligible effect on reliability. The aging results showed agree-610

ment among the methods in nine brain areas, although some611

methods were more sensitive than others. Skeletonization and612

smoothing were not found to change sensitivity to aging; how-613

ever, template type had a small but significant effect. In com-614

paring templates, the results show how a standard template615

can provide acceptable performance compared to study-spe-616

cific templates when analyzing a healthy population, but also,617

how structural differences between the them can may be re-618

flected in the patterns of significant results. The results also619

show how sensitivity to aging is limited by the spatial extent620

of the method, and whether these effects are small and local-621

ized or distributed in nature. These reliability results may help622

in the design and interpretation of future studies, as they in-623

dicate care must be taken to establish baseline reliability and624

statistical power of a study based on the specific anatomical625

hypotheses and method of spatial mapping. The results of the626

aging application may also help to understand how the choice627

of spatial mapping method affects sensitivity in white matter628

imaging studies. To further this goal, the complete results of629

this study are available for download from the following link:630

https://doi.org/10.7301/Z0ZC80SW631
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M. Helminen, P. Dastidar, H. Eskola, Repeatability and variation of739

region-of-interest methods using quantitative diffusion tensor MR imag-740

ing of the brain, BMC Medical Imaging 12 (1) (2012) 30.741

[32] A. Pfefferbaum, E. Adalsteinsson, E. V. Sullivan, Replicability of diffu-742

sion tensor imaging measurements of fractional anisotropy and trace in743

brain, Journal of Magnetic Resonance Imaging 18 (4) (2003) 427–433.744

[33] D. K. Jones, M. R. Symms, M. Cercignani, R. J. Howard, The effect of745

filter size on vbm analyses of DT-MRI data, NeuroImage 26 (2) (2005)746

546–554.747

[34] D. Jones, X. Chitnis, D. Job, P. Khong, L. Leung, S. Marenco, S. Smith,748

M. Symms, What happens when nine different groups analyze the same749

DT-MRI data set using voxel-based methods, in: Proceedings of the 15th750

Annual Meeting of the International Society for Magnetic Resonance in751

Medicine, Berlin, 2007, p. 74.752

[35] S. Marenco, R. Rawlings, G. K. Rohde, A. S. Barnett, R. A. Honea,753

C. Pierpaoli, D. R. Weinberger, Regional distribution of measurement754

error in diffusion tensor imaging, Psychiatry Research: Neuroimaging755

147 (1) (2006) 69–78.756

[36] L. Snook, C. Plewes, C. Beaulieu, Voxel based versus region of interest757

analysis in diffusion tensor imaging of neurodevelopment, NeuroImage758

34 (1) (2007) 243–252.759

[37] S. Zhang, K. Arfanakis, White matter segmentation based on a skele-760

tonized atlas: Effects on diffusion tensor imaging studies of regions of761

interest, Journal of Magnetic Resonance Imaging 40 (5) (2014) 1189–762

1198.763

[38] W. Van Hecke, J. Sijbers, E. D’Agostino, F. Maes, S. De Backer, E. Van-764

dervliet, P. M. Parizel, A. Leemans, On the construction of an inter-765

subject diffusion tensor magnetic resonance atlas of the healthy human766

brain, NeuroImage 43 (1) (2008) 69–80.767

[39] W. Van Hecke, A. Leemans, C. A. Sage, L. Emsell, J. Veraart, J. Sijbers,768

S. Sunaert, P. M. Parizel, The effect of template selection on diffusion769

tensor voxel-based analysis results, NeuroImage 55 (2) (2011) 566–573.770

[40] S. Zhang, K. Arfanakis, Role of standardized and study-specific human771

brain diffusion tensor templates in inter-subject spatial normalization,772

Journal of Magnetic Resonance Imaging 37 (2) (2013) 372–381.773

[41] S. Keihaninejad, N. S. Ryan, I. B. Malone, M. Modat, D. Cash, G. R.774

Ridgway, H. Zhang, N. C. Fox, S. Ourselin, The importance of group-775

wise registration in tract based spatial statistics study of neurodegenera-776

tion: a simulation study in alzheimer’s disease, PLoS One 7 (11).777

[42] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.778

Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak,779

D. E. Flitney, et al., Advances in functional and structural MR image780

analysis and implementation as FSL, NeuroImage 23 (2004) S208–S219.781

[43] A. Leemans, D. K. Jones, The b-matrix must be rotated when correcting782

for subject motion in DTI data, Magnetic Resonance in Medicine 61 (6)783

(2009) 1336–1349.784

[44] Y. Wang, A. Gupta, Z. Liu, H. Zhang, M. L. Escolar, J. H. Gilmore,785

S. Gouttard, P. Fillard, E. Maltbie, G. Gerig, et al., DTI registration in786

atlas based fiber analysis of infantile Krabbe disease, NeuroImage 55 (4)787

(2011) 1577–1586.788



[45] H. Zhang, P. A. Yushkevich, D. C. Alexander, J. C. Gee, Deformable789

registration of diffusion tensor MR images with explicit orientation opti-790

mization, Medical Image Analysis 10 (5) (2006) 764–785.791

[46] S. Zhang, H. Peng, R. J. Dawe, K. Arfanakis, Enhanced ICBM diffusion792

tensor template of the human brain, NeuroImage 54 (2) (2011) 974–984.793

[47] A. Varentsova, S. Zhang, K. Arfanakis, Development of a high angu-794

lar resolution diffusion imaging human brain template, NeuroImage 91795

(2014) 177–186.796

[48] D. N. Kennedy, C. Haselgrove, J. Riehl, N. Preuss, R. Buccigrossi, The797

NITRC image repository, NeuroImage 124 (2016) 1069–1073.798

[49] W. Van Hecke, A. Leemans, L. Emsell, DTI analysis methods: Voxel-799

based analysis, in: Diffusion Tensor Imaging, Springer, 2016, pp. 183–800

203.801

[50] N. Jahanshad, P. V. Kochunov, E. Sprooten, R. C. Mandl, T. E. Nichols,802

L. Almasy, J. Blangero, R. M. Brouwer, J. E. Curran, G. I. de Zubicaray,803

et al., Multi-site genetic analysis of diffusion images and voxelwise heri-804

tability analysis: A pilot project of the enigma–DTI working group, Neu-805

roImage 81 (2013) 455–469.806

[51] M. Froeling, P. Pullens, A. Leemans, Dti analysis methods: Region of807

interest analysis, in: Diffusion Tensor Imaging, Springer, 2016, pp. 175–808

182.809

[52] S. Mori, K. Oishi, H. Jiang, L. Jiang, X. Li, K. Akhter, K. Hua, A. V. Faria,810

A. Mahmood, R. Woods, et al., Stereotaxic white matter atlas based on811

diffusion tensor imaging in an ICBM template, NeuroImage 40 (2) (2008)812

570–582.813

[53] R. P. Cabeen, D. H. Laidlaw, White matter supervoxel segmentation by814

axial DP-means clustering, MICCAI Workshop on Medical Computer Vi-815

sion. Large Data in Medical Imaging (2014) 95–104.816

[54] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols,817

C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews,818

et al., Tract-based spatial statistics: voxelwise analysis of multi-subject819

diffusion data, NeuroImage 31 (4) (2006) 1487–1505.820

[55] S. M. Smith, H. Johansen-Berg, M. Jenkinson, D. Rueckert, T. E. Nichols,821

K. L. Miller, M. D. Robson, D. K. Jones, J. C. Klein, A. J. Bartsch, et al.,822

Acquisition and voxelwise analysis of multi-subject diffusion data with823

tract-based spatial statistics, Nature protocols 2 (3) (2007) 499–503.824

[56] J. M. Bland, D. G. Altman, Statistics notes: measurement error propor-825

tional to the mean, BMJ 313 (7049) (1996) 106.826

[57] J. Bland, D. Altman, A note on the use of the intraclass correlation coef-827

ficient in the evaluation of agreement between two methods of measure-828

ment, Computers in Biology and Medicine 20 (5) (1990) 337–340.829

[58] R Core Team, R: A Language and Environment for Statistical Computing,830

R Foundation for Statistical Computing, Vienna, Austria (2015).831

URL https://www.R-project.org/832

[59] H. Wickham, ggplot2: elegant graphics for data analysis, Springer New833

York, 2009.834

[60] M. E. Wolak, D. J. Fairbairn, Y. R. Paulsen, Guidelines for estimating835

repeatability, Methods in Ecology and Evolution 3 (1) (2012) 129–137.836

[61] A. Giorgio, L. Santelli, V. Tomassini, R. Bosnell, S. Smith, N. De Stefano,837

H. Johansen-Berg, Age-related changes in grey and white matter structure838

throughout adulthood, NeuroImage 51 (3) (2010) 943–951.839

[62] O. Carmichael, S. Lockhart, The role of diffusion tensor imaging in the840

study of cognitive aging, in: Brain Imaging in Behavioral Neuroscience,841

Springer, 2012, pp. 289–320.842

[63] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a prac-843

tical and powerful approach to multiple testing, Journal of the Royal Sta-844

tistical Society. Series B (Methodological) (1995) 289–300.845

[64] T. Behrens, H. J. Berg, S. Jbabdi, M. Rushworth, M. Woolrich, Proba-846

bilistic diffusion tractography with multiple fibre orientations: What can847

we gain?, NeuroImage 34 (1) (2007) 144–155.848

[65] S. Jbabdi, T. E. Behrens, S. M. Smith, Crossing fibres in tract-based spa-849

tial statistics, NeuroImage 49 (1) (2010) 249–256.850

[66] R. P. Cabeen, M. E. Bastin, D. H. Laidlaw, Kernel regression estimation851

of fiber orientation mixtures in diffusion MRI, NeuroImage 127 (2016)852

158–172.853

[67] M. Catani, et al., The rises and falls of disconnection syndromes, Brain854

128 (10) (2005) 2224–2239.855

[68] C. G. Schwarz, R. I. Reid, J. L. Gunter, M. L. Senjem, S. A. Przybelski,856

S. M. Zuk, J. L. Whitwell, P. Vemuri, K. A. Josephs, K. Kantarci, et al.,857

Improved DTI registration allows voxel-based analysis that outperforms858

tract-based spatial statistics, NeuroImage 94 (2014) 65–78.859

[69] E. V. Sullivan, A. Pfefferbaum, Diffusion tensor imaging and aging, Neu-860

roscience & Biobehavioral Reviews 30 (6) (2006) 749–761.861

[70] A. Pfefferbaum, E. V. Sullivan, M. Hedehus, K. O. Lim, E. Adalsteins-862

son, M. Moseley, Age-related decline in brain white matter anisotropy863

measured with spatially corrected echo-planar diffusion tensor imaging,864

Magnetic resonance in medicine 44 (2) (2000) 259–268.865

[71] D. Salat, D. Tuch, D. Greve, A. Van Der Kouwe, N. Hevelone, A. Za-866

leta, B. Rosen, B. Fischl, S. Corkin, H. D. Rosas, et al., Age-related867

alterations in white matter microstructure measured by diffusion tensor868

imaging, Neurobiology of aging 26 (8) (2005) 1215–1227.869

[72] I. J. Bennett, D. J. Madden, C. J. Vaidya, D. V. Howard, J. H. Howard,870

Age-related differences in multiple measures of white matter integrity: A871

diffusion tensor imaging study of healthy aging, Human brain mapping872

31 (3) (2010) 378–390.873

[73] R. A. Kanaan, M. Allin, M. M. Picchioni, S. S. Shergill, P. K. McGuire,874

White matter microstructural organization is higher with age in adult su-875

perior cerebellar peduncles, Frontiers in Aging Neuroscience 8.876

[74] S. B. Vos, D. K. Jones, M. A. Viergever, A. Leemans, Partial volume877

effect as a hidden covariate in dti analyses, NeuroImage 55 (4) (2011)878

1566–1576.879

[75] A. Pfefferbaum, E. V. Sullivan, Increased brain white matter diffusivity880

in normal adult aging: relationship to anisotropy and partial voluming,881

Magnetic Resonance in Medicine 49 (5) (2003) 953–961.882

[76] J.-H. Seok, H.-J. Park, J.-W. Chun, S.-K. Lee, H. S. Cho, J. S. Kwon,883

J.-J. Kim, White matter abnormalities associated with auditory halluci-884

nations in schizophrenia: a combined study of voxel-based analyses of885

diffusion tensor imaging and structural magnetic resonance imaging, Psy-886

chiatry Research: Neuroimaging 156 (2) (2007) 93–104.887

[77] N. K. Focke, M. Yogarajah, S. B. Bonelli, P. A. Bartlett, M. R. Symms,888

J. S. Duncan, Voxel-based diffusion tensor imaging in patients with mesial889

temporal lobe epilepsy and hippocampal sclerosis, NeuroImage 40 (2)890

(2008) 728–737.891

[78] F. Wang, J. H. Kalmar, E. Edmiston, L. G. Chepenik, Z. Bhagwagar,892

L. Spencer, B. Pittman, M. Jackowski, X. Papademetris, R. T. Constable,893

et al., Abnormal corpus callosum integrity in bipolar disorder: a diffusion894

tensor imaging study, Biological psychiatry 64 (8) (2008) 730–733.895

[79] I. L. Dryden, A. Koloydenko, D. Zhou, Non-euclidean statistics for co-896

variance matrices, with applications to diffusion tensor imaging, The An-897

nals of Applied Statistics (2009) 1102–1123.898

[80] H.-J. Park, C.-F. Westin, M. Kubicki, S. E. Maier, M. Niznikiewicz,899

A. Baer, M. Frumin, R. Kikinis, F. A. Jolesz, R. W. McCarley,900

et al., White matter hemisphere asymmetries in healthy subjects and in901

schizophrenia: a diffusion tensor MRI study, NeuroImage 23 (1) (2004)902

213–223.903

[81] J. E. Lee, M. K. Chung, M. Lazar, M. B. DuBray, J. Kim, E. D. Bigler,904

J. E. Lainhart, A. L. Alexander, A study of diffusion tensor imaging by905

tissue-specific, smoothing-compensated voxel-based analysis, NeuroIm-906

age 44 (3) (2009) 870–883.907

[82] M. Kyriakopoulos, N. S. Vyas, G. J. Barker, X. A. Chitnis, S. Frangou, A908

diffusion tensor imaging study of white matter in early-onset schizophre-909

nia, Biological psychiatry 63 (5) (2008) 519–523.910
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