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The development of polymeric materials with cell adhesion abilities requires an understanding 

of cell–surface interactions which vary with cell type. To investigate the correlation between 

cell attachment and the nature of the polymer, a series of random and block copolymers 

composed of dimethyl amino ethyl acrylate and ethyl acrylate were synthesized through single 

electron transfer living radical polymerization. The polymers were synthesized with highly 

defined and controlled monomer compositions and exhibited narrow polydispersity indices 

(PDI)s. These polymers were examined for their performance in the attachment and growth of 

HeLa and HEK cells, with attachment successfully modeled on monomer composition and 

polymer chain length, with both cell lines found to preferentially attach to moderately 

hydrophobic functional materials. The understanding of the biological-material interactions 

assessed in this study will underpin further investigations of engineered polymer scaffolds with 

predictable cell binding performance. 
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1. Introduction  

Polymers have been extensively studied as substrates for cell culture,[1-5] with the development 

of high-throughput polymer based microarrays enabling the simultaneous screening of 

thousands of different polymeric materials with different mechanical and chemical 

properties.[6,7] High-throughput approaches have led to the discovery of biomaterials with 

potential applications in different fields (i.e. substrates for control of stem cell culture,[8-11] 

platelet activation[12] and stabilization of hESC derived functional hepatocytes[13]).  Differential 

cell adhesion has previously been shown to be based upon a materials’ chemical, physical and 

mechanical properties,[14-16]  with the broadly accepted first steps of the mechanism of cell 

attachment onto polymer surfaces being the adsorption of proteins onto a polymer with this 

“hard attachment”  (or corona) followed by a more dynamic “softer” layer, with interactions 

between cells and these proteins.[17,18] A number of theories have been developed to explain 

this process of cell-adhesion with the goal of establishing a predictive basis for cell binding, 

and to explain how the sub-stratum surface properties so profoundly affect cell-material 
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interactions and cellular differentiation.[6,19-21] Factors such as material topography,[22,23] surface 

wettability,[24,25] free energy,[26] surface stiffness entwined with surface chemistry play a key 

role in the cell adhesion mechanism as well as influence cell behavior and differentiation. The 

control of such chemical and physical properties is a critical point which needs to be addressed 

to allow a better understanding to be obtained and allow finer control of cell-material 

interactions. This would be translated into the ability to develop materials that are able to 

achieve specific biological functions, such as the control of proliferation or differentiation, 

whilst clarifying our understanding of polymer cell-binding properties.[27] The chemical 

composition of the substrate is fundamental for correct protein adsorption onto the materials 

surface. Block copolymers represent an interesting approach to the modulation of chemical 

surface due to their ability to form chemically different polymer segments and to self-assemble 

generating nano-scale morphologies.[28,29] Despite block copolymers having interesting 

properties and the potential to be used for the tuning of synthetic substrates’ surface, limited 

work has been done to explore the possible surface-cell interaction.[30] 

Thus here a small library of highly defined, well-characterized polymers was synthesized based 

on two different monomers with varying monomer composition, polymer structure, and chain 

length. Single-electron transfer living radical polymerization (SET-LRP) has been used to 

produce well-defined polymers using a number of different monomers including acrylates, 

acrylamides and methacrylates and co and multi-block copolymers with complete monomer 

conversion.[31-33] In order to generate polymers that could be used in such a systematic study, 

SET-LRP was explored using the monomers dimethylamino ethyl acrylate (DMAEA) and ethyl 

acrylate (EA) (as these have previously been shown to interact with cells[34]) with all polymers 

purified and characterized by gel permeation chromatography (GPC) and nuclear magnetic 

resonance (NMR).  

 



    

 - 4 - 

2. Experimental Section  

 

2.1. Materials  

 

2-Bromo-2-methyl-propionic acid benzyl ester initiator was synthesized as previous 

described.[35] Ethyl acrylate (EA) (99%, Acros) and dimethylamino ethyl acrylate (DMAEA) 

(98%, Sigma-Aldrich) was passed over a short-column of basic Al2O3 before use in order to 

remove the radical inhibitor. NMR experiments were carried out on a Brüker Pro500 

spectrometer. Molar mass distributions were measured by size exclusion chromatography 

(SEC), on a system equipped with two Polymer Laboratory GPC columns (PL gel 5 μm mixed 

D-columns, 300 x 7.5 mm) and one PL gel 5 μm guard column (50 x 7.5 mm) (Polymer 

Laboratories, suitable for molecular weights between 200 and 400,000 g mol-1) with differential 

refractive index detection using N, N-dimethylformamide (DMF) / 0.1M LiBr at 1 mL min-1 as 

the eluent with the temperature set at 60 ºC. Poly(MMA) standards were used to calibrate the 

SEC. Cell imaging was carried out on a Zeiss semi-confocal microscope, with cell culture 

reagents purchased from Invitrogen unless otherwise stated. 

 

2.2. Polymerizations 

 

The polymerizations were carried out using the same monomers, initiator and ligand with the 

amounts of each monomer varied for each polymerization (see supporting information).  

Dimethylamino ethyl acrylate (DMAEA) (1.0 ml, 6.58 mmol), ethyl acrylate (EA) (0.35 ml, 

3.30 mmol), initiator (14.6 µl, 0.131 mmol), Me6TREN (7.0 µl, 0.0263 mmol), and DMSO (1 

ml) were added to a Schlenk flask and degassed under nitrogen for 30 minutes. 10 cm of copper 

wire (20 gauge wire, 0.812 mm diameter, Fischer) was placed in 2,2,2-trifluoroethanol (TFE, 2 
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ml (>99%, Alfa-Aesar) degassed) and left for 30 minutes according to the method of 

Haddleton.[33] The copper wire was washed with THF and ethanol, dried under vacuum for 10 

minutes, and added to the reaction flask (with the monomer and initiator) and left for 4 hours. 

To precipitate the polymer, the solution was firstly dissolved in THF and then filtered through 

a basic aluminium oxide column to remove traces of copper. The polymer was precipitated 

from the solution by the addition of water/ethanol (1:2) and the polymer recovered by 

centrifugation and dried in a vacuum oven overnight.  For sampling for conversion, a degassed 

syringe was used to remove a droplet of reaction mixture every 30 minutes over the 4 hours 

reaction period and the consumption of monomer was measured via NMR. The conversion was 

calculated by comparison between the signal relative to the C=CH2 protons of the monomer 

(singlet, 5.5 ppm or 6.0 ppm, decreasing with time) and those of analogous C(O)OCH2 proton 

of the polymer repeating unit (broad singlet, 4.1 ppm, increasing with time).  

 

2.3. Block Copolymerization 

 

EA (1.0 ml, 6.58 mol), initiator (14.6 µl, 0.131 mmol), Me6TREN (7.0 µl, 0.0263 mmol), and 

DMSO (1 ml) were added to a Schlenk flask and degassed under nitrogen for 30 minutes. The 

polymerization was carried out as described above. Once conversion was > 99%, DMAEA (1.0 

ml, 6.58 mmol) in degassed DMSO (0.5 mL) and added to the reaction mixture. A sample was 

taken as a starting measurement for comparison of the 2 monomers. To precipitate the polymer, 

the solution was diluted with THF and then filtered through basic aluminum oxide column to 

remove traces of copper. This filtered solution was then precipitated into water/ethanol (1:2). 

The solution was then centrifuged and the liquid was decanted leaving a pellet of polymer. The 

product was dried in a vacuum oven overnight.  
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2.4. Coverslip Fabrication 

 

Coated coverslips (8 mm in diameter) were prepared as follows: (i). Polymer was dissolved in 

THF to give a final concentration of 2 % (w/v); (ii). 30 µl of each polymer solution was spotted 

onto the center of the coverslips and spin coated for 3 second at 2000 rpm (Spin Coater p6700, 

Specialty Coating Systems); (iii). Coverslips were dried overnight in oven at 40 ºC; (iv). Dried 

coverslips were placed into a 48 well-plate and stored for future. For each polymer 6 coverslips 

were fabricated. 

For contact angle assessment 13 mm and 18 mm coverslips were spin-coated with polymer (in 

THF at 2% (w/v)), using 0.17 µl/mm2. 

 

2.5. Characterisation 

 

Advancing contact angles of distilled water were measured with a Krüss goniometer (model 

G10). The experiment was performed under ambient conditions with the needle tip in contact 

with the drop. For each polymer sample three coated coverslips were tested, on each coverslip 

3 water drops were dispensed in different positions (central and edges of the coverslip) and 

contact angle was recorded. Images of the drops on coverslips were taken using a USB Digital 

Microscope BP-M8400 placed vertically to the coverslip surface. Once the images were 

recorded, they were processed using the ImageJ to calculate the area of each drop area. 

2.6. Cell Culture 

 

HeLa and HEK cells were grown in 25 cm2 tissue culture flasks (Corning) in DMEM 

supplemented with 10% FCS (BIOSERA FB-1090/500), L-glut (100 units, Ml Gibco 25030-

024) and pen/strep (100 units/mL, Sigma P4333), and incubated at 37 °C with 5% CO2. Cells 

were passaged every 2 days. Cells were detached using Trypsin, spun down at 1500 rpm for 5 
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min, the supernatant discarded, and the cells re-suspended in DMEM (2 mL) with 10% FCS. 

10 µl of cell suspension were added to 30 µl of Trypan Blue; from this solutions 10 µl were 

collected and placed on a counting chamber. Cell counting was performed twice for each cell 

population. 48 well-plates containing 3 coverslips of each polymer for each cell-line were 

sterilized under UV irradiation for 30 min. 30000 cells of each cell-line were seeded in triplicate 

for each polymer and DMEM supplemented media was added to give a final volume of 500 

µl/well.  48 well-plates were incubated for 24h (37 °C with 5% CO2), the coverslips were 

washed with PBS, fixed with 4% formaldehyde in PBS for 10 min, washed twice with PBS and 

incubated with DAPI (1 µg/ml) for 15 min, followed by two washing with PBS.  

 

2.7. Imaging and Analysis 

 

Coverslips were imaged in the DAPI and Bright-field channels using a Zeiss semi-confocal 

microscope using a 10X magnification objective. For each coverslip a mosaic of images (9x9, 

9409x9217 pixel) were captured. Images were merged and saved as TIF format files for image 

analysis purposes. Image analysis was performed using ImageJ with ITCN cell counting plugin. 

On each mosaic picture (9x9), coverslip area was identified and cell nuclei into the area were 

counted. Nuclei diameter was established as a width of 7 pixels; a minimum distance between 

nuclei was set to 2.5 pixels with a threshold of 2.0. These parameters allow the identification 

of nuclei and the counting of single nuclei when cells are present in clusters.  

Based on cell number average cell binding density per polymer was calculated. For each 

polymer standard deviation (n=3) was calculated. 

 

3. Results and Discussion  

3.1.  Polymer synthesis 
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Random and block copolymers were prepared with varying compositions of the monomers 

dimethyl amino ethyl acrylate and ethyl acrylate using SET-LRP. In order for the polymers to 

be part of this study, they were first characterized to fully confirm their desired structure and 

end chain functionality. Due to the controlled nature of the polymerization method, the end 

chain functionalities of the polymers were defined, being derived from the initiator used 

(Scheme 1). Table 1 shows the different copolymers synthesized with the corresponding 

composition, molecular weights and PDI’s. Well defined random and block co-polymers with 

Mn up to 100 KDa with narrow molecular weight distributions were generated. The kinetic plots 

for the co-polymerization of DMAEA and EA was linear. As expected as the monomer was 

consumed the Mn of the copolymer increased whilst the PDI remained relatively narrow (Figure 

1 shows the synthesis/analysis of P5 as an example). The composition of the polymer was 

calculated from the 1H NMR spectrum comparing the integrals of the initiator/end group (~3.6 

ppm) and the CH2- groups next to ester group (~4.2 ppm), giving n + m.  The number of 

DMAEA, m was calculated using integral of Me2N- group compared with the initiator/end 

group. The molecular weights (Mn) of the polymers were calculated based on the monomer 

composition. The proton NMR spectra of P1, P5 and P6 are shown in Figure 2. 

 

3.2. Preparation of polymer surface for cellular attachment 

 

The polymers coated glass coverslips were used in this cellular attachment study. HeLa and 

HEK cells were seeded onto the coverslips, and incubated for 24 hours After stained with DAPI 

(4',6-diamidino-2-phenylindole), each entire coverslip was imaged, taking a 9 ×9 mosaic in 

order to cover the whole area (in Figure 3a and 3b showing the integrated images). It was clearly 

seen that there were different proportions of surface covering by cells (in white DAPI nuclei 

staining) on different polymers.  
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Images were used to calculate cell number on each coverslip using ImageJ, with cell number 

and cell density for each coverslip determined via Image-based Tool for Counting Nuclei.[36] 

The cell densities are shown in Table 2. For all the polymers analyzed HEK cell number was 

greater than HeLa due to differences in their proliferation rates, with major differences observed 

in cell number and monomer composition (Figure 4). The hydrophobic EA (P15) homo-

polymer was found have the highest cell density of both HEK (421 mm-2) and HeLa cells (256 

mm-2). When comparing the images of cell attachment and SEM images of the surface of 

polymer coated coverslip, Figure 3c and 3d, we found that cellular attachment may relate to the 

surface topological differences resulting in spin-coating. It was also observed that some 

polymers promoted clumping, while other polymers had a more even distribution of the cells 

across the whole surface (see Figure 3e and 3f).  

 

3.3. How polymer properties affect cellular attachment 

 

Comparing all polymers and looking at cell attachment, showed only a weak/no trend of cell 

attachment and monomer composition. However, if random and block copolymer were 

analyzed separately, a trend was observed which showed that as the percentage of DMAEA in 

the copolymers increased, HEK and HeLa cell number decreased (Figure 5). It indicated that 

the copolymers with the higher EA gave a better surface for supporting cell growth regardless 

of the way in which the monomers were dispersed along the polymer chain.  

A comparison of the block copolymers and the random copolymers showed that there was a 

difference in cell number with the different types of polymerization method. Noticeably, when 

there was a greater content of EA, the random copolymer had a greater cell number when 

compared to the block copolymer of the same composition, such as P10 and BP2 which resulted 

in very different cell densities, 626 and 118 respectively. On the other hand, when the DMAEA 

content was higher than or equal to that of the EA content, the block copolymer displayed a 



    

 - 10 - 

higher cell number compared to the random copolymer with an identical of the corresponding 

monomer composition. This suggests that for block and random copolymers with high 

concentrations of DMAEA (> 50%) but similar molecular weights, cell binding seems to be 

highly influenced by DMAEA organization (the measured contact angles of random and block 

copolymers for example P10 and BP2 were respectively 10.67 and 54.67) which will thus 

interact with cells via the polymer surface in different ways. Previous work has shown that 

block copolymers form distinct morphologies through phase separation and have a significant 

influence on the protein adsorption to the polymer surface.[37-39] Other reported work has also 

highlighted how the grouping of the different functionalities on the polymer chains of block 

copolymers affect protein adsorption and eventually cell adhesion on the surface.[30,40-42] 

Polymer molecular weights were plotted in relation to the cell numbers for both HeLa and HEK 

cells for the random and block copolymers. Figure 4c showed a clear trend of cell numbers for 

both cell lines. There was a clear increase in cell number with increasing molecular weight of 

the copolymers with molecular weight in the range of 2 kDa to 40 kDa. This trend was similar 

for both cell lines though the increase seen for the HEK cell line was more evident than that 

observed for HeLa. In addition, cell numbers were plotted in relation to both the monomer ratio 

and polymer molecular weight, as seen in Figure 5d and 5e. When comparing the polymers that 

have similar monomer ratios, the ones with longer polymeric chain have greater cell numbers. 

 

3.4. How surface property affect cellular attachment 

 

To further investigate the relation between cells and the material surface contact angle and 

spreading area were assessed on polymer coated coverslips.  

Most of the polymer had a droplet contact angle between 30 to 50 degrees, which is in the 

optimal range for protein adsorption (Table S2).[38] Samples P14, P4 and P8 had large standard 

deviation compared to other polymers, presumably attributable to the coating topography being 
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a non-homogeneous layer. As previously described in images 3C and 3D, the difference in 

topography on the same coverslips affects droplet behavior on the surface and thus influence 

the final contact values. Wetting of the surface was also measured imaging droplets after they 

spread onto polymer surface, then area of each drop was calculated and plotted against contact 

angle for the same drop. The majority of the samples resulted in partial wetting (θ < 70°) with 

some polymers showing total wetting (θ < 20°). Overall, block copolymers had a higher contact 

angle when compared with the random copolymer with similar compositions of EA and 

DMAEA % (Figure 6). A minimal trend was observed when comparing contact angle and 

concentration of EA. A higher contact angle was observed when the percentage of EA was 

higher than 50%, in accordance with the increasing hydrophobicity of the polymer. A good 

correlation was obtained between spreading area of the droplet and the angle measured (Figure 

7) further confirming the polymer surface properties and allowing us in future to tune polymer 

chain composition in relation to the material surface properties.[21]  

 

4. Conclusions  

 

In conclusion, a small polymer library was used to screen for materials that support the 

attachment of HeLa and HEK cells. The synthesis of random and block copolymers using only 

two monomers, DMAEA and EA, was achieved using a controlled method of polymerization, 

single-electron transfer living radical polymerization. The polymers were tested for cell growth 

and showed that all the copolymers prepared were able to support cell growths, importantly 

there was a noticeable difference in cell attachment observed when the monomer composition 

and polymer chain length were varied. Both the random and block copolymers with a higher 

EA content were more favorable for both HeLa and HEK cell attachment. The polymers surface 

chemistries were characterized by contact angle measurements and displaying a range from 20 

to 70 degree. Increasing concentration of EA resulted in a higher contact angle. Overall, block 
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copolymers displayed higher contact angles than the analogous random copolymers. Further 

work will be carried out to investigate how phase separated block copolymers on surfaces 

control protein ordering/binding and subsequent and cell culture.  

A clearer correlation between HeLa cell attachment and monomer composition for block 

copolymer was observed, suggesting cell binds was influenced by the material’s properties that 

are not determined by composition but rather from the method of synthesis. We are currently 

developing strategies for polymer microarrays through controlled living radical polymerization, 

which should allow us to establish a full polymer library with a wide range of well-defined 

structures. These insights develop the understanding of the correlation of cell interaction and 

polymer structure and will underpin the development of method in preparation of cell-materials.   
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Scheme 1. Co-polymerization of DMAEA and EA via SET-LRP.  

Table 1. Polymers synthesized in this study: aMonomer ratio calculated from NMR; 

bdetermined by GPC. Note: P1-P13 are random copolymers, P14 and P15 are homopolymers, 

BP1-BP5 are block copolymers. 

 

Polymer DMAEA(m)a EA (n)a DMAEA 

% 

EA 

% 

Mn
a  

(g mol) 

PDIb 

P1 12 5 71 29 2387 1.19 

P2 8 7 53 47 1958 1.16 

P3 26 48 35 65 8893 1.21 

P4 29 118 20 80 16373 1.18 

P5 38 10 80 20 6975 1.20 

P6 27 13 67 33 5546 1.15 

P7 21 22 49 51 5504 1.22 

P8 102 210 32 68 35604 1.17 

P9 39 90 30 70 15141 1.11 

P10 43 49 47 53 11665 1.13 

P11 401 421 49 51 99515 1.15 

P12 101 87 54 46 24588 1.12 

P13 128 66 66 34 26730 1.11 

P14 232 0 100 0 32300 1.28 

P15 0 222 0 100 22200 1.17 

BP1 78 26 75 25 13768 1.20 

BP2 56 51 52 48 13118 1.22 

BP3 20 56 26 74 8463 1.18 

BP4 96 30 76 24 16745 1.17 

BP5 112 61 67 35 22136 1.19 
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Figure 1. Analysis of conversion of DMAEA over time in the SET-LRP for the preparation of 

P5. Reaction condition: [DMAEA] : [EA] : [initiator] [Cu(0)]: [ligand] = 75 : 25 : 1: 1 : 0.1 in 

DMSO at 25 ºC. a) Conversion (black squares) and ln([M0]/[M]) (red circles) vs. time, where 

[M0] is the concentration of DMAEA at t=0; b) Mn (red circles) and PDI (black squares) vs. 

conversion. 

 

 

Figure 2. Examples of 1H NMR spectra (D6-DMSO) of p(EA-co-DMAEA) random 

copolymers: P6 upper), P5 (middle), P1 (lower). 
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Table 2. Cell density on the polymers synthesized in this study (n=3). 

 

Polymer HeLa HEK 

Cell density 

/ mm2 

SD Cell density / 

mm2 

SD 

P1 9 5 54 45 

P2 9 5 140 2 

P3 10 5 38 5 

P4 14 6 159 20 

P5 31 30 135 62 

P6 42 25 183 1 

P7 37 21 200 86 

P8 150 59 401 94 

P9 85 17 267 118 

P10 76 52 626 128 

P11 175 1 360 35 

P12 14 6 119 27 

P13 37 11 155 51 

P14 79 30 483 111 

P15 256 61 421 42 

BP1 163 10 445 226 

BP2 63 1 118 61 

BP3 125 54 192 51 

BP4 184 95 379 183 

BP5 62 10 329 10 
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Figure 3. Images for polymer P12 seeded with HEK cells in a) bright-field channel and b) DAPI 

channel. The yellow circles indicate the areas of the glass coverslips scanned and used to 

calculate cell number. The software was set up to count the stained nuclei within the yellow 

circular area. Counting was performed using ImageJ plugin ITCS with cell nuclei detection 

defined by three parameters (nuclei width of 7 pixels, minimum distance between nuclei of 2.5 

pixels and a threshold of 2.0 pixels). c) Images showing the cells attach according to the 
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topography of the polymer P14 surface when comparing to the d) SEM image of the polymer 

P14 coated coverslip. Fluorescence image of cells attachment on e) polymer P4 surface where 

cells evenly distributed over the coverslip and f) P14 surface where polymer promoted 

clumping. Scale bars: 500 µm. 

 

 

 
 

Figure 4. Graphs of density of HeLa cells and HEK cells on polymer coated coverslip. Error bars are 

standard deviation (n=3).  
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Figure 5. Correlation of HeLa and HEK binding with the percentage of DMAEA and polymer 

molecular weight (g.mol-1, Mn): a) HeLa vs. DMAEA%; b) HEK vs. DMAEA%; c) HeLa and HEK vs. 

Mn; d) HeLa vs. DMAEA% vs. Mn  (all the polymers); e) HEK vs. DMAEA% vs. Mn (all the polymers).  
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Figure 6: Correlation of block and random copolymer with contact angle measured on 

coverslips coated polymer surfaces. 

 

Figure 7. Spreading area versus contact angle. 

 

 

Abstract for TOC:  

Well-defined random and blcok copolymers from SET-LRP were examined for their 

performance in the attachment and growth of HeLa and HEK cells. The correlations between 

cellular attachment and the monomer composition as well as polymer chain length were 

observed. 
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((Supporting Information should be included here for submission only; for publication, please 

provide Supporting Information as a separate PDF file.)) 
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Supporting Information  
 

Table S1. Cell numbers on the polymers synthesized in this study (n=3). 

Polymer HeLa HEK 

Cell 

Number 

SD Cell 

Number 

SD 

P1 468 289 2716 2310 

P2 474 271 7082 106 

P3 5479 456 7225 725 

P4 3233 234 18128 2234 

P5 1572 1515 6824 3128 

P6 2124 1260 9243 19 

P7 1884 589 10088 4343 

P8 7570 1965 20195 4739 

P9 4270 883 13420 5934 

P10 3829 650 31487 4997 

P11 8801 141 18116 1774 

P12 734 335 6014 1386 

P13 1861 1077 7790 2580 

P14 3984 1512 24302 6692 

P15 12873 3104 21185 2114 

BP1 8215 545 22374 2360 

BP2 3200 212 5967 3083 

BP3 6289 2720 9686 2600 

BP4 9266 1812 19052 9227 

BP5 3119 506 16564 2345 

 

To gain insight into the correlation between the EA ratio on the polymer and the amount of cells 

adhered to the polymer surface cell seeding on coverslips was repeated twice with two 

independent sets of polymers (experiment 2 and experiment 3). The first set was comprised of 

10 polymers (P1, P3, P4, P15, BP2, BP3, BP4, BP5, P12 and P14) in triplicate and a second set 

was composed of 8 polymers (P1, P3, P4, BP1, P15, BP5, P12, P14) in triplicate. In both cases 

similar trends of both HeLa and HEK binding on polymers surfaces were observed. 
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Figure S1. Experiment 2: correlation of HeLa and HEK bindings with percentage of EA. Error bars 

are standard deviation (n=3). 

 

0

5000

10000

15000

20000

25000

0.00 20.00 40.00 60.00 80.00 100.00

C
e

ll 
N

u
m

n
b

e
r

EA (%)

HELA

HEK

Linear (HELA)

Linear (HEK)

0

50

100

150

200

250

300

350

400

450

500

P15 BP4 BP2 BP3 P14 BP5 P1 P3 P4 P12

C
e

ll 
D

e
n

si
ty

 (
ce

lls
/m

m
2
)

Polymer



    

 - 23 - 

 

 

Figure S2. Experiment 3: correlation of HeLa and HEK bindings with percentage of EA. Error bars 

are standard deviation (n=3). 
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Figure S3. Images of water droplets on polymer film (P15). Diameter of the droplet was 

measured by ImageJ (d = 1.2 mm in the picture) and spreading area was then calculated using 

the equation: area = πr2.  
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Table S2. Contact angle measurement (n = 9) and standard deviation on polymer coated 

coverslips. 

CODE Average Contact Angle Standard Deviation 

P1 26.11 2.96 

P2 26.11 0.87 

P3 48.44 3.69 

P4 60.67 4.14 

P5 19.00 1.83 

P6 25.44 1.77 

P7 13.00 1.94 

P8 59.22 3.36 

BP1 15.33 2.05 

P9 14.17 1.21 

P15 59.56 2.45 

BP2 54.67 3.37 

BP4 41.00 10.12 

BP5 58.22 1.55 

P11 13.22 1.13 

P10 10.67 0.94 

P13 24.56 1.95 

P12 18.29 1.28 

P14 34.33 5.40 
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