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Abstract

Motivation: Orthology analysis is a fundamental tool in comparative genomics. Sophisticated methods
have been developed to distinguish between orthologs and paralogs and to classify paralogs into subtypes
depending on the duplication mechanism and timing, relative to speciation. However, no comparable
framework exists for xenologs: gene pairs whose history, since their divergence, includes a horizontal
transfer. Further, the diversity of gene pairs that meet this broad definition calls for classification of xenologs
with similar properties into subtypes.
Results: We present a xenolog classification that uses phylogenetic reconciliation to assign each pair of
genes to a class based on the event responsible for their divergence and the historical association between
genes and species. Our classes distinguish between genes related through transfer alone and genes
related through duplication and transfer. Further, they separate closely-related genes in distantly-related
species from distantly-related genes in closely-related species. We present formal rules that assign gene
pairs to specific xenolog classes, given a reconciled gene tree with an arbitrary number of duplications and
transfers. The xenology classification rules have been implemented in software and tested on a collection
of ∼13,000 prokaryotic gene families. In addition, we present a case study demonstrating the connection
between xenolog classification and gene function prediction.
Availability: The xenolog classification rules have been implemented in Notung 2.8, a freely available
phylogenetic reconciliation software package. http://www.cs.cmu.edu/~durand/Notung. Gene
trees are available at http://datashare.is.ed.ac.uk/handle/10283/1981.
Contact: durand@cmu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Homology analysis, classifying gene pairs according to theevolutionary
process by which they diverged, is a fundamental tool of comparative
genomics. Identifying orthologs is integral to the functional annotation
of novel genes (Wuet al., 2003) and prediction of gene function by
various methods, including phylogenetic profiling (Pellegrini et al.,
1999) and gene fusion (Marcotteet al., 1999; Enrightet al., 1999).
Phylostratigraphic investigations linking the age of a gene to its functions,
disease associations, or ecological distribution exploitthe fact that

orthologs from the same pair of species diverged at roughly the same
time (Capraet al., 2013). Orthologs are used as markers for homologous
chromosomal regions for comparative mapping (Nadeau and Sankoff,
1998; O’Brienet al., 1997), phylogenetic footprinting (Duret and Bucher,
1997; Dickmeis and Muller, 2005) and operon prediction (Chen et al.,
2004; Ermolaevaet al., 2001; Priceet al., 2005; Westoveret al., 2005).

Identification of paralogs is a prerequisite for studying processes of
gene duplication, the major source of genetic novelty in eukaryotes.
Comparison of paralogous pairs with a pre-duplication ortholog reveals
patterns and rates of diversification following duplication (Lynch, 2007,
and work cited therein), as well as the functional fates of duplicated
genes (Lynch, 2007). Spatial patterns of orthologs and paralogs are used
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to infer the specific duplication process that gave rise to a given set of
paralogs (Durand and Hoberman, 2006; Van de Peer, 2004; Simillion et al.,
2004).

Homology identification is a highly active research area, comprising
methodological approaches ranging from sequence comparison to
phylogenetic reconciliation. More recent innovations include the
exploitation of shared synteny (Shiet al., 2011) and specialized methods
for identifying multidomain homologs (Songet al., 2007, 2008; Aliet al.,
2016).

Most work on homology analysis to date has not considered
genes related through horizontal transfer. Studies of horizontal transfer
commonly use approaches that seek to identify genes of foreign origin
in a given genome, rather than homologous gene pairs that arerelated
through horizontal transfer (reviewed in Azad and Lawrence, 2012). A
few methods, such as gene tree - species tree reconciliation, do infer
gene pairs that correspond to the donor and recipient of a transfer.
Reconciliation algorithms that account for transfer events are relatively
new (reviewed by Nakhleh, 2010, 2013; Huson and Scornavacca, 2011),
computationally more complex, and are only recently cominginto use for
genomic analyses (e.g., David and Alm, 2011; Richardset al., 2014).

Appropriate terminology for describing gene pairs relatedthrough
horizontal transfer is a fundamental requirement for extending the
homology analysis framework to include this evolutionary process.
The term “xenolog”, proposed by Gray and Fitch (1983) to describe
horizontally transferred genes, is in use, but not widely, and there is no
consensus on a precise definition. Further, there has been little discussion
of differentiating xenologs to convey distinctions between horizontally
transferred genes with different properties (see Kooninet al., 2001,
for a notable exception). Such xenolog classes would be analogous to
paralog subtypes proposed to convey the relative timing of duplications
and speciations (e.g., in-paralogs versus out-paralogs, Sonnhammer
and Koonin, 2002) or distinguish between different mechanisms of
duplication (e.g., ohnologs and tandem duplications, reviewed by Durand
and Hoberman, 2006; Ramos and Ferrier, 2012).

Background: Fitch (1970) introduced the terms orthology (“homology
[that] is the result of speciation”) and paralogy (“homology [that] is the
result of gene duplication”) and proposed that “foreign genes...since they
are neither orthologous nor paralogous but are clearly homologous...should
be called xenologous” (Gray and Fitch, 1983). These definitions, which are
framed in terms of the event that caused the divergence, havebeen widely
adopted. In 2000, Fitch proposed more precise definitions oforthology and
xenology: Orthology includes the requirement that the “common ancestor
lies in the cenancestor of the taxa from which the two sequences were
obtained,” where acenancestor is the “most recent common ancestor of
the [species] taxa under consideration,” and xenology is the “relationship
of any two homologous characters whose history, since theircommon
ancestor, involves an interspecies (horizontal) transferof the genetic
material for at least one of those characters.” In other words, a pair of
genes,g1 andg2, are xenologs, if there is a transfer on the path connecting
g1 andg2 in the gene tree.

In this updated definition, orthology is defined not just in terms of a
speciation event, but in terms of the association of nodes inthe gene and
species trees. Under a duplication-loss event model, the earlier, event-
based definition of orthology and this definition are equivalent. However,
when transfers are included in the event model, the sets of orthologs
predicted using the two definitions are not identical. Moreover, the event-
based definition leads to predicted orthologs that have properties that are
not usually associated with orthologs.

For example, nodesgX and ĝ in Figure 1 are orthologs according to
the event-based definition, because the event at their most recent common
ancestor (g4) is a speciation. YetgX andĝ are genes in the same present-day
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Fig. 1. Gene tree (thin black lines), with a duplication and a transfer from species

Y to species X , embedded in a species tree (thick gray lines). The cenancestor of

the transfer (as) is annotated. Node sets D, R and O are labeled below the leaves.

speciesX , violating theassumption that genes in the samespecies cannot be
orthologous. Gene pairs in speciesX andZ also exhibit surprising behavior
according to the event-based definition. The most recent common ancestor
of gX andgZ is a speciation node, as is the most recent common ancestor
of ĝ andgZ , implying that both pairs are orthologs in the speciesX and
Z. However, these pairs arose at very different times in the species tree,
violating the assumption that orthologs drawn from the samepair of species
are associated with the same species divergence and are roughly the same
age (Goodmanet al., 1979; Capraet al., 2013). Neither of these problems
arises when the cenancestor-based definition is used, because neithergX

nor gZ are orthologs of̂g under that definition. In both cases, the most
recent common ancestor of the genes does not lie in their cenancestor.

More generally, the additional cenancestor requirement results in a
restricted set of orthologs that excludes these problematic cases. However,
a consequence of defining orthologs narrowly is that xenologs are defined
broadly: the set of gene pairs whose history, since their divergence,
includes a transfer is substantially larger than the set of genes that diverged
through a transfer event at their most recent common ancestor. Xenologs,
when broadly defined, exhibit diverse properties. First, not all xenologs
have the same event at their most recent common ancestor in the gene tree.
We observe xenologs where this divergence arose via transfer (e.g.,ĝ and
gY ), speciation (e.g.,̂g andgZ), and duplication (e.g.,̂g andhZ). Second,
xenologs can occur in the same species (e.g.,ĝ andgX ). Third, xenologs
may vary greatly in how closely they are related, and the divergence of a
pair of xenologs may pre- or post-date the divergence of their associated
species. For example, genesĝ andgZ diverged more recently than species
X and speciesZ, whereas geneŝg andgW diverged before speciesX and
speciesW .

Our Contributions : This broad definition of xenologs does not convey
important distinctions between the diverse and complex xenologous
relationships that arise due to horizontal gene transfer. To address this,
we propose xenolog classes that reflect the events associated with the
divergence of a xenologous gene pair, and the relative timing of transfer
and speciation events. We present formal definitions of these classes in
the context of a reconciled gene tree and rules to assign xenologous gene
pairs to classes. Further, we show that these classes form a hierarchy,
connecting the relationship of xenologs to their placementin the gene and
species trees.

An algorithm implementing these rules has been integrated into the
Notung 2.8 software package. An analysis of∼13,000 prokaryotic gene
families demonstrates that all of the proposed classes arise in real gene
tree data. We further present a case study that illustrates the potential
functional implications of xenolog classification. Finally, we discuss how
this framework could be used in future research to explore the evolutionary
and functional fates of transferred genes.
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Notation Before stating formal definitions of the xenolog subtypes, we
introduce the following notation. For a binary, rooted treeTi = (Vi,Ei)

with node setVi and edge setEi, L(Ti) designates the leaf set ofTi. V \

U denotes vertices in setV that are not in setU , whereU ⊂ V . p(v)
refers to the children and parent of nodev, respectively. Ifv is an ancestor
(resp., descendant) ofu in Ti, we writev >i u (resp.,v <i u). The set∆(u)
represents the improper descendants of nodeu, i.e. u and all nodes in the
subtree rooted atu. If v 6∈ ∆(u) andu 6∈ ∆(v), then we say thatu andv

are incomparable (denotedu 6≶ v). The most recent common ancestor ofu
andv is denoted MRCA(u,v). Givenv1,v2,v3 ∈Vi, we say thatv1 is more
closely related tov2 than tov3, if MRCA(v1,v2)<i MRCA(v1,v3).

2 Methods

Our classification takes as input a gene tree,TG = (VG,EG), that has been
reconciled with a species tree,TS = (VS,ES), using a duplication-transfer
model. The model may also include losses; losses have no impact on
xenolog classification and we do not discuss them further. Reconciliation
infers a mapping,M (·), between genes and species, whereM (g) = s
indicates that geneg ∈ VG was present in the genome of speciess ∈ VS.
Each internal node,g, is annotated withE (g), the event that caused the
divergence atg, whereE (g) can be a duplication (δ), a transfer (τ), or a
speciation (σ). Transfer edges are denoted byt = (gd ,gr), wheregr is the
recipient gene node,gd = p(gr) is the donor gene node, andE (gd) = τ.
We say transfert is on the path fromgi to g j , if the path fromgi to g j

passes through bothgd andgr .
The output of our classification scheme is a homology table

H[gi,g j ],∀gi,g j ∈ L(VG). In this classification, which is based on the
definitions introduced by Fitch (2000), genesgi andg j are

orthologs iff E (MRCA(gi,g j)) = σ and there is no transfer on the
path fromgi to g j ;
paralogs iff E (MRCA(gi,g j)) = δ and there is no transfer on the
path fromgi to g j ;
xenologs iff there is at least one transfer on the path fromgi to g j .

Note that by explicitly defining orthologs to be gene pairs that are not
connected by a transfer, this definition of ortholog ensuresthat the ancestor
of orthologous genes lie in their cenancestor; i.e.,M (MRCA(gi,g j)) =

MRCA(M (gi),M (g j)).
If gi and g j are orthologs, thenH[gi,g j ] = H[g j ,gi] = O. If they

are paralogs,H[gi,g j ] = H[g j ,gi] = P. If gi and g j are xenologs, then
H[gi,g j ] = X (gi,g j), whereX (gi,g j) is the xenolog class of genesgi and
g j . In contrast to orthology and paralogy, xenology is not symmetric, due
to the directional nature of horizontal transfer.

In the remainder of this section, we define new xenolog classes and
give formal rules for determining the xenolog class,X (gi,g j), for a given
gene pairgi and g j . In Section 2.1, we consider the case where there
is a single transfer on the path fromgi to g j and they did not diverge
by duplication (i.e.,E (MRCA(gi,g j) 6= δ). In Section 2.2, we provide
xenolog classification rules for the case where the common ancestor
of gi and g j is a duplication and introduce a subclass of xenologs,
called paraxenologs, for designating genes that are related through both
duplication and transfer. We extend these definitions to allow an arbitrary
number of transfers on the path fromgi to g j in Section 2.3.

2.1 Xenolog classification with a single transfer

Consider a gene tree with a single transfert = (gd ,gr) from donor species
sd =M (gd) to recipient speciessr =M (gr). Let as = MRCA(sd ,sr) be
the cenancestor oft and letA be the set of nodes in the subtree ofTS rooted
atas. Transfert defines three, non-overlapping sets of species tree nodes:

D= {s∈VS|MRCA(s,sd)<S as}, i.e. the species that are more closely
related to the donor than the recipient;
R= {s∈VS|MRCA(s,sr)<S as}, i.e. the species that are more closely
related to the recipient than the donor;
O=VS \A, i.e. the nodes in the species tree equally related to the donor
and recipient.

We define four, mutually exclusive xenolog classes based on these sets.
Xenolog classes are defined with respect to a reference geneĝ ∈ L(TG) that
is a descendant of the recipient of the transfer; i.e.,ĝ ∈ ∆(gr). For every
g ∈ {L(VG)\∆(gr)}, t is on the path from̂g to g andg is a

Primary xenolog iff g ∈ ∆(gd); X (ĝ,g) = PX
Sibling Donor xenolog iff M (g) ∈ D andg 6∈ ∆(gd); X (ĝ,g) = SDX
Sibling Recipient xenolog iff M (g) ∈ R; X (ĝ,g) = SRX
Outgroup xenolog iff M (g) ∈ O. X (ĝ,g) = OX

Xenologs are classified relative to a reference gene; therefore, xenolog
class assignments are not symmetric. In the homology table,when
H[ĝ,g] = X (ĝ,g), H[g, ĝ] = ∗ is used to indicate thatg is the xenolog
of the reference gene,̂g, and that its class is given byH[ĝ,g].

In Figure 1, all genes are xenologous toĝ. Both gY andgZ are in set
D; gY is a Primary xenolog (X (ĝ,gY ) = PX) andgZ is a Sibling Donor
xenolog (X (ĝ,gZ) = SDX), becausegY is a descendant of the donor (i.e.,
gY ∈ ∆(g1)) andgZ is not. GenesgX andgW are in setR and are Sibling
Recipient xenologs (X (ĝ,gW ) = SRX). GenegV is an Outgroup xenolog
(X (ĝ,gV ) =OX) becausegV is in setO. GeneshY andhZ are paraxenologs
and will be discussed in Section 2.2.

A xenologous gene pair can be further annotated to indicate cases
where the genes are found in the same species:g is anautoxenolog of ĝ,
iff M (g) =M (ĝ). We designate thisX (ĝ,g) = X′. Autoxenologs will also
be assigned to a subclass. In Figure 1,gX andĝ are both in speciesX ; gX

is a Sibling Recipient autoxenolog (X (ĝ,gX ) = SRX′).

Xenolog class hierarchies: The xenolog classes form a hierarchy that can
elucidate how xenologs are related in both the gene and species trees.
Primary xenologs are closest in the xenolog hierarchy and Outgroup
xenologs are most distant. We denote this hierarchy by

PX<X SDX<X SRX<X OX,

whereX (ĝ,g1)<X X (ĝ,g2), if ĝ andg1 are closer in the hierarchy than̂g
andg2.

Genes that are more closely related in the hierarchy are alsomore
closely related in the gene tree. Let genesg1 and g2 in VG \ ∆(gr) be
xenologs of̂g such that there is no transfer ancestral to eitherg1 org2. Then,
MRCA(ĝ,g1)<G MRCA(ĝ,g2), if X (ĝ,g1)<X X (ĝ,g2). This hierarchy,
which is illustrated in Figure 2, is stated formally as follows:

Theorem 2.1. (Xenolog class hierarchy in the gene tree)Given ĝ ∈

∆(gr), for any Primary xenolog, gP, Sibling Donor xenolog, gSD, Sibling

Recipient xenolog, gSR, and Outgroup xenolog, gO, of ĝ

MRCA(ĝ,gP)<G MRCA(ĝ,gSD)<G MRCA(ĝ,gSR)<G MRCA(ĝ,gO).

Proof. See Section S.1.

We sketch the basis of this theorem informally, here. For every xenolog
g ∈ VG \∆(gr) of ĝ, the common ancestor ofg and ĝ is a node on the
path from gd to the root ofTG; i.e., there existsgi ∈ VG, such that
gi = MRCA(ĝ,g) and gi ≥G gd . If gi = gd , theng ∈ ∆(gd) \∆(gr) and
is therefore a Primary xenolog.

Forgi > gd , the descendants ofci, the child ofgi that is incomparable
to the transfer, must satisfy two requirements. First, since all xenologs in
∆(ci) are equally related tôg, all xenologs in∆(ci) must be assigned to
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Fig. 2. Xenolog class hierarchy: (a) Gene tree with one transfer, shown in the

context of the species tree. (b) The reconciled gene tree. Each leaf g is annotated

with its xenolog class, X (ĝ,g). Nodes g1,g2,g3, and g4 are the common ancestors,

respectively, of the Primary, Sibling Donor, Sibling Recipient, and Outgroup

xenologs in the tree, as indicated by the labels on internal nodes. The labels on the

path from ĝ to the root satisfy the hierarchy, PX <X SDX <X SRX <X OX, consistent

with Theorem 2.1.

the same xenolog class. This will be true if all descendants of ci are in the
same species set,D, R or O. Second, for anyg j >G gi, the xenologs in
∆(c j) are more distantly related tôg than the xenologs in∆(ci); therefore,
consistency requires that the class of xenologs in∆(c j) not be closer in the
hierarchy than the class of xenologs in∆(ci). Both of these conditions are
satisfied when there is no transfer that is ancestral to either g1 or g2. This is
always true in a reconciled tree with a single transfer and noduplications.
We will reexamine the hierarchical properties of xenolog classes in trees
with more complex event histories in the following sections.

The proposed xenolog classes also convey information aboutthe
relationship of a xenolog pair in the gene tree relative to their relationship
in the species tree. Ifg1, g2, andg3 are orthologs, theng1 andg2 are more
closely related thang1 andg3, iff the associated speciesM (g1) andM (g2)

are more closely related thanM (g1) andM (g3). As a result, knowing the
species associated with a pair of orthologs provides a quickestimate of
the time since their divergence (Capraet al., 2013). This is not true of
xenologs, where the cenancestor ofĝ andg can predate or postdate the
species containing MRCA(ĝ,g). Our xenolog classes distinguish between
these three cases. Primary and Sibling Donor xenologs are more closely
related in the gene tree than in the species tree, whereas Sibling Recipient
xenologs are more closely related in the species tree than inthe gene tree.
Outgroup xenologs are equally related in both trees. These relationships
are summarized in Table S1.

2.2 Xenolog classification with transfers and duplications

We next consider the classification of genesgi and g j when there is a
single transfer on the path fromgi to g j and they diverge by duplication
(i.e., E (MRCA(gi,g j) = δ). Such gene pairs satisfy both the paralog
and the xenolog criteria proposed by Fitch (2000), leading to potential
terminological confusion. To avoid this confusion, we introduce the
explicit designation,paraxenolog1 , for xenologs that diverged via a
duplication at their common ancestor.

1 Patterson (1988) used “paraxenolog” to refer to a differentphenomenon.

PX OX

PX

SDX

SRX

OX

g6 g7

g DUP

SDX SDX
P

SRX SRX’SDX
P

SDX
P

ĝ gZ hZ gX gW gV

g1

g2

g4

g5

g3

gY hY

Fig. 3. Paraxenolog classification: The gene tree from Fig. 1 with a duplication

followed by a transfer. The tree is annotated with xenolog classes on the leaves.

Each internal node is labeled with the xenolog class of all genes in its right subtree

(i.e., the subtree that does not contain a transfer.) The progression of labels shows

the hierarchy of xenolog classes in the gene tree.

Formally, letgDUP ∈ VG be a duplication node in the gene tree with
a transfer,t = (gd ,gr), in one of its two subtrees, and letĝ ∈ ∆(gr) be a
descendant of that transfer. Then, every gene in the second subtree ofgDUP

is a paraxenolog of̂g, to be denoted XP. For example, in the gene tree in
Figure 1,gDUP= g3 is a duplication node with two subtrees; theg subtree
contains a transfer with reference geneĝ. All genes in the other subtree
(that is,hY andhZ) are paraxenologs of̂g.

Paraxenologs are also assigned to a specific xenolog class when it
is both possible to do so and preserve the xenolog class hierarchy, as
specified in Theorem 2.1. This depends on when the duplication occurred
relative to as, the cenancestor of the transfer. If the species in which
the duplication occurred is a descendant ofas, then all descendants of
gDUP are more closely related to the donor than to the recipient; i.e., all
paraxenologs are in species inD and must be Sibling Donor xenologs as,
by definition, Primary xenologs are the descendants of a transfer. In this
case, paraxenologs satisfy the requirements of Theorem 2.1, because the
paraxenologs of̂g are equally related and are assigned to the same xenolog
class; the hierarchy is preserved.

When the duplication predates or coincides with the cenancestor of the
transfer, then the descendants of both children ofgDUP will be inherited
by species inD, R, and potentiallyO. These paraxenologs are equally
related in the gene tree, but would be assigned different classes based
on their location, thus violating the requirements of Theorem 2.1. For
every paraxenolog,g, of ĝ, we assignX (ĝ,g) to XP, i.e., ĝ and g are
untyped paraxenologs, to avoid violating the hierarchy. A scenario where
this occurs is shown in Figure S1.

Xenolog hierarchy with paraxenologs: The xenolog hierarchy in
Theorem 2.1 holds for paraxenologs if we ignore the distinction between
xenologs and paraxenologs of the same class and consider XP to be
on a par with the OX class in the hierarchy. IfgSD and gSDP are a
Sibling Donor xenolog and a Sibling Donor paraxenolog, respectively,
of ĝ, then MRCA(ĝ,gSDP) may be either ancestral to or a descendant of
MRCA(ĝ,gSD) (Figure 3). Similarly, MRCA(ĝ,gXP ) may be an ancestor
or a descendant of MRCA(ĝ,gO), wheregO is an Outgroup xenolog of̂g
andgXP is an untyped paraxenolog. These results are stated formally in
Theorem S.2.

The species hierarchy in Table S1 is also preserved, with theadditional
observations that Sibling Donor paraxenologs behave like Sibling Donor
xenologs and MRCA(M (ĝ),M (gXP ))≥S M (MRCA(ĝ,gXP )).

2.3 Xenolog classification with multiple transfers

With a single transfer, xenolog classes are defined in terms of the sets of
species tree nodes,D, R, andO, which are determined by the positions of
the donor and recipient species and their common ancestor,as. The key
issue in extending the framework to multiple transfers is how to obtain a
singleD, R, andO given multiple donor and recipient species. We first
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ĝ gUgX gY gZ gW gV

Fig. 4. Xenolog classification with multiple transfers: (a) Gene tree with two

comparable transfers and the associated super-transfer (dashed), shown in the

context of the species tree. (b) The reconciled gene tree. Each leaf g is annotated

with X (ĝ,g). Genes gX and gU are classified with respect to t2 and obey the

hierarchy: MRCA(ĝ,gX ) <G MRCA(ĝ,gU ) and X (ĝ,gX ) = PX <X X (ĝ,gU ) = SDX.

The other genes are classified with respect to the super-transfer, t∗. Their

xenolog classes are consistent with the hierarchy (Theorem 2.1): MRCA(ĝ,gY )<G

MRCA(ĝ,gZ)<G MRCA(ĝ,gW )<G MRCA(ĝ,gV ) and PX <X SDX <X SRX <X OX.

describe a xenolog classification procedure for a pair of genes connected
by a path containingk ≥ 2 transfer edges, when allk transfers are mutually
comparable. Transfers,t1 = (g1

d ,g
1
r ) andt2 = (g2

d ,g
2
r ), are comparable, iff

g1
r andg2

r are comparable in the gene tree. Then, we describe a procedure
for the case where the gene pair is separated by incomparabletransfers.
The remainder of this section applies to both xenologs and paraxenologs;
for simplicity, we use “xenolog” to refer to both, except where otherwise
stated.

Comparable transfers: Let t1,t2 . . . tk be an ordered sequence of
comparable transfers on the path from̂g to g. We say thatt1 is ancestral
to t2 (denotedt1 >G t2), iff g1

r >G g2
r . Any set of comparable transfers,

t1,t2 . . . tk, can be ordered such thatt i >G t i+1,∀i < k − 1. In particular,
g1

d >G gi
d ,∀ i > 1, andgi

r >G gk
r , ∀i < k.

Sincet1,t2 . . . tk are comparable, they must be on the path between
ĝ ∈ ∆(gk

r) and MRCA(ĝ,g). These transfers can be summarized by a
single super-transfer,t∗ = (g∗d ,g

∗
r ), whereg∗d = g1

d and g∗r = gk
r . With

one exception, discussed below,t∗ behaves like a single transfer that
could occur in a reconciled tree: the cenancestor of the super-transfer,
a∗s = MRCA(s∗d ,s

∗
r ), induces setsD∗, R∗, andO∗ (Figure 4). These are

used to determineX (ĝ,g), using the single-transfer procedure previously
described.

The exceptional case arises when the recipient species of the super-
transfer is a descendant of the donor species (s∗r ∈ ∆(s∗d)). This scenario
(Figure S2) cannot occur with a single transfer because the donor and
recipient species of a transfer must be incomparable. With multiple
transfers, however,sk

r may be in∆(s1
d). In this case, the cenancestor of

the super-transfer is also its donor (a∗s = s∗d ). Since all descendants ofs∗d
are also descendants ofa∗s , all xenologs inA∗ are Primary xenologs. All
other xenologs are inO∗ and are Outgroup xenologs.

A possible concern about replacingk transfers with a single super-
transfer is that the intermediate species are not considered. However, these

intermediate species are represented by xenologous pairs that only pass
through a subset of thek transfers, namely,g ∈ ∆(g1

r )\∆(gk
r). Information

about where ancestral forms ofĝ spent time aŝg traveled froms1
d to sk

r is
captured by the complete set of xenologs ofĝ.

Incomparable transfers: We first consider the special case wherek = 2
and the transfers are incomparable. Given a pair of genes,g1 and g2,
connected by two incomparable transfers,t1 andt2 (Figure 5), one gene is
a descendant of one transfer recipient (g1 ∈ ∆(g1

r )), and the other gene is
a descendant of the other transfer recipient (g2 ∈ ∆(g2

r )). Sinceg1 andg2

are both descendants of a transfer recipient, xenologg2 can be classified
with respect tôg1 = g1, and vice versa.

With incomparable transfers, the xenolog classes do not satisfy the
hierarchical properties of Theorem 2.1. As before, letgi = MRCA(ĝ1,g2)

and letci be the child ofgi that is ancestral tot2 but nott1 (i.e.,ci ≥G g2 and
ci 6≶G ĝ1). Recall that the first condition for preservation of the hierarchy
is that all xenologs in∆(ci) must be in the same species set. Satisfaction of
this condition is not guaranteed for incomparable xenologsbecause∆(ci)

contains a transfer,t2, that can moveg2
r to a species that is not in the

same set asM (g2
d). Suppose, for example, the donor oft2 is in a species

in O, but its recipient is in a species inD. Since bothg2
d and g2

r are in
∆(ci), more than one species set is represented in∆(ci), violating the first
condition. Primary xenologs are the one exception to this problem. Primary
xenologs are defined in terms ofgd and not in terms ofD, R, andO, and
are therefore unaffected by incomparable transfers. Primary xenologs are
always more closely related tôg than are xenologs of any other class, in
both the comparable and incomparable cases.

To avoid a classification that violates the hierarchy, we do not assign
xenologs separated by incomparable transfers to specific subclasses. Given
two genes separated by incomparable transfers,t1 andt2, without loss of
generality, let̂g1 ∈ ∆(g1

r ) be the reference gene,g2 ∈ ∆(g2
r ) be the xenolog

under classification, andgm = MRCA(ĝ1,g2) be their common ancestor.
Theng2 is a

Primary xenolog iff g2 ∈ ∆(g1
d); X (ĝ1,g2) = PX

Incomparable xenolog iff g2 /∈ ∆(g1
d) andE (gm) = σ;

X (ĝ1,g2) = IX
Incomparable paraxenolog iff g2 /∈ ∆(g1

d) andE (gm) = δ.
X (ĝ1,g2) = IXP

In the incomparable case,H[ĝ1,g2] = X (ĝ1,g2) is the classification ofg2

with respect tôg1 andH[ĝ2,g1] = X (ĝ2,g1) is the classification ofg1 with
respect tôg2. EitherX (g1,g2) = PX andX (g2,g1) = IX (or vice versa),
or X (g1,g2) = X (g2,g1) = IX (P).

We now address the case wherek > 2 by reducing the problem to one
involving two incomparable super-transfers and applying the protocol just
described. Lett1 · · · t j be the transfers, in descending order, on the path
from MRCA(g1,g2) to g1 andt j+1 · · · tk be the set of transfers on the path
from MRCA(g1,g2) to g2. Sincet1 · · · t j must be mutually comparable,
they can be replaced with super-transfert1∗ = (g1

d
∗
,g1

r
∗
), whereg1

d
∗
= g1

d

and g1
r
∗
= g j

r . Similarly, we replacet j+1 · · · tk with super-transfert2∗ =

(g2
d
∗
,g2

r
∗
), whereg2

d
∗
= g j+1

r andg2
r
∗
= gk

r .

Gene tree hierarchy for multiple transfers: With multiple comparable
transfers, the hierarchical properties in Theorem 2.1 holdfor xenologs
that share the same super-transfer from MRCA(ĝ,g) to ĝ. For example,
in Figure 4, the xenolog class hierarchy is preserved for nodes gX and
gU , which are xenologs of̂g with respect tot2 only. Similarly, xenologs
gY ,gZ ,gW , and gV , which are all defined with respect to the super-
transfert∗, also obey the hierarchy. However,gU and gY do not share
the super-transfer and thus, do not obey the hierarchy; MRCA(ĝ,gU )<G

MRCA(ĝ,gY ), yetX (ĝ,gU ) = SDX>X X (ĝ,gY ) = PX.
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gXĝ12

2

2

1

1

g3
1

IX

PX PX PX SDX SDX SRX’

•
•

Fig. 5. Xenolog classification with incomparable transfers: (a) Gene tree with two

incomparable transfers shown in the context of the species tree. Species sets

associated with transfers t1 and t2 are shown below the leaves. (b) The reconciled

gene tree. Each leaf g is annotated with X (ĝ2,g) (top row) and X (ĝ1,g) (bottom row).

Genes ĝ1 and ĝ2 are separated by both transfers. Since ĝ2 ∈ ∆(g1
d), X (ĝ1, ĝ2) = PX.

In contrast, X (ĝ2, ĝ1) = IX since ĝ1 6∈ ∆(g2
d). Xenolog classes for other genes are

consistent with their relatedness in the gene tree (Theorem 2.1): MRCA(ĝ2,gY )<G

MRCA(ĝ2,gZ)<G MRCA(ĝ2,gW )<G MRCA(ĝ2,gV ) and PX <X SDX <X SRX <X OX.

Primary xenologs, including those connected by incomparable
transfers, are more closely related than any other class of xenologs.
Incomparable xenologs that are not Primary may fall anywhere in the
hierarchy; that is, a given pair of Incomparable xenologs may be more
closely related, or more distantly related, than a given pair of Sibling
or Outgroup xenologs. Thus, the Incomparable xenolog classprovides
less information about relatedness than the specific Sibling and Outgroup
classes, but guarantees a classification in which relatedness in the gene
tree is consistent with the hierarchy.

The species tree hierarchy for single transfers (Table S1) also holds for
multiple comparable transfers summarized by a super-transfer, with one
exception. When the recipient species of the super-transfer is a descendant
of the donor species (as in Figure S2), Primary xenologs, with respect to
this super-transfer, are more or equally related in the species tree than in
the gene tree.

The species tree hierarchy is not guaranteed for multiple, incomparable
transfers, even when the pair are classified as Primary xenologs. The
reasoning for this is that the recipient oft2 can be in any of the
sets, D1, R1, or O1, defined by t1. Therefore the cenancestor of
g1 and g2 can be in any species inVS. Any relationship, even an
incomparable relationship, is possible between the cenancestor and the
ancestor containing MRCA(g1,g2).

3 Algorithms and Implementation

The classification procedure for the xenolog classes described in Section 2
is shown as pseudocode in Section S.4. We have implemented this
procedure and integrated it in Notung 2.8, a freely available software
package that implements gene tree-species tree reconciliation with
transfers in a parsimony framework (Stolzeret al., 2012).

Orthologs Xenologs

Paralogs

PX PX, IX

SDXSRX

OX

IX, IX

IX
P
, IX

P

P
SDX

P
X

Fig. 6. (left) Proportions of orthologs, paralogs, and xenologs (all classes) in the

13,194-tree bacterial dataset. (right) Proportions of xenolog classes.

Upon reconciling a gene tree with a species tree, Notung 2.8 generates
a homolog table,H, for all pairs of leaves in the gene tree. There may be
more than one minimum-cost event history that reconciles the gene and
species trees. A homology table is generated for each optimal, temporally
feasible reconciliation reported. Transfers imply temporal constraints
because the donor and recipient of a transfer must have co-existed; a
reconciliation is temporally feasible if all temporal constraints imposed
by the inferred transfers are mutually compatible. Notung 2.8 reports all
optimal reconciliations that are temporally feasible, up to a user-specified
limit (Stolzer, 2012).

Homology tables can be viewed in the graphical user interface or
exported from the command line in a tab-delimited, CSV, or HTML format.
Row H[ĝi, ·] contains the homology relationships between reference gene,
ĝi, and all other genes inVG. For orthologs and paralogs,H[gi,g j ] =

H[g j ,gi]. For xenologs,H[ĝi,g j ] = X (ĝi,g j) gives the xenolog class of
g j with respect tôgi, a reference gene that is the recipient of at least one
transfer on the path from MRCA(ĝi,g j) to ĝi. If there is also a transfer
on the path from MRCA(gi,g j) to g j , thenH[ĝ j ,gi] = X (ĝ j,gi) gives the
xenolog class ofgi with respect to referencêg j . Otherwise, H[ĝi,g j ] = ∗.

The classification procedure is generally applicable to reconciled gene
trees and can be implemented in any reconciliation softwarepackage that
enforces temporal consistency. When temporal consistencyis not enforced,
reconciliations with transfers between ancestor and descendant species
can arise. Since this scenario is similar to super-transfers that form a loop
(Figure S2), the classification proposed here could easily be adapted for
programs that do not enforce consistency.

4 Empirical Results

Genomic Study: As a proof of principle, we analyzed 13,623 gene
families from a dataset of 65 genomes of Proteobacteria and
Cyanobacteria (Latyshevaet al., 2012). To control for spurious inference
of transfers due to phylogenetic error, weakly supported branches were
rearranged using a species-tree aware method as described in Section S.5.1.
The resulting rooted, rearranged trees were then reconciled with the species
tree with default costs (Cτ = 3, Cδ = 1.5, Cλ = 1). These costs are
consistent with costs used in other recent phylogenomic analyses (David
and Alm, 2011; Richardset al., 2014), which were selected to minimize
the total net change in genome content. The time required to reconcile the
13,623 trees, including generating all optimal reconciliations and testing
them for temporal feasibility, was 7.25 minutes on an Intel Xeon 2.3GHz
processor (128GB RAM). The computational complexity of calculating
the homology table, once the gene tree has been reconciled, is negligible.

Homology tables were computed for the 13,194 trees possessing
at least one temporally feasible solution. From these, homologs of all
categories were tabulated. For families with more than one optimal
reconciliation, the number of pairs in each category was averaged over
all reported, optimal event histories.
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Orthologs, paralogs, and xenologs are all represented in this dataset,
and every xenolog class is also observed (Figure 6 and TablesS2 – S6).
More than a quarter of homologous gene pairs were xenologs. Of these
pairs, 85.7% are xenologs with only one reference gene, where all transfers
on the path from the reference to its xenolog are mutually comparable. Of
these xenologs, 60.2% are either Primary or Sibling Donor (para)xenologs;
thus, the majority of the inferred xenologs are closer to thedonor than the
recipient.

Gene pairs separated by incomparable transfers are fairly rare
compared with all types of xenologs separated by any number of transfers.
Such pairs have two xenologs, one for each reference gene; atmost one
member of each pair can be classified as a Primary xenolog (PX), otherwise
they are untyped (IX). The fraction of Incomparable xenologs for which the
hierarchy provides no information is quite small: 72.0% of incomparable
(para)xenologs are (PX, IX) pairs; the rest are (IX, IX) or (IXP, IXP) pairs.

Less than 1% of all xenologous pairs are autoxenologs, whichcould be
due to preferential transfer of novel genes or a high incidence of xenologous
gene displacement (Kooninet al., 2001). Paralogs constitute 2.2% of all
homologs, and paraxenologs are 4.8% of all xenologs. The lowlevel
of paralogy observed is consistent with prior reports that in prokaryotes
transfer is a greater source of genetic novelty than duplication (Treangen
and Rocha, 2011).

Interestingly, the vast majority of paraxenologs, 73.4%, are Sibling
Donor paraxenologs. Recall that paraxenologs that diverged after the
cenancestor of the transfer can be unambiguously classifiedand are always
more closely related to the donor than to the recipient of thetransfer.
Paraxenologs that diverged before the cenancestor, i.e., closer to the root,
cannot be assigned a specific class without breaking the hierarchy. As
with Incomparable xenologs, the low fraction of untyped paraxenologs
(XPs) suggests that, at least for this data set, there are relatively few pairs
for which it is impossible to extract some information from the xenolog
classification.

Methodological factors may also contribute to the trends weobserve.
Gene families were inferred with OrthoMCL (Liet al., 2003), which tends
to place paralogous subfamilies in separate clusters. Thiscould be a factor
in the low level of paralogs, paraxenologs, and autoxenologs in this study.
It could also contribute to the preponderance of SDXP pairs, relative to
XP pairs, as the tendency to break up paralogous subfamilies would result
in relatively few inferred duplications near the root of thegene tree.

We considered to what extent the empirical parameters influenced the
outcome of the analysis presented here. We investigated theimpact of
OrthoMCL on subsequent xenlog classification classification in a small
set of curated families (Section S.5.5). In most cases, OrthoMCl clusters
agreed with the curated family definitions. However, when OrthoMCL
did split up paralogous subfamilies, the number and type of paraxenologs
predicted changed dramatically.

In order to assess the impact of taxonomic breadth on our results, we
also applied our classification procedure to two taxonomically-restricted
subsets: families found only in the Cyanobacteria phylum (C: 49 species,
7,485 trees) and only in the Synechococcales class (S: 30 species, 1,429
trees), respectively. Orthologs, paralogs, and all xenologs classes are
present, and the observed trends are similar to those reported above for the
full data set (Section S.5.4, Figures S8 and S9, and Tables S7– S16). In
summary, the agreement between the full and restricted datasets suggests
that our method is not highly sensitive to taxon sampling.

Finally, to probe the impact of event costs on xenolog classes observed
in this study, we repeated this analysis with an increased transfer cost,
Cτ = 4, as described in Section S.5.3. All xenolog classes were, again,
observed. The higher transfer cost resulted in a moderate increase in the
number of paralogs and paraxenologs of all classes, and a decrease in the
number of non-paralogous xenologs inferred. The change in the relative
frequencies of the other various classes was generally small (less than 15%)

with one exception: the proportion of Outgroup xenologs decreased by
more than 50%. The increase in para(xeno)logs and decrease in Outgroup
xenologs, taken together, suggests that more duplicationsmay be inferred
near the rootsofgene treeswith ahigher transfer cost. Thus, in thisanalysis,
the trade-off between duplications and transfers does not affect all xenolog
classes equally.

BIO4 Case Study : To explore the connection between xenolog classes and
protein function, we applied our approach to theBIO4 gene family; several
BIO4 genes have been horizontally transferred and have been characterized
experimentally (Hall and Dietrich, 2007). TheBIO4 protein is an enzyme
in the biotin (vitamin B7) biosynthesis pathway (Figure S11). Plants and
some fungi possess aBIO4 homolog that encodes a bi-functional enzyme,
which acts as both a 7,8-diaminopelargonic acid synthase (DAPAS) and a
dethiobiotin synthetase (DTBS), steps 3 and 4 in the pathway, respectively.
In bacteria, theBIO4 homolog only performs the DTBS function; the 3rd
step is carried out by an unrelated protein. Unlike other fungi, however,
the BIO4 homolog in yeast (Saccharomyces cerevisiae, and its close
relatives) also encodes a DTBS-only protein. Phylogeneticanalysis shows
that a horizontal transfer from bacteria to yeast replaced the ancestral
bi-functional homolog (Hall and Dietrich, 2007). Using Notung 2.8, we
reconciled the gene and species trees (Figures S12 and S13) constructed
by Hall and Dietrich (2007) and inferred xenolog classes (Figures 7
and S14).

The hierarchical nature of the xenolog classification aids in the
interpretation of the functional evolution of the family inthis case study.
The molecular function of yeastBIO4 is closer to that of its Sibling Donor
xenologs, which encode the DTBS-only enzyme, than its Sibling Recipient
xenologs, which encode bi-functional enzymes. In contrast, the Sibling

SRX

Basidio-

mycota

Pezizo-

mycotina

S. cerevisiaeY. lipolytica

X

α-proteo-

bacteria

Firmicutes

ĝ

SDXPX

DTBS+DAPAS

DTBS

Fig. 7. Schematic of the BIO4 gene family. Dashed line indicates lineages that

likely had a dual-function DTBS+DAPAS enzyme; solid line indicates DTBS-only

function. With respect to the gene ĝ in S. cerevisiae, set R is comprised of other

fungi, and their genes are SRX. Set D includes all bacterial taxa; the descendants

of the donor gene are PX and other genes are SDX.

Recipient xenologs provide information about genomic context. The fact
that the Sibling Recipient xenologs encode a bi-functionalenzyme raises
a red flag: the replacement of a bi-functional enzyme with a DTBS-only
enzyme in yeast suggests loss of the DAPAS function. Either adifferent
enzyme must be carrying out the DAPAS function or yeast no longer
has a functional biotin synthesis pathway. In fact, the former is true; the
DAPAS function is performed by an unrelated gene, that was also acquired
horizontally (Hall and Dietrich, 2007).

In this example, a closely related gene (a DTBS-only enzyme)in
a distantly related (α-proteobacterial) species is a better predictor of
BIO4 enzymatic function than a distantly related gene (the dual function
homolog) in a closely related species (Yarrowia lipolytica). The distantly
related homolog in a closely related species provides information about
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the genetic background; i.e., the genome could be lacking a gene encoding
the DAPAS function. These insights are linked to the hierarchical structure
of the xenolog classes and may represent general trends, suggesting
hypotheses for future investigation. If it proves generally true, for example,
that Sibling Donors are better predictors of molecular function and Sibling
Recipients are better predictors of cellular context, thenthis system of
xenolog classification could support large scale, automated analyses in
comparative, evolutionary genomics.

5 Discussion

Distinguishing orthologs from paralogs, as well as the division of paralogs
into subclasses based on the timing and nature of the events by which
they arose, has proved to be a valuable analytical approach in molecular
evolution, systematics, comparative genomics, and homology-based
function prediction.

Here, we examine the challenges associated with the expansion of this
framework to include horizontally transferred genes. The term “xenolog”
has been introduced to describe gene pairs related through horizontal
transfer (Gray and Fitch, 1983; Fitch, 2000). However, the set of genes
that share a history with at least one transfer encompasses avery broad set
of relationships.

In this work, we propose subtypes that provide a more nuanced
classification of xenologs. We provide formal rules for classification,
given a reconciled gene tree with an arbitrary number of transfers and
duplications. These rules have been implemented in Notung 2.8, a freely
available phylogenetic reconciliation software package.

Consistent with the framework Fitch first introduced in the 1970s,
phylogenetic reconciliation captures information about the historical
association between genes and species, as well as the divergence events
that characterize the xenologs in each class. A potential limitation of this
approach is that it requires that species evolution be modeled as a tree.
While some have argued against tree-like models, given the prevalence of
horizontal gene transfer in bacteria, a tree can provide a useful heuristic,
despite the reticulate nature of prokaryotic evolution (Mindell, 2013, and
work cited therein).

As with most theoretical work on reconciliation, our classification
assumes that the gene tree and the inferred events are correct. In practice,
errors in gene tree reconstruction or incongruence due to unrecognized
incomplete lineage sorting could lead to downstream errorsin xenolog
classification. For example, the xenolog classification proposed here could
be embedded in a probabilistic reconciliation framework (e.g., Akerborg
et al., 2009), which would support an explicit and quantitative model of
uncertainty. Methods that account for phylogenetic uncertainty offer an
approach to bridging this gap, and are an important direction for future
work.

Missing data is another potential source of error. If the data set does
not contain at least one descendant of the donor, a transfer will be inferred
from a putative donor that is actually an ancestor of the donor species.
When temporal consistency is enforced, the setsD, R and O remain
unchanged. Hence, the classification of Sibling Donor, Sibling Recipient,
and Outgroup xenologs will be unaffected by this error. However, some
genes that are actually Sibling Donor xenologs will be incorrectly classified
as Primary xenologs. In this case, missing taxa can lead to errors in xenolog
classification, but will not result in major changes in interpretation; these
xenologs will still be correctly classified as being more closely related to
the donor than to the recipient of the transfer.

Our classification is an extension of Fitch’s classic framework and is
based solely on information that can be extracted from gene tree - species
tree reconciliation. Just as information about the spatialorganization
of duplicated genes can be used to infer tandem or whole genome

duplication, the incorporation of other sources of information, such as
synteny, sequence alignments, or structural comparison, could be used to
develop richer accounts of xenology relationships. For example, Koonin
et al. (2001) have proposed that horizontal gene transfer can result in the
acquisition of a new gene family, expansion of an existing gene family, or
allelic replacement without change in copy number.

Our classification provides a context for stating general hypotheses
about the functional and evolutionary fates of different classes of xenologs.
Since Sibling Donor xenologs are more closely related to thereference
gene than Sibling Recipients, they may be more likely to share molecular
functions than the reference gene. In contrast, the cellular environment
of the reference gene may be more similar to that of Sibling Recipient
xenologs. This could also convey information about the process of
amelioration following transfer (Lawrence and Ochman, 1997). For
example, the prokaryotic homologs of a fungal gene of prokaryotic origin
are likely not informative with regard to the cellular compartment in
which the encoded protein is active. The functional fates ofgenes that
have experienced both duplication and transfer is a largelyunexplored
question. Selective pressures are likely to change following both gene
duplication (Lynch, 2007, and work cited therein) and horizontal gene
transfer (Treangen and Rocha, 2011; Boto, 2010, 2016, and work cited
therein). Little is known about the combined effect of thesechanges on
rates of divergence and functional specialization.

Recent attempts to test the ortholog conjecture, which posits that
orthologs are more functionally similar than paralogs, have demonstrated
the challenges presented by confounding factors in high-throughput data,
and especially in the use of ontologies (Nehrtet al., 2001; Chen and
Zhang, 2012). Testing analogous xenolog conjectures will be even more
challenging: probing all four xenolog classes would require large-scale,
unbiased functional data sets for at least five species. Nevertheless, with
the current pace of functional genomics, genomic-scale investigations of
xenolog function are not far in the future.
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