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Abstract

Rules are an efficient feature of natural languages which allow speakers to use a
finite set of instructions to generate a virtually infinite set of utterances. Yet, for many
regular rules, there are irregular exceptions. There has been lively debate in cognitive
science about how individual learners acquire rules and exceptions; for example, how
they learn the past tense of preach is preached, but for teach it is taught. However, for
most population or language-level models of language structure, particularly from the
perspective of language evolution, the goal has generally been to examine how languages
evolve stable structure, and neglects the fact that in many cases, languages exhibit ex-
ceptions to structural rules. We examine the dynamics of regularity and irregularity
across a population of interacting agents to investigate how, for example, the irregular
teach coexists beside the regular preach in a dynamic language system. Models show
that in the absence of individual biases towards either regularity or irregularity, the
outcome of a system is determined entirely by the initial condition. On the other hand,
in the presence of individual biases, rule systems exhibit frequency dependent patterns
in regularity reminiscent of patterns in natural language. We implement individual
biases towards regularity in two ways: through ‘child’ agents who have a preference to
generalise using the regular form, and through a memory constraint wherein an agent
can only remember an irregular form for a finite time period. We provide theoretical
arguments for the prediction of a critical frequency below which irregularity cannot
persist in terms of the duration of the finite time period which constrains agent mem-
ory. Further, within our framework we also find stable irregularity, arguably a feature
of most natural languages not accounted for in many other cultural models of lan-
guage structure. Keywords: linguistic rules; morphology; language evolution;
cultural evolution; language development; memory
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1 Introduction

A striking feature of human language is its vast expressive power (Pinker & Jackend-

off, 2005): human languages can convey everything from concrete, specific objects (e.g.,

spacebar) to broad, abstract concepts (e.g., fairness). The rule-based structure of human

languages is key to this expressive power: word formation rules allow for new compounds

(spacebar) or derivations (fairness) that speakers and hearers can readily parse. Rules

allow speakers to use a finite set of instructions to generate scores of valid utterances, and

allow new words to nestle into an existing language seamlessly. For example, knowing a

suite of verb inflection rules even allows speakers to readily integrate entirely new (rather

than derived or compounded) words into common usage (e.g., Google → Googled).

The apparent power of rules raises an interesting question: why are there irregular

exceptions at all? Since rules are both productive and cognitively efficient (Trudgill, 2010;

Gildea & Jurafsky, 1996; Thagard, 2005), why don’t all aspects of a language obey the

dominant rules? In fact, irregularity is so pervasive that irregularities can even creep into

perfectly regular constructed languages like Esperanto (Bergen, 2001). The goal of this

paper will be to engage with this question from a complex systems perspective, asking how

the dynamics of rules function across a language as used by a large population of interacting

individuals, rather than at the level of individual cognitive architecture. Indeed, given the

cognitive efficiency of clean, consistent rules for an individual learner, the persistence of

irregularity requires some explanation which goes beyond the individual learner. Rather

than considering how an individual creates an internal rule-set which accommodates some

exceptions (or multiple rules) in the language they speak, here we focus on how a language

system sustains irregularity despite the individual cognitive efficiency of a single regular

rule.

Many cultural approaches to language have sought to explain the emergence and sus-

tainability of structure or rules across a population (Kirby, Cornish, & Smith, 2008; Kirby

& Hurford, 2002; Steels, 2005; Kirby, Tamariz, Cornish, & Smith, 2015), and some models

of language evolution suggest that individual learner biases for regular rules function pri-

marily reduce irregularity in language (e.g., Reali & Griffiths, 2009). On the other hand,

relatively few models account for the fact that irregularity is also pervasive (for notable ex-

ceptions, see Kirby, 2001; Roberts, Onnis, & Chater, 2005). An influential corpus study in

this area followed this lead, seeking to specify how irregularity decays over time. Lieberman,

Michel, Jackson, Tang, and Nowak (2007) sampled irregular verbs from Old English and
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tracked them through to their modern forms, finding that many of the lower frequency

irregulars had become regular. From this data, they calculate frequency-dependent “half-

lives” for the remaining irregular verbs, suggesting that most irregular verbs are gradualy

regularizing at predictable rates. However, this approach considered only a subset of ir-

regular verbs in Modern English (by confining their set to those that were irregular in Old

English), eliminating the possibility of observing emergent irregularity.

There is a well-documented relationship between irregularity and frequency (Lieberman

et al., 2007; Bybee, 2007; Carrol, Svare, & Salmons, 2012; Cuskley et al., 2014). One likely

explanation for this is that since frequency contributes to overall diachronic stability of

linguistic variants (Pagel, Atkinson, & Meade, 2007; Pagel, Atkinson, Calude, & Meade,

2013), more frequent items are better able to sustain irregularity over time. However, recent

results show that for verbs, “decay” to the regular form is not necessarily inevitable, and

the dynamics of regularity are likely more affected by language growth than regularisation.

Using a large, more recently available historical corpus, Cuskley et al. (2014) were able to

consider a more comprehensive set of English verbs, creating a more detailed picture of the

dynamics of English verb regularity. Cuskley et al. (2014) found that overall, the number of

irregular verbs in English changes little over time, and increases in regularity are primarily

due to the entry of new words which adopt the regular rule, rather than regularization of

irregulars. Furthermore, there are even some cases of irregularization, where new irregular

verbs emerge; for example, in the time period considered (1830-1990), the verbs quit and

light irregularized from quitted and lighted to quit and lit, respectively. These results raise

a new question: since overall, irregularity does not seem to be giving way to regularity,

how does a stable interplay of regularity and irregularity work in a system where there are

individual biases for regular rules?

We present a new model to examine this question, adapted from a similar treatment

of lexical dynamics known as the Naming Game (Steels, 1995; Loreto & Steels, 2007). In

the Naming Game (NG), a population of agents interact over a pre-specified time scale

measured by the number of pairwise games across the population (see also Centola &

Baronchelli, 2015 for an experimental version of the game). In each “game”, two agents

are chosen to interact about a particular meaning, with one agent randomly assigned the

role of speaker (S) and the other the role of hearer (H). The interaction consists of

two core steps: (1) S chooses a string (either randomly or from an inventory acquired in

previous games) to represent the given meaning and sends it to H, (2) both S and H

update their vocabularies depending on whether they share the string-label pairing for the
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given meaning1. Using this simple model, populations which are initially unsuccessful at

communication, having a broad range of random labels for a particular meaning, eventually

converge on shared conventions to refer to meanings.

While the original NG investigates how agent interaction leads to convergence on nam-

ing conventions, the current investigation adapts this general framework to focus on how a

population of agents converges on shared rules or exceptions for a particular type. We be-

gin by outlining the basic structure of the models, and presenting previous findings showing

how dynamics for rules function in the most basic case: where agents’ inventories can be

altered only through interaction, with no biases favouring either the regular or the irreg-

ular form. We then consider two more complex cases where agents have individual biases

towards the regular form. First, we consider a child learner bias, implemented as a rate of

replacement of “mature” agents with “child” agents who have a bias towards the regular

form for verbs which they have not encountered (i.e., are Stage 2 learners as outlined in

Rumelhart & McClelland, 1986). Second, we consider a more general memory constraint,

wherein agents retain forms only for a particular temporal window, falling back on the

regular form when this window has elapsed.

2 Method

We use a minimal model adapted from the NG to investigate the dynamics of rules in

competition over time, under the conditions of a homogeneous mixed population with

fixed size2. The model consists of N agents interacting over verb types defined by their

frequency, f . For each agent, a lemma can potentially have one of three inflectional states:

regular (R), irregular (I), or mixed (M).

In the mixed state, agents have a coexistent inventory of the R and I states, much like

for some verbs (e.g., sneak) where English speakers find both regular (sneaked) and irregu-

lar (snuck) variants somewhat acceptable (Dale & Lupyan, 2012), and may even use them

in seemingly free variation (Pinker & Prince, 1994). This implementation conceptualises

1Update rules for this step can be as simple as the H discarding their previous inventory and adopting
the S’s form (Baronchelli, Felici, Caglioti, Loreto, & Steels, 2006; Baronchelli, Loreto, & Steels, 2008), or
can be more complex, involving different weights for forms over time depending on their communicative
success in previous interactions (Wellens, Loetzch, & Steels, 2008).

2See e.g., Dall’Asta, Baronchelli, Barrat, & Loreto, 2006 for the minimal NG version on more complex,
realistic networks; here we focus on the simplest population architecture in order to get a basic picture of
rule dynamics.
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Before After

Speaker Hearer Speaker Hearer

R R → R R

R I → R M

R M → R R

I R → I M

I I → I I

I M → I I

M(R) R → R R
M(I) R → M M

M(R) I → M M
M(I) I → I I

M(R) M → R R
M(I) M → I I

Table 1: Rules for interaction in the model. A speaker in the mixed state chooses to
utter the R or I inflection with equal probability. Throughout the paper, M(R) indicates
an agent in the mixed state who choses a regular inflection for an utterance, while M(I)
indicates a mixed agent who choses an irregular inflection for an utterance.

regular and irregular inventories simply as different rules, allowing for the coexistence of

competing rules within a single individual in the form of the M state (i.e., intraspeaker

variation). The existence of the M state not only has psychological and linguistic validity,

but analytical results show that it is crucial to recovering the type of frequency dependent

transition observed in actual data (Colaiori et al., 2015).

Table 1 shows the interaction rules adapted from the basic NG (Baronchelli et al.,

2006), and more broadly applicable to three-state dynamics in other realms (Colaiori et

al., 2015).

At each interaction, a speaker (S) and a hearer (H) are randomly chosen from the

population to engage in an interaction according to the rules outlined above. At any given

interaction, the probability of interacting over a particular lemma is defined by its f . In

other words, if a lemma’s f = 0.1, the lemma will be the topic of one in every 10 interactions

on average. We consider a total of N interactions to encompass a single time step, t. For

all agent-based simulations, we examine an N = 1000 and tmax = 10, 000 (i.e., a total of

N × tmax interaction events). We characterize the stable end state of a system in terms of

the proportion of agents in the population with an irregular inflection (ρsI).
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3 Results & Discussion

3.1 Basic dynamics

Prior to investigating mechanisms of replacement and memory constraints, it is important

to understand the case where no such mechanisms operate. This is analogous to the basic

Naming Game (NG) outlined in Baronchelli et al. (2008), and covered in more detail with

respect to regularity by Colaiori et al. (2015). We provide a brief treatment of this case here,

in order to better understand the dynamics which result from implementing replacement

and memory constraints.

Without any mechanisms to bias agents towards the regular or irregular form, and given

that interaction rules favour no particular inflectional state (as outlined in Table 1), the

end state of a rule system is dependent entirely on the initial condition of the population.

In other words, the f of a lemma has no bearing on its regularity. Instead, the proportion of

starting agents with a regular or irregular inflection determines the end regularity state (a

process generally true of three-state systems of interaction with unbiased rules; Baronchelli

et al., 2008, Colaiori et al., 2015). Any given system - and every lemma in that system,

regardless of its frequency - eventually converges on a stable solution which is either entirely

regular or entirely irregular, with no remaining agents in the M state.

If the population is very large, the relationship between the initial ρI and ρR gives a

deterministic prediction of the end state: if ρ0
I > ρ0

R (or ρ0
R > ρ0

I), the system unavoidably

resolves to an irregular (or regular) stationary state(Colaiori et al., 2015). As the popu-

lation size N becomes smaller, the criterion becomes probabilistic. In other words, for a

starting ρI > ρR, the system will have a higher probability of converging to an irregular

state, while given a starting ρI < ρR, the system will have a higher probability of con-

verging to an entirely regular state. Figure 1 shows how different starting ρI and ρR drift

toward an end state that is entirely regular or irregular, with the outcome becoming more

deterministic as the population size increases (see Colaiori et al., 2015 for further detail).

In summary, this basic model shows that, under these simple conditions, the regularity of a

given lemma is unrelated to its frequency, and dependent only on the relationship between

initial ρI and ρR across the population.

This means that a population of agents with no implementation of individual cognitive

biases towards regularity does not give rise to a system with a frequency dependent tran-

sition. In other words, interaction and coordination among agents with no biases cannot
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Figure 1: Basic dynamics. Plot of the probability to end in a fully irregular state
as a function of the initial fraction of irregulars, for several population sizes N . Under
conditions of simple interaction according to rules outlined in Table 1, a rule system resolves
to either an entirely regular or irregular state. For a very large population, the end state is
determined univocally by the the majority in the initial state: the system resolves to the
R state if ρ0

I < 1/2, and to the I state if ρ0
I > 1/2. For smaller populations the transition

is smoother.

recover the transition observed in rule dynamics in natural language (Cuskley et al., 2014;

Lieberman et al., 2007; Bybee, 2007). Like earlier NG studies, this result suggests that

individual biases combine with interaction in non-trivial ways to produce features found

in natural language systems (Puglisi, Baronchelli, & Loreto, 2008; Loreto, Mukherjee, &

Tria, 2012).

3.2 Child learner bias

Child learners have a bias towards regular forms during early learning (i.e., are Stage 2

learners after Rumelhart & McClelland, 1986). In other words, children tend to follow a

U-shaped learning curve (Gershkoff-Stowe & Thelen, 2004) wherein their inflection perfor-

mance is at first very high as a result of rote learning a finite set of items, but as this set

grows they begin to engage in rule generalisation and over-regularise some verbs in produc-
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tion (e.g., produce “goed” instead of “went”; see Maslen, Theakston, Lieven, & Tomasello,

2004).

We implement biased “child” agents entering the model through simple replacement :

“adult” agents are replaced at a probabilistic rate, r. Practically, this is implemented by

choosing a single agent from the population randomly at each interaction, and replacing

them with a probability r = 0.01, such that at a given interaction there is a 1% chance

that a random “adult” agent will be replaced with a child. In order to keep the model

minimal, we do not consider growth of the population; rather, r is envisioned more usefully

as a constant rate of turnover in a population with a fixed size. Analytical results show

that the relationship between r and f (frequency) is most relevant (Colaiori et al., 2015),

therefore we explore a single value of r (r = 0.01) over a range of frequencies.

As with the basic model outlined in the previous section, the end state of a system is

at least partially dependent on the starting condition. However, introducing replacement

also introduces frequency dependence, giving different outcomes in regularity for different

lemmas as a function of their f . Figure 2 shows the probability that a given run will end in

a state with a positive fraction of irregularity (ρsI), as well as the average stable end value

of ρsI for several values of ρ0
I .

The case ρ0
I = 1 is particularly interesting to test what happens to irregular verbs over

time, particularly given previous claims that irregular verbs decay slowly to the regular

form (Lieberman et al., 2007). The behaviour of the case where ρ0
I = 1 displays a clear

discontinuous change in regularity in agreement with analytical models (Colaiori et al.,

2015) and more reminiscent of the patterns found more recently in natural language data

(Cuskley et al., 2014). In other words, under some conditions, highly frequent verbs sta-

bilise indefinitely in a predominantly irregular state. All verbs below a certain frequency

f ≈ 0.16 become completely regular3. As the fraction of irregulars in the initial condition

becomes smaller, the shift to regularity occurs for larger frequencies and is less abrupt. If

the initial fraction of irregulars gets smaller than a threshold of ≈ 0.38 all verbs become

fully regular, regardless of their frequency.

3Note that even for highly frequent forms, no lemma exhibits complete irregularity, even at the highest
values of f , due to the constant rate of R biased “child” agents entering the population (this could be
considered analogous to the roughly 4% over-regularisation rate found in corpora of child speech; Marcus,
1996)

8
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the probability that the system will end up in a state with some positive fraction of ir-
regularity (ρsI) plotted against frequency, f . Results for three different initial fractions of
irregularity are shown (ρ0

I). The graph on the right shows the average stable end state
value of ρsI as a function of f , again for three different initial values of ρ0

I . These show
that a certain level of irregularity is necessary in order for it to stabilise and persist within
the population, demonstrating that the initial condition has some bearing on the final
state. However, systems with sufficient initial irregularity, >≈ 0.38 display clear frequency
dependent transitions.

3.3 Memory constraints

In this model, we implement constraints on individual agents’ memory: accurate recall

of an inflection relies both on the cumulative number of encounters with a lemma as

well as time elapsed since last encounter (Rodi, Loreto, Servedio, & Tria, 2015; Novikoff,

Kleinberg, & Strogatz, 2012). Earlier work on individual learning models of the past tense

in English have shown memory constraints, particularly as they relate to frequency, to be

an important factor in over-regularisation errors in children (Marcus, 1996). However, this

memory constraint can be considered domain general, applying not only for linguistic rules,

but also, for example, to visual memory (Logie, 2014), as well as more complex learning

tasks (e.g., studying an academic subject, Rodi et al., 2015).

The memory constraint is implemented in terms of deterministic loss of the irregular

form (and reversion to the regular form) after a certain amount of time, unless the agent

is involved in irregular interactions with the lemma, thus refreshing her memory. In other

words, each agent has a time window, W , for each lemma within which they can recall

the I form. Each time an agent encounters a lemma, there is a refresh event: the time

9
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of last encounter, tl, is re-set to the current time, and total elapsed time since the last

irregular encounter, τ , is updated: τ = t − tl. At every interaction, if τ > W , then the

temporal window has elapsed and the agent will revert to the R form (although I can be

re-acquired through interaction; see Table 1). As with the previous model, we assume a

fixed population size.

Under these conditions, the initial value of the window for each lemma largely deter-

mines the behaviour of different frequencies, much like the value for r in the replacement

model. For the following models we consider a Wt0 = 100, and provide a more general

theoretical treatment which can account for other values of Wt0 in Appendix A. When

the value of W is fixed, this results in transitional outcomes reminiscent of replacement.

Allowing the value of W to grow linearly dependent on the total number of encounters

with a verb, k, shifts the transition frequency.

Figure 3 shows results for a fixed W = W(t=0) = 100. The resulting dynamics look

much like replacement, although the location of the frequency dependent transition is lower,

given that the effective rate of reversion to the R form is lower than for r = 0.01, an issue

which is covered in more detail in Appendix A. For a system which starts in the completely

irregular state, the transition occurs between 0.015 < fc < 0.02. This transition is slightly

shifted with a lower ρ0
I = 0.6, while for a ρ0

I = 0.3 no irregularity remains in the system at

all.

Figure 3: Regularity game with a fixed forgetting window. The graph on the left
shows the probability that the system will end up in a state with some positive fraction of
irregularity (ρsI) plotted against frequency, f . Results for three different initial fractions
of irregularity are shown (ρ0

I). The graph on the right shows the average value of ρsI as a
function of f , again for three different initial values of ρ0

I . Results for a fixed forgetting
window are almost identical to replacement.
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In the basic case of forgetting presented above, agents have a static value of W deter-

mined at the start of the simulation and constant across all lemmas. Here, we test the

condition where the window for a given lemma in an agent expands each time the lemma

is encountered. This is reminiscent of expanded retrieval and spacing effects in memory,

wherein information is better retained when the intervals at which it is reinforced are op-

timally spaced and/or expand with each reinforcement (Baddeley, 1997). Such effects are

not only domain general, but have also been shown to hold for learning in other animals

(e.g., rats and pigeons; Balota, Duchek, & Logan, 2007), and have been confirmed in the-

oretical models (see e.g., Novikoff et al., 2012 for the spacing effect and e.g., Ebbinghaus,

1885 for expanded retrieval) as well as artificial learning networks (Rodi et al., 2015). Here

we implement an increase in W linearly as a function of k, the total number of irregular

interactions an agent has had with a lemma (such that Wt = W(t=0) + k). Even this mod-

erate expansion of W shifts the location of the transition: lower frequencies are able to

remain irregular where they eventually regularised given a static value of W (Figure 4).

Figure 4: Regularity Game with linear expansion of the forgetting window. The
graph on the left shows the probability that the system will end up in a state with some
positive fraction of irregularity (ρsI) plotted against frequency, f . Results for three different
initial fractions of irregularity are shown (ρ0

I). The graph on the right shows the average
value of ρsI as a function of f , again for three different initial values of ρ0

I . In this case,
where the forgetting window is expanded, the frequency at which lemmas can remain
regular given an entirely regular start state (ρ0

I = 0) reduces considerably, from f ≈ 0.02 in
3 to f ≈ 0.016. The stable end state with an expanding window also exhibits an important
qualitative difference: verbs resolve to either entirely regular or irregular states.

More importantly, each f in a given system with an expanding window resolves to a

completely regular or irregular state, with no agents remaining in the M state. Therefore,

11
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in the case of an expansion of W , P(ρsI > 0) (in Figure 4, left) can be conceptualised as the

probability that a given system will resolve to a completely irregular state. Accordingly,

the mean value of ρsI is either 1 or 0 in all cases (Figure 4, right). The discontinuous

transition is more abrupt with expansion (with ρI = 0 or 1 for all verbs) than for static W

or replacement, since some verbs remain entirely irregular given a high enough frequency.

A comparison of no expansion and linear expansion shows that lemmas which would

regularise without expansion remain irregular if W expands. Figure 5 shows a time series

of linear expansion. The stabilisation of the irregular state for f = 0.016 is particularly

evident in a time series, which shows a dip indicating that agents begin to revert to the

regular form, but in re-encountering the irregular form in interaction, their windows expand

and the lemma recovers to the fully irregular form across the population4. While this

frequency best illustrates important differences between a static W and a value of W which

grows linearly, the specific value of f which illustrates this is dependent primarily on the

initial value of W across the population (much as the critical frequency in the replacement

model is dependent on the value of r). Appendix A provides a broader framework which

can account for alternative values of W .

4 Discussion & Conclusions

Using the mechanisms of replacement and general memory constraints, our models have

shown that individual biases combined with interaction among a population lead to system-

wide rule dynamics where highly frequent items can remain stably irregular. These results

indicate that the sort of frequency-dependent decay predicted by Lieberman et al. (2007)

only occurs below a certain frequency threshold. Moreover, the patterns observed echo

those found in a larger, more detailed diachronic sample of English (Cuskley et al., 2014).

Both a constant influx of child learners in a population and individual constraints on agent

memory lead to a discontinuous transition in regularity, with more frequent verbs retain-

ing a stable irregular form while less frequent verbs tend to regularise. In accordance

with results for child learner bias, we found that memory constraints lead to a system

where different initial conditions and specific frequencies resolve to (ir)regularity with a

probability, rather than deterministically. In other words, two separate language systems

with the same initial conditions may resolve to completely different outcomes for the same

4More extreme expansion of the window (e.g., quadratic expansion, Wt = Wt(last) + k2, or exponential
Wt = W + 2k) leads to dynamics similar to linear expansion, although effects are more extreme.
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Figure 5: Time series of ρI for f = 0.016 for the Naming Game models with no expansion
and linear expansion. In the case of expansion, the lemma begins to regularise and then
recovers to the irregular form around t = 150 as agents’ windows start to expand.

frequency. Extending these findings into a more detailed theoretical framework , we can es-

timate the critical transition frequency of a language system given a particular replacement

rate (Colaiori et al., 2015) or specific memory constraints (Appendix A).

These models represent an initial step in understanding the dynamics of linguistic rules

which function across complex populations. Our goal was to make this first step simple

by considering a small, closed population which is homogenously mixed. However, in the

future, this approach could be used to examine how different social network structures may

lead to divergent linguistic rules (e.g., burnt in British English and burned in American

English; Michel et al., 2011), how different types of learners might affect rule dynamics

differently (Cuskley et al., 2015), and how linguistic rules evolve and spread over growing or

shrinking populations. This framework could be expanded to examine more general cases

of contact dynamics in language (Weinreich, 1963; Thomason, 2001; Bakker & Matras,

2013), with the potential to address specific quantitative questions in sociolinguistics. For

instance, similar models can be used to probe mechanisms involved in the Linguistic Niche

Hypothesis (Lupyan & Dale, 2010): whether an influx of non-native adult speakers leads

to decreased morphological complexity (Cuskley & Loreto, 2016), or indeed, how linguistic
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rules and systems diverge to the point language speciation (e.g., Creoles and Pidgins;

Michaelis, Maurer, Haspelmath, & Huber, 2013; Tria, Servedio, Mufwene, & Loreto, 2015).

Finally, this framework could extend to examine rules beyond the morphological level,

looking at how syntactic regularity emerges at the word order and grammatical levels

(Morgan & Levy, 2015; Givon, 2014).

The individual mechanisms at work could also be further specified, by giving “child”

agents more nuanced biases refined by learning, or refining the memory window to be more

commensurate with actual memory systems. Finally, these two biases could be combined

to investigate the differences between child and adult learners, with different memory

constraints to account for differences in child and adult language acquisition (Gathercole

& Baddeley, 2014; Cuskley et al., 2015). More generally, while our models sought to

examine the dynamics of existing rule sets over time, a further step would be to extend

work examining how rules and exceptions emerge in the first place (Kirby, 2001; Roberts

et al., 2005), a question with particular relevance for language evolution (Michel et al.,

2011). Our application of the NG framework to linguistic rules highlights broadly how

agent-based models of interaction, coordination, and cultural transmission can be applied

to a diverse array of collective linguistic, cultural, and cognitive phenomena.
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A Theoretical treatment

Results from 3.3 in the main text show that implementing memory constraints yields

a patterns similar to those in the replacement case. To understand important subtle

differences between replacement and a static window, we provide a more detailed theoretical

treatment here. This treatment allows for some predictions of the behaviour of a system,

particularly in terms of the transition frequency at which verbs regularise, for different

values of W other than the somewhat arbitrary value of W = 100 used in the simulations

presented in the main text.
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W plays a role analogous to the inverse of the replacement rate (1/r) in the replacement

model: for each verb, in a time interval 1/r, on average, one agent reverts to the regular

state. According to this argument one should expect a transition at a critical frequency,

fc:

fc =
1

Wnc
. (1)

In comparison with simulation results (see Fig. 6) shows that the prediction of Eq. 1

correctly captures the broad dependence of the transition frequency on the forgetting time

W . However, there is also a considerable mismatch: the theoretical prediction is approxi-

mately 10 times larger than the value obtained in the simulations.

This discrepancy is due to the fact that even though W has a constant value, the total

time spent by an agent in the irregular state before forgetting is larger than W . To account

for this, we define as Weff the typical effective time for an agent to forget the irregular form

of a lemma. Inserting its value in Eq. 1 provides a more accurate estimate of the transition

frequency:

fc =
1

Weff(fc)nc
, (2)

where we have made explicit the dependence of Weff on f . Since Weff ≥W , Eq. 2 predicts

a critical frequency smaller than Eq. 1.

This provides a formula (Eq. 9) for the value of Weff as a function of W and f . Inserting

this expression into Eq. 2 one obtains a nonlinear equation for the frequency fc, which can

be easily solved graphically (plotting the left and right hand sides of the equation separately

as a function of f and determining the intersection point) for any value of W . The values

obtained in this way are compared with simulation results in Fig. 6, displaying a much

better agreement than the naive theory5 (Eq. 1).

The effective time Weff necessary for an agent to forget the irregular form of a lemma

can roughly be estimated as:

Weff ' 〈te〉nr (3)

Here 〈te〉 is the average number of time steps separating two successive refresh events, while

nr is the average number of such refresh events before a forgetting event.

5The analytical estimates are off by a factor ≈ 1.5, which is acceptable in this case, given that the theory
includes no fitting parameters.
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Figure 6: Behaviour of fc vs. W . Comparison of the transition frequency fc (in the
case of no expansion, black circles) determined in simulations as a function of W , with
theoretical estimates obtained with a naive theory (Eq. 1, green diamonds) and a more
refined theory (blue triangles). For completeness also the value of fc in the case of linear
expansion is displayed (Eq. 2, red squares).
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To compute these two quantities we start by defining pnot, the probability of not having

a refresh event at a given time; pWnot is then the probability to forget before a refresh event

occurs. Hence the probability pr that a given agent will experience a refresh event before

forgetting is:

pr = 1− pWnot. (4)

The probability to have a refresh event at a given time is proportional to the interaction

frequency f and to the effective density of irregulars in the population. This effective

density is best captured as ρI +ρM/2, since agents in the M state have an equal probability

of using the R or I form in interaction. Given this, we can estimate pnot as pnot '
1− f(ρI + ρM/2). This allows us to calculate the average number of refresh events before

a forgetting event occurs:

nr =

∞∑
k=0

kpkr (1− pr) , (5)

and the average time between two successive refresh events as:

〈te〉 =

W−1∑
k=0

kpknot(1− pnot) (6)

that after some algebra turn out to be

nr = pr/(1− pr) = (1− pWnot)/pWnot , (7)

and

〈te〉 = (1− pWnot)/(1− pnot)−WpW−1
not . (8)

Inserting the results for nr and for 〈te〉 into Eq. 3 we get

Weff '
(1− pWnot)2

pWnot(1− pnot)
− W (1− pWnot)

pnot
, (9)

with

pnot ' 1− f
(
ρI +

ρM
2

)
. (10)

17



PR
EP
RI
NT

References

Baddeley, A. D. (1997). Human memory: Theory and practice. Psychology Press.
Bakker, P., & Matras, Y. (2013). Contact languages: A comprehensive guide. De Gruyter

Mouton.
Balota, D. A., Duchek, J. M., & Logan, J. M. (2007). The foundations of remembering:

Essays in honor of henry l. roediger, iii. In J. S. Nairne (Ed.), (p. 83-105). New York,
NY: Psychology Press.

Baronchelli, A., Felici, M., Caglioti, E., Loreto, V., & Steels, L. (2006). Sharp transition
towards shared vocabularies in multi-agent systems. Journal of Statistical Mechanics,
P06014 .

Baronchelli, A., Loreto, V., & Steels, L. (2008). In-depth analysis of the naming game
dynamics: the homogenous mixing case. International Journal of Modern Physics
C , 19 (5), 785-812.

Bergen, B. (2001). Nativization processes in l1 esperanto. Journal of Child Language, 28 ,
575-595.

Bybee, J. (2007). Frequency of use and the organization of language. Oxford, UK: Oxford
University Press.

Carrol, R., Svare, R., & Salmons, J. (2012). Quantifying the evolutionary dynamics of
German verbs. Journal of Historical Linguistics, 2 (2), 153-172.

Centola, D., & Baronchelli, A. (2015). The spontaneous emergence of
conventions: An experimental study of cultural evolution. Proceed-
ings of the National Academy of Sciences, 112 (7), 1989-1994. Re-
trieved from http://www.pnas.org/content/112/7/1989.abstract doi:
10.1073/pnas.1418838112

Colaiori, F., Castellano, C., Cuskley, C., Loreto, V., Pugliese, M., & Tria, F. (2015, Jan).
General three-state model with biased population replacement: Analytical solution
and application to language dynamics. Phys. Rev. E , 91 , 012808. Retrieved from
http://link.aps.org/doi/10.1103/PhysRevE.91.012808 doi: 10.1103/Phys-
RevE.91.012808

Cuskley, C., Colaiori, F., Castellano, C., Loreto, V., Pugliese, M., & Tria, F. (2015).
The adoption of linguistic rules in native and non-native speakers: Evidence from
a wug task. Journal of Memory and Language, 84 , 205 - 223. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0749596X15000790 doi:
http://dx.doi.org/10.1016/j.jml.2015.06.005

Cuskley, C., & Loreto, V. (2016). The emergence of rules and exceptions in a population
of interacting agents. In S. Roberts, C. Cuskley, L. McCrohon, L. Barcelo-Coblijn,
O. Feher, & T. Verhoef (Eds.), The evolution of language: Proceedings of the 11th
international conference.

Cuskley, C., Pugliese, M., Castellano, C., Colaiori, F., Loreto, V., & Tria, F. (2014, 08).
Internal and external dynamics in language: Evidence from verb regularity in a histor-

18



PR
EP
RI
NT

ical corpus of english. PLoS ONE , 9 (8), e102882. doi: 10.1371/journal.pone.0102882
Dale, R., & Lupyan, G. (2012). Understanding the origins of morphological diversity: The

linguistic niche hypothesis. Advances in Complex Systems, 15 (03n04), 1150017.
Dall’Asta, L., Baronchelli, A., Barrat, A., & Loreto, V. (2006). Nonequilibrium dynamics

of language games on complex networks. Physical Review E , 74 (3), 036105.
Ebbinghaus, H. (1885). Memory: a contribution to experimental psychology. New York,

NY: Columbia Teachers College. (trans. H. A. Ruger and C. E. Bussenius, Teachers
College at Columbia University, 1913)

Gathercole, S., & Baddeley, A. (2014). Working memory and language processing. New
York, NY: Psychology Press.

Gershkoff-Stowe, L., & Thelen, E. (2004). U-shaped changes in behaviour: A dynamic
systems perspective. Journal of Cognition and Develeopment , 5 (1), 11-36.

Gildea, D., & Jurafsky, D. (1996). Learning bias and phonlogical-rule induction. Compu-
tational Linguistics, 22 (4), 497-530.

Givon, T. (2014). On understanding grammar. Academic Press.
Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning model

of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary
Computation, 5 (2), 102-110.

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory:
an experimental approach to the origins of structure in human language. Proceedings
of the National Academy of Sciences, 105 (31), 10681-10686.

Kirby, S., & Hurford, J. R. (2002). Simulating the evolution of language. In (p. 121-147).
Springer.

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communica-
tion in the cultural evolution of linguistic structure. Cognition, 141 , 87–102. doi:
10.1016/j.cognition.2015.03.016

Lieberman, E., Michel, J.-B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying
the evolutionary dynamics of language. Nature, 449 (2007).

Logie, R. H. (2014). Visuo-spatial working memory. New York, NY: Psychology Press.
Loreto, V., Mukherjee, A., & Tria, F. (2012). On the origin of the hierarchy of

color names. Proceedings of the National Academy of Sciences, 109 (18), 6819-
6824. Retrieved from http://www.pnas.org/content/109/18/6819.abstract doi:
10.1073/pnas.1113347109

Loreto, V., & Steels, L. (2007). Social dynamics: emergence of language. Nature Physics,
3 (11), 758-760.

Lupyan, G., & Dale, R. (2010, 01). Language structure is partly determined by social
structure. PLoS ONE , 5 (1), e8559.

Marcus, G. F. (1996). Why do children say “breaked”? Current Directions in Psychological
Science, 5 , 81-85.

Maslen, R. J., Theakston, A. L., Lieven, E. V., & Tomasello, M. (2004). A dense cor-
pus study of past tense and plural overregularization in english. Journal of Speech,

19



PR
EP
RI
NT

Language, and Hearing Research, 47 , 1319-1333.
Michaelis, S. M., Maurer, P., Haspelmath, M., & Huber, M. (Eds.). (2013). Apics on-

line. Leipzig: Max Planck Institute for Evolutionary Anthropology. Retrieved from
http://apics-online.info/

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team,
T. G. B., . . . Aiden, E. L. (2011). Quantitative analysis of culture us-
ing millions of digitized books. Science, 331 (6014), 176-182. Retrieved from
http://www.sciencemag.org/content/331/6014/176.abstract doi: 10.1126/sci-
ence.1199644

Morgan, E., & Levy, R. (2015). Modeling idosyncratic preferences: How generative knowl-
edge and expression frequency jointly determine language structure. In Proceedings
of the 37th annual metting of the cognitive science society (p. 1649-1654).

Novikoff, T. P., Kleinberg, J. M., & Strogatz, S. H. (2012). Education of a model student.
PNAS , 109 (6), 1868–73.

Pagel, M., Atkinson, Q. D., Calude, A., & Meade, A. (2013). Ultraconserved words point
to deep language ancestry across Eurasia. Proceedings of the National Academy of
Sciences, 110 (21), 8471-8476.

Pagel, M., Atkinson, Q. D., & Meade, A. (2007). Frequency of word-use predicts rates of
lexical evolution throughout indo-european history. Nature, 449 , 717-720.

Pinker, S., & Jackendoff, R. (2005). The faculty of language: what’s special about it?
Cognition, 95 (2), 201-236.

Pinker, S., & Prince, A. (1994). Regular and irregular morphology and the psychological
status of rules of grammar. In S. D. Lima & R. L. (Eds.), The reality of linguistic
rules (p. 321-352). Philadelphia: John Benjamins.

Puglisi, A., Baronchelli, A., & Loreto, V. (2008). Cultural route to the emergence of
linguistic categories. Proceedings of the National Academy of Sciences, 105 (23), 7936-
7940. Retrieved from http://www.pnas.org/content/105/23/7936.abstract doi:
10.1073/pnas.0802485105

Reali, F., & Griffiths, T. (2009). The evolution of frequency distributions: Relating
regularisation to inductive biases through iterated learning. Cognition, 111 (3), 217-
328.

Roberts, M., Onnis, L., & Chater, N. (2005). Acquisition and evolution of quasiregular
languages: Two puzzles for the price of one. In M. Tallerman (Ed.), Language origins:
Perspectivs on evolution (p. 334-356).

Rodi, G. C., Loreto, V., Servedio, V. D. P., & Tria, F. (2015, 06 01). Optimal learning
paths in information networks. Scientific Reports, 5 , 10286 EP -. Retrieved from
http://dx.doi.org/10.1038/srep10286

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of english
verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing
(vol 2): Psychological and biological models (p. 216-271). Cambridge: MIT Press.

Steels, L. (1995). A self-orgnaizing spatial vocabulary. Artificial Life, 2 (3), 319-332.

20



PR
EP
RI
NT

Steels, L. (2005). The emergence and evolution of linguistic structure: from lexical to
grammatical communication systems. Connection Science, 17 (3-4), 213-230. doi:
10.1080/09540090500269088

Thagard, P. (2005). Mind: Introduction to cognitive science. Cambridge, MA: MIT Press.
Thomason, S. (2001). Language contact. Edinburgh University Press.
Tria, F., Servedio, V. D., Mufwene, S. S., & Loreto, V. (2015). Modeling the emergence

of contact languages. PLoS ONE , 10 (4), e0120771.
Trudgill, P. (2010). Investigations in sociohistorical linguistics. Cambridge, UK: Cambridge

University Press.
Weinreich, U. (1963). Languages in contact: findings and problems. Mouton.
Wellens, P., Loetzch, M., & Steels, L. (2008). Flexible word meaning in embodied agents.

Connection Science, 20 (2-3), 173-191.

21


