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Abstract 

The presence of CO2 in hydrocarbon reservoirs can cause significant changes in seismic wave 

properties. In turn these properties can be used to map CO2 saturation in hydrocarbon 

reservoirs or aquifers - either from natural sources or by injection from the surface. We 

present the results of a synthetic modelling study of the effects of supercritical CO2 saturation 

on P-wave attenuation in a medium consisting of four horizontal layers, including a target 

aquifer. The target aquifer is modelled fully by an effective medium containing pores 

saturated with brine and/or CO2 and randomly-aligned microcracks at different densities. The 

other layers are modelled solely by their bulk seismic velocities and densities. We first 

compute synthetic seismograms for a reference case where the third layer is completely 

isotropic with no cracks, no pores and no fluid saturation. We then calculate synthetic 

seismograms for finite crack densities of 0.01, 0.02 and 0.03 at varying degrees of CO2 

saturation in the third layer. The results of our analysis indicate that attenuation is sensitive 

both to CO2 saturation and the crack density. For a given crack density, attenuation increases 

gradually with decreasing percentage of CO2 saturation and reaches a maximum at around 10 

% saturation. The induced attenuation increases with crack density and with offset. These 

observations hold out the potential of using seismic attenuation as an additional diagnostic in 

the characterisation of rock formations for a variety of applications, including hydrocarbon 

exploration and production, subsurface storage of CO2 or geothermal energy extraction. 
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1.0 Introduction 

CO2 is a natural constituent of hydrocarbon reservoirs with saturations varying from 2 - 80% 

(Roberts, 2009). It is also often deliberately injected into hydrocarbon reservoirs to enhance 

production rates and sweep efficiencies, and stored in subsurface reservoirs and saline 

aquifers as a means of mitigating climate change from the burning of fossil fuels. At surface 

temperatures and pressures, CO2 exists in the gaseous phase but exhibits supercritical 

behaviour above the critical point: temperature Tc = 31.1
o
C and pressure Pc = 7.38 MPa 

(David et al, 2008). White (1975) demonstrated that the presence of a gas in the rock can 

have a substantial influence on the seismic wave velocity and attenuation, depending on the 

degree of saturation, permeability, frequency and porosity. The presence of CO2 in the 

reservoir either in the gaseous or supercritical state can cause significant changes in seismic 

properties (such as seismic wave travel time, velocity, amplitude, attenuation) and thus, an 

understanding of its influence could be of great importance in the study of hydrocarbon 

reservoir properties. For instance, Davis et al. (2003) reported that CO2 can cause a change of 

4 - 6% in P-wave velocity and 5 - 10% in S - wave velocity. Time - lapse studies for 

monitoring CO2 sequestration in the subsurface have also shown that the presence of CO2 can 

cause significant changes in both the P - and S - wave velocities (e.g. Arts et al., 2004; 

Chadwick et al., 2005, Amir and Landro, 2009). David et al. (2008) observed significant 

changes in the calculated bulk seismic velocity and density in CO2 - saturated porous 

reservoir rocks under field conditions, where the CO2 may exist either as a supercritical fluid 

or as a supercritical gas. In both cases, the bulk density decreases systematically and linearly 

with increasing percentage of CO2 saturation, though more distinctly for the supercritical gas 

case. Their results demonstrate that the P-wave velocity shows an obvious non-linear 
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relationship with saturation. For the supercritical fluid case, there is a remarkable decrease in 

the P-wave velocity between zero and 30 % CO2 saturation and thereafter very little or no 

change in the velocity. For the supercritical gas case, there is even a stronger decrease in the 

P-wave velocity at small CO2 saturations of < 5 - 10 % with very little or no change at higher 

saturations. 

The attenuation of seismic wave energy in rocks depends on the physical state of the rocks 

and on the degree and type of fluid saturation in the pore space. For instance, P-wave 

attenuation has been shown to be greater in partially-saturated rocks compared to fully-

saturated rocks (e.g. White, 1975; Toksoz et al., 1979; Johnson et al., 1979; Winkler and Nur, 

1982; Klimentos, 1995). Despite the intensive effort in research and development related to 

the effects that CO2 might have on seismic wave response (e.g. Rubino et al., 2011a and 

Rubino et al., 2011b, Rossi et al., 2011, Müller et al., 2015), there is still a lack of adequate 

understanding of the effects of CO2 on seismic wave attenuation, especially at varying 

degrees of saturation. Thus, a concerted effort is still needed for a fuller understanding of 

these complex processes. In this paper, we examine the effects of CO2 held in the pore space 

of the rock on seismic attenuation, through synthetic modelling. To provide a realistic 

scenario for the modelling study, we use the published bulk moduli of both brine and CO2 

measured in the Sleipner gas field in the North Sea (Chadwick et al., 2005). Our main aim is 

to examine the changes caused by the presence of CO2 at varying percentages of saturation 

on P - wave attenuation in a layered medium where the target layer contains randomly-

aligned microcracks. Our theoretical model consists of four horizontal isotropic layers, where 

the third layer is the target layer. The layer is modelled as a fully poro-elastic medium 

containing brine with different crack densities and different amounts of injected CO2. The 

model accounts for anelastic losses due to the squirt-flow mechanism, which in turn depends 

on the crack density and fluid properties. To simplify the treatment, we assume the other 

layers can be characterised solely by their isotropic bulk velocities and densities. We first 
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calculate a reference model for the case that the third layer has zero crack density, no pores 

and no fluid saturation. We then consider a case in which the third layer in the model is 

saturated with CO2 at concentrations varying from 0 to 100 % and crack densities of 0.01, 

0.02 and 0.03 respectively. We used the classical spectral ratio method to compute the 

induced attenuation from the synthetic data. Our results demonstrate the sensitivity of 

attenuation to CO2 saturation, providing a fuller understanding into the effects of the pattern 

of seismic attenuation caused by CO2 in fluid-saturated porous rocks and especially 

validating the practical utility of using attenuation characteristics as an additional diagnostic 

in the characterisation of rock formations for a variety of applications, including hydrocarbon 

exploration and production, subsurface storage of CO2 or geothermal energy extraction. 

2.0 Chapman’s poro-elastic model 

The poro-elastic model of Chapman (2003) considers the pore space of a rock to consist of a 

lattice configuration of spherical pores, randomly oriented ellipsoidal micro-cracks and 

aligned ellipsoidal fractures. The radius of the micro-cracks and spherical pores is identified 

with the grain size. The fracture size is assumed to be much larger than the grain size but 

smaller than the seismic wavelength. Since the fractures have preferential alignment, the 

resulting medium has hexagonal symmetry (transverse isotropy). Wave-induced pressure 

gradients cause fluid exchange between adjacent elements of pore space in the rock. The fluid 

exchange between two adjacent voids „a‟ and „b‟ for instance is described by the formula 

(Chapman 2003): 

                     
 ab

o
at ppm 




                                                                      (1) 

where ρo is the fluid density,  is the permeability,  is the grain size,  is the fluid 

viscosity,  pa is the pressure in element a, ma is the mass of fluid in element a and pb is the 

pressure in element b. Each element of pore space is assumed to be connected to six other 
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elements and the resulting flows can be added linearly. The fractures are connected to a 

greater number of elements since they are larger than the micro-cracks and the pores. For the 

purpose of ensuring that there is some spacing between the fractures, the model assumes that 

each micro-crack or pore is connected to at most one fracture and that the fractures are not 

connected to each other. These last assumptions require that the number of micro-cracks and 

pores greatly exceeds the number of fractures. The effective elastic tensor, C given by 

Chapman (2003) is of the form:  

                     
       3

f

2

c

1

p

0 CCCCC                                                  (2) 

where  0C  is the elastic tensor of the isotropic rock matrix with Lame‟s parameters λ and μ, 

 1C ,   2C  and   3C  are the additional contributions from pores, micro-cracks and fractures,  

respectively, multiplied by the porosity p , the crack density c and the fracture density f . 

These additional contributions are functions of the Lamé parameters, fluid and fracture 

properties, frequency and relaxation times associated with squirt flow.  

 

Chapman‟s (2003) original model is restricted to very low porosity since the elastic constants 

are calculated based on Eshelby‟s (1957) interaction energy approach which is only valid for 

dilute concentrations of inclusions (Maultzsch et al., 2003). In cases of high porosities, the 

calculation of the corrections using the grain moduli λ and μ might result in significant errors. 

Furthermore, it is not ideal to use moduli which cannot be obtained from measured velocities. 

To address these issues, Chapman et al. (2003) slightly adapted the model to make it more 

applicable to real data by using Lame‟s parameters λ
o 

and μ
o
 derived from the density ρ and 

measured P-wave velocity Vp
o
 and S-wave velocity Vs

o
 of the un-fractured rock for the 

corrections. Also, 
  M,C 0 Λ  is defined in such a way that the measured isotropic velocities 

are obtained by applying the pore and crack corrections at a specific frequency fo (Chapman 

et al., 2003 and Maultzsch et al., 2003). Thus: 
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                       o

oo

c,p

o

o

oo

c,p

o ,f,μλμ   M,f,μλλΛ      , ,                        (3) 

where  c,p  refers to corrections to the elastic tensor which are proportional to crack density 

and porosity. 

                         2o

s

oo2o

p

o Vρ ;    μμ2Vρλ                                                                  (4) 

Equation 2 can then be re-written as: 

 

        
            ,,C,,C,,C,M,CC oo3

f

oo2

c

oo1

p

0  Λ       (5) 

 The form of Equation 5 allows the corrections for pores, micro-cracks and fractures which 

describe the frequency dependence and anisotropy of a material to be obtained from 

measurements of the velocities (Maultzsch et al., 2003). Chapman et al. (2003) further 

simplified the model by setting the crack density to zero in the case of high porosity. The 

influence of this parameter however is not significant for modelling the effects of fractures 

provided the spherical porosity is much greater than the crack porosity (Maultzsch et al., 

2003). 

Fluid flow in Chapman‟s (2003) model occurs at two scales; the grain scale (associated with 

the micro-cracks and spherical pores) and the fracture scale. This results in two characteristic 

frequencies and corresponding relaxation times. The relaxation time, m  associated with fluid 

flow between the micro-cracks and spherical pores are related to the squirt-flow frequency, 

c

mf  as (Murphy, 1985; Winkler, 1986; Lucet and Zinszner, 1992; Sothcott et al., 2000):   

                       
m

c

m

1
f


                                                                                                        (6) 

                    
 

1c

cv
m

c

K1c







 ,                                                                               (7) 
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where cv is the volume of an individual crack, c  is the critical stress and c1 is the number of 

connections to other voids. c  and Kc  are defined by: 

                     
 ν12

πμ r
σc


                                                                                               (8) 

                         
f

c
cK




                                                                                                        (9) 

where r is the aspect ratio of the cracks, ν is the poison‟s ratio of the matrix and f  is the 

fluid bulk modulus. Fluid flow in and out of the fractures is associated with a lower 

characteristic frequency or a higher corresponding relaxation time f  which is dependent on 

the size of the fractures. The relaxation time associated with the grain scale and that 

associated with the fracture scale are both related by the equation (Chapman, 2003):  

                         
m

f

f

a
t 




                                                                                                 (10) 

where fa  is the fracture radius. From Equation 10, it can be inferred that larger fractures will 

result in higher relaxation times (or lower characteristic frequencies). These larger relaxation 

times lead to velocity dispersion and attenuation in the seismic frequency range. Thus, in the 

general case the resulting anisotropy is frequency dependent.  

2.0 Theoretical model and experimental set-up 

The theoretical model is made up of four horizontal isotropic layers (Figure 1). To investigate 

the effects of CO2, a porous fluid-saturated material is introduced into the third layer and 

squirt flow between the pores in the matrix is taken into consideration. The material is 

saturated with brine and CO2 (in the supercritical state) at different degrees of concentrations. 

The elastic properties of the porous material are computed using the poroelastic model of 

Chapman (2003). However, to model the effect of fluid saturation in a porous but un-

fractured medium, we set the fracture density to zero so that the model returns to the earlier 
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model of Chapman et al. (2002). The bulk moduli of the brine and CO2 are based on the data 

from the Sleipner field in the North Sea (Chadwick et al., 2005). The field is a site for large 

scale CO2 injection project specifically designed as a greenhouse gas mitigation measure 

(Chadwick et al., 2005). Millions of tonnes of CO2 have been injected since 1996 into the 

Utsira Sand, which constitutes a major saline aquifer in the field (Chadwick et al., 2005; 

Bickle et al., 2007; Arts, et al., 2008) with over 11 million tonnes by 2010 (Chadwick et al., 

2010). The Utsira sand has a thickness of 200 - 300m and CO2 exists in the reservoir in the 

supercritical phase (Chadwick et al., 2005). Details of the model parameters used are given in 

Table 1. 

A uniform saturation of the pores and cracks with two types of fluids (brine and CO2 in this 

case) will result in a change of the effective fluid bulk modulus, viscosity and density 

(Chapman and Liu 2006 and David et al., 2008). The resulting attenuation is sensitive to the 

changes in the effective fluid bulk modulus as well as the fluid viscosity (Chapman and Liu, 

2006; Maultzsch et al., 2007). For partial saturation conditions with homogeneous mixing of 

brine and CO2, the effective fluid bulk modulus effK  could be computed using Wood‟s 

formula as (Mavko et al., 2009, pp 282): 

                   c

w

w

w

eff K

S

K

S

K




11

                                                                         (11) 

where wK  is the bulk modulus of brine, cK is the bulk modulus of CO2 and wS is the 

percentage of brine saturation. Wood‟s formula is valid for the low frequency limit, where 

there is sufficient time for fluid pressure gradients to relax and equilibrate to a constant 

pressure. The equilibrium is reached due to the fact that only grain scale is considered in the 

model where the relaxation times are much smaller than those expected if fractures were to 

be present. The pressure gradient generated by a seismic wave propagating in a medium leads 
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to exchange of fluid between the microcracks and the surrounding pore space, resulting in 

attenuation. This attenuation is sensitive to the fluid effective modulus in this case. 

Firstly, we considered a pure isotropic model with zero porosity, no fluid saturation and no 

microcracks to provide a reference model and computed the synthetic data from the 

theoretical model using the „ANISEIS‟ software which makes use of the reflectivity method 

(Taylor, 2001). Aniseis is a commercial software package for modelling seismic wave 

propagation in anisotropic media and is a far field approximation. We then introduced brine 

and CO2 (in the supercritical state) into the third layer at 90 % and 10 % respectively for 

crack densities of 0.01, 0.02 and 0.03 to examine the attenuation effects caused by CO2 on the 

P-waves generated. We finally examined the sensitivity of the induced attenuation to CO2 

saturation by considering the case in which the third layer is saturated with brine and CO2 at 

different degrees of concentrations ranging from 0 to 100 %. A zero percent (0 %) CO2 

saturation implies that the material is fully saturated with brine while 100 % CO2 saturation 

means that the material is fully saturated with CO2. The effective fluid bulk moduli of the 

fluid saturation were computed using Equation 11.  At lower brine saturation, the effective 

fluid bulk modulus is dominated by the bulk modulus of CO2. The reverse is the case at 

higher brine saturation.  

A Ricker wavelet with a centre frequency of 25 Hz and a start time of 100 ms was used as the 

source wavelet. The resulting wavefield was calculated at some 21 positions at the surface of 

layer 1, at a regular spacing of 100 m, and a minimum source - receiver spacing of 100 m was 

maintained. The synthetic data were recorded with a time step of 1 ms and a total sampling 

time of 3 s.  Sample synthetic gathers are shown in Figure 2 with the reflections from the top 

and bottom of the third layer highlighted by the red and green arrows respectively. These 

reflections are proportional to the time derivative of the source Ricker wavelet. The very low 

amplitude hyperbolic event that arrives after the reflection from the bottom of the third layer 
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is the P-S converted wave which was not analysed in this work. There is no significant 

difference between Figures 2a and b as a result of the auto scaling of the software used in 

generating the plots. The software scales the amplitude based on the maximum amplitude on 

the first trace in the gather. Our modelling studies examine only the fluid bulk modulus effect 

and the effect of viscosity is not considered at this stage.  

 

 

 

 

 

 
Figure 1: Experimental set-up. The model comprises four horizontal layers. ES is the source 

placed at a distance of 100 m from the first receiver R. The receiver spacing is 100 m.  

 

 

 

Table 1: Theoretical model parameters  

    Layer parameters                                                      saturated layer parameters (layer 3) 
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(a)                                                                    (b)                

Figure 2: Sample synthetic data (a) pure isotropic model with no cracks and no fluid 

saturation (b) model with crack density 0.01 and CO2 saturation 10% in the third layer. The 

red and green arrows indicate the top and bottom of the third layer reflections respectively. 

The trace spacing is 100 m  

 

3.0 Attenuation measurements  

Measurement of seismic attenuation from seismic data is usually made through the estimation 

of the inverse of the seismic quality factor, Q. In practice, the use of the spectral ratio method 

fracture density 0 

CO2 bulk modulus 0.008Gpa 

Brine bulk modulus 2.305Gpa 

porosity 0.37 

Layer vp                

(m/s) 

vs 

(m/s) 

ρ 

(Kg/m
3
) 

Thickness 

(m) 

1 1800 750 1100 400 

2 2270 850 2100 600 

3 2850 1350 2450 300 

4 3800 1800 2600 Half-

space 
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is very common to estimate Q from seismic data partly as a result of its ease of use and 

stability (e.g. Hauge 1981; Pujol and Smithson 1991; Dasgupta and Clark 1998), and also 

because it removes the effects of geometric spreading in an uncomplicated manner.  

Consequently, any measurement of attenuation can be attributed exclusively to internal 

energy dissipation or „intrinsic attenuation‟, at least for relatively uniform media where 

multiple scattering can be neglected.  

In this paper, we used the spectral ratio method to estimate the seismic quality factor from the 

synthetic data. In each gather, the first trace from the top model reflection at an offset of 0 m 

was used as the reference trace for comparison of the spectral ratios. For each trace in the 

gather and for the top and bottom reflections from the third layer (fluid-saturated layer), we 

formed the spectral ratios in accordance with Equation 12 and performed a simple least-

squares regression of the Log of the Power Spectral Ratios (LPSR) against frequency. We 

used a constant FFT time window of 180 ms to compute the power spectra. 

   12e

1

2

2

1

2

2 tt
Q

πf2
GRln2

P

P
ln

A

A
ln                                                    12 

f is frequency, Re is the reflectivity term, G is the geometrical spreading factor, A1 is the 

spectral amplitude of the reference trace i.e. for the case of zero crack density, A2 is the 

spectral amplitude of the target reflection (top or bottom of fractured-layer) while P1 and P2 

are the respective spectral powers (square of amplitudes), t1 and t2 are the corresponding 

travel times, Q is the seismic quality factor down to the reflector.  

Sample power spectra are shown in Figure 3 for selected percentages of CO2 saturation and 

crack density of 0.02 at a fixed offset of 900 m. There is a significant drop in the power 

spectral density for the bottom layer reflection with decreasing percentage of CO2 saturation 

from 100% to a minimum at 10% saturation. However, the power density is a maximum at 
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0% CO2 saturation when the material is 100% saturated with brine. These observations are 

indicative of the sensitivity of the wave attenuation to the varying degrees of CO2 saturation. 

The far field pulse shape is proportional to the time derivative of the input Ricker wavelet. 

Lange and Almoghrabi (1988) and Chung and Lawton (1995) have shown that given a Ricker 

wavelet with centre frequency fo, the peak frequency fp of the derivative of the wavelet is 

given as: 

2

3
ff op                                                                                                     (13) 

Equation 13 explains why the peak frequency of the far field response is greater than that of 

the input Ricker wavelet. Samples plots of the Log Power Spectral Ratios (LPSR) against 

frequency are shown in Figure 4 for the pure isotropic model with no fluid saturation and 

crack density and for 10 % CO2 saturation and crack density of 0.01 respectively. For the top 

layer reflection (red colour), the plots are approximately horizontal, indicating that there is no 

attenuation in the overlying layer (layer 2) as expected since it is isotropic. For the pure 

isotropic model with no fluid saturation (Figure 4a), the plot for the bottom reflection (blue 

colour) is also horizontal indicating no attenuation in the model. However, this is not the 

same for the fluid saturated case (Figure 4b). The plot for the bottom layer is not horizontal, 

indicating that attenuation is induced by the saturated CO2. Figure 5 shows sample plots of 

the Log Power Spectral Ratios (LPSR) against frequency for the third layer for the three 

values of crack densities considered at 10% CO2 saturation (Figure 5a) and  various degrees 

of  CO2 saturation at crack density of 0.02 (Figure 5b) at 1100m offset. For the top layer 

reflection (blue colour), the plots are horizontal, indicating that there is no attenuation in the 

overlying layer. However, for the three crack densities, the plot for the bottom layer has 

varying slopes indicating varying magnitudes of attenuation respectively with crack density 

of 0.03 having the highest magnitude. Also, the plots for the bottom layer reflections for the 
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various degrees of saturation considered have varying slopes with 10% saturation having the 

highest slope, implying varying attenuation magnitudes in the layer with highest magnitude at 

10% saturation. All the plots however are approximately linear between the frequency 

bandwidth of 20 - 90 Hz. This frequency bandwidth was used for all the traces analysed. 

Sample least-squares regression plots of the LPSR against frequency for the chosen 

bandwidth are shown in Figure 6 for the top (blue colour) and bottom (red colour) reflections 

from the third layer at selected percentages of CO2 saturation and a fixed offset of 1100 m 

respectively with their corresponding coefficient of determination (R
2
) values. The plots 

show good fit of the spectral ratios, indicating a linear relationship as predicted by Equation 

(12) even though attenuation is frequency dependent in the model (Equation 10). The plot for 

0 % CO2 saturation has a slope which is less than that for 100 % CO2 saturation, indicating 

that CO2 causes more attenuation than brine.  

We then computed the Q value down to the reflector for a given offset from the slope p of the 

least-squares regression given by: 

                             

 
Q

ttπ2
p 12

                                                                                         (14) 

This model assumes Q is frequency-independent. While this is not the case for the model 

used to construct the synthetic medium, it provides a good approximation to the synthetic 

data within the restricted bandwidth used in the regression fit. With the pair of Q values 

computed for the top and bottom of the third layer, we used the layer-stripping method of 

Dasgupta and Clark (1998) to compute the interval Qi value in the layer using the equation: 

1122

12
i

Q/tQ/t

]tt[
Q






                                                                                            (15) 
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where Q1 and Q2 are the seismic quality factors down to top and bottom of the third layer 

respectively. The entire procedure was repeated for all the traces in the gather following the 

hyperbolic travel path and the average interval Q in the third layer was computed from the 

mean of all the computed interval Qi values in the layer.  

 
(a)                                                (b) 

Figure 3: Power spectra at 900 m offset for the fluid-saturated layer reflections (a) top layer: 

0.02 crack density (b) bottom layer: 0.02 crack density. S is the degree of saturation of CO2.  

The saturation of brine is (100 - S) %. 

 

 
Figure 4: Samples plots of the Log Power Spectral Ratios (LPSR) against frequency at a 

fixed offset of 1100 m for the third layer (a) zero porosity, no fluid saturation and no 

microcracks or fractures (b) 10 % CO2 saturation and crack density of 0.01. The red and blue 

lines indicate the top and bottom layer reflections respectively. 
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Figure 5: Samples plots of the Log Power Spectral Ratios (LPSR) against frequency at a 

fixed offset of 1100 m for the third layer (a) 10 % CO2 saturation at different crack densities 

(cd) (b) crack density of 0.02 and different percentage of CO2 saturation (s). TLR is top layer 

reflection while BLR is bottom layer reflection 

 
Figure 6: Sample least-squares regression plots for the third layer at a fixed offset of 1100m. 

The blue colour indicates the top layer reflection while the red colour indicates the bottom 

layer reflection. S is the degree of saturation of CO2.  The saturation of brine is (100 - S) %. 

 

4.0 Results and analysis 

The results of our study demonstrate a strong sensitivity of attenuation to CO2 saturation. For 

the pure isotropic model (zero porosity, no microcracks and no fluid saturation), there is no 

attenuation in the model as expected (pink colour in Figure 7). However, the presence of CO2 
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in the model causes attenuation. The induced attenuation depends on the degree of saturation. 

Higher Q values (low attenuation) are obtained in the fluid-saturated layer at 0% CO2 

saturation and lower Q values (high attenuation) at 100% CO2 saturation for the three crack 

densities considered (Figure 7). The Q values are observed to decrease gradually with 

decreasing percentages of CO2 saturation from 100% to 10% for a given crack density, 

implying more attenuation with decreasing percentages of saturation. The Q values are also 

observed to decrease systematically both with increasing crack density and offset (Figure 7). 

This implies that the induced P-wave attenuation increases with crack density and offset. 

Figure 8 shows the attenuation (1/Q) profile against percentages of CO2 saturation. The 

attenuation exhibits a non-linear relationship with C02 saturation. For the ranges of 

saturations considered, the attenuation peaks at 10% saturation after which there is a gradual 

and steady decrease in attenuation with increasing percentage of saturation. This gradual 

decrease appears to be sharper for saturation ranges of around 10 – 50% than higher 

percentage saturations. A maximum attenuation of up to 0.13 occurs at 10% CO2 saturation. 

Although our study is limited only to the effects of crack density and CO2 saturation, it is 

useful to show how these factors influence attenuation characteristics to gain a fuller 

understanding of these effects and gain more confidence in using P-wave attenuation in 

deciphering information on hydrocarbon fluid properties 
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Figure 7: Q profile against CO2 saturation for different degree of saturations and crack 

densities. Q decreases systemically with saturation and crack density and is minimum around 

10% saturation 

 

 
Figure 8: 1/Q profile against CO2 saturation for different crack densities. No attenuation 

occurs in the pure isotropic case with no cracks and no fluid saturation (pink colour). The 

induced attenuation is a maximum at 10% CO2 saturation. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 

5.0 Discussion and conclusion 

Seismic attenuation depends not only on the physical state of the rocks, but also on the nature 

of the fluid saturation in the pores of the rock. Based on the mean-field poro-elastic model of 

Chapman et al (2002 and 2003), we have investigated the effects of two types of fluid 

saturation (brine and CO2 in the supercritical state) on P-wave attenuation, with particular 

interest in the effects of CO2 using the CO2 properties at the Sleipner gas field in the North 

Sea. Our results demonstrate the sensitivity of P-wave attenuation to the presence of CO2. 

The induced attenuation is influenced by the effective fluid bulk modulus which in turn is 

dependent on the percentages of saturation of the two fluids (CO2 and brine). The attenuation 

is very sensitive to the percentage of CO2 saturation and is higher for 100% CO2 saturation 

than for 0% saturation, implying that the CO2 causes more attenuation than brine. This could 

possibly be attributed to the fact that the properties of CO2 in the supercritical phase where it 

behaves as a liquid were used in the modelling. Another factor that affects the magnitude of 

the induced attenuation is the crack density. The attenuation increases with increasing crack 

density as well as with offset. The attenuation occurs as a result of the relaxation of the fluid-

pressure gradients generated by the propagation of seismic waves between the cracks and the 

surrounding pore space in the rock. The fluid mobility in this case is assumed to be the 

effective mobility of the two fluids and viscosity effects are not taken into consideration. The 

results show that the P-wave attenuation is even more sensitive to CO2 saturation than 

velocity, most especially at higher concentrations when compared to the results of the study 

of David et al (2008). The attenuation results are also consistent with the results of Rossi et al 

(2011) who demonstrated the sensitivity of attenuation to CO2 saturation in real field data 

example from the Sleipner Field. Thus, our findings further demonstrate the sensitivity of 

attenuation to CO2 saturation, providing a fuller understanding into attenuation characteristics 
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in fluid saturated rocks and especially validating the practical utility of using attenuation 

characteristics as an additional diagnostic in the characterisation of rock formations for a 

variety of applications, including hydrocarbon exploration and production, subsurface storage 

of CO2 or geothermal energy extraction. 
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Highlights 

Used poro-elastic model to examine effect of CO2 on P-wave attenuation 

P-wave attenuation is sensitive to CO2 saturation  

Attenuation increases with decreasing percentage of CO2 saturation 

P-wave attenuation is sensitive to crack density and offset 

CO2 causes more attenuation than brine 


