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Abstract. White matter hyperintensities (WMH) seen on FLAIR im-
ages are established as a key indicator of Vascular Dementia (VD) and
other pathologies. We propose a novel modality transformation technique
to generate a subject-specific pathology-free synthetic FLAIR image from
a T1 -weighted image. WMH are then accurately segmented by compar-
ing this synthesized FLAIR image to the actually acquired FLAIR image.
We term this method Pseudo-Healthy Image Synthesis (PHI-Syn). The
method is evaluated on data from 42 stroke patients where we com-
pare its performance to two commonly used methods from the Lesion
Segmentation Toolbox. We show that the proposed method achieves su-
perior performance for a number of metrics. Finally, we show that the
features extracted from the WMH segmentations can be used to predict
a Fazekas lesion score that supports the identification of VD in a dataset
of 468 dementia patients. In this application the automatically calculated
features perform comparably to clinically derived Fazekas scores.

1 Introduction

White matter hyperintensities (WMH) are commonly found in brain fluid at-
tenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Their
aetiology is diverse but they are known to be associated with an increased risk
of stroke, dementia and death [1]. WMH are usually clearly visible as hyperin-
tense regions in FLAIR images, and potentially appear as hypointense regions
in T1 -weighted images (Figure 1).

The accurate annotation of WMH from FLAIR images is a laborious task
that requires a high level of expertise and is subject to both inter- and intra-
rater variability. To enable effective image analysis in large scale studies or the



Fig. 1: An example pair of T1 -weighted (left) and FLAIR (right) images. The FLAIR
image exhibits clear WMH. The corresponding locations in the T1 -weighted image
show little change, apart from the circled region which is slightly hypointense.

reproducible quantification of lesion load in the clinic without expert knowledge
(e.g. in the context of a comprehensive decision support system) an accurate and
fully automatic method for lesion segmentation is desirable.

In this paper, we present a novel method of segmenting WMH from FLAIR
images using modality transformation. Modality transformation is the task of
generating a synthetic image with the appearance characteristics of a specific
imaging modality (or protocol) by using information from images acquired from
one or more other modalities. The accurate generation of these images can be
critical in the context of, for example, non-linear multi-modality registration [2]
where the problem can be reduced to a mono-modality problem when one modal-
ity is synthesised from the other. Additionally, many segmentation or classifica-
tion algorithms require an input image from a certain modality. The ability to
synthesise these modalities from another modality could substantially expand
the applicability of these algorithms [3].

This paper investigates the principle of synthesising an image with healthy
appearance in order to identify pathology in a real scan. Similar to previous
work [4, 5], we aim to produce a “pseudo-healthy” version of a particular modal-
ity without any signs of pathology. The synthetic image is then compared with
the potentially pathological real image and the differences are identified.

Existing modality transformation algorithms can be divided into model and
data driven approaches. In the former, intrinsic physical properties of the tissue
being imaged are estimated from the available modalities [6]. Once known, a
new modality can be synthesised by simulating the image acquisition protocol.
However, accurate estimation of these tissue properties requires particular ac-
quisition protocols, which are not routinely carried out. The more commonly
used algorithms therefore rely on a data driven approach where the synthesised
image is derived directly from the intensities of the source image(s). Most state



of the art algorithms employ a patch based, dictionary learning approach [8, 9,
2]. A dictionary of source-target patch pairs is stored with synthesis being per-
formed by using the target patch with the corresponding source patch which most
closely matches a given patch in source image. Approaches using a restricted
nearest neighbour search [8], compressed sensing [9] and sparse coding [2] are
among those proposed for searching and combining patches from the dictionary.
Recently, deep learning approaches have also received attention [7] with good
results. Another data driven approach, to which our proposed method is more
closely related, uses local joint histograms to find the target image intensity with
which a given source image intensity most commonly co-occurs [10].

The main problem when employing these existing methods for the synthesis of
pseudo-healthy images is that, even when the dictionary is created from healthy
subjects, WMH are often synthesised. This is because the relationship between
WMH intensities in T1 -weighted and FLAIR images can sometimes be similar
to that of gray matter (GM) [11]. Existing methods will learn this WMH-GM
similarity and synthesise WMH as hyperintense. Whilst this ability has been
exploited for better T1 -weighted image segmentations [12], it is not desirable
for the production of pseudo-healthy images.

In this paper we present a novel modality transformation method, which can
be used effectively to generate pseudo-healthy images. The proposed approach
exploits only information from small neighbourhoods around a given voxel to pre-
dict a synthetic intensity, and will therefore not be influenced by the WMH-GM
relationship described above, which would be learnt in other regions of the brain.
We employ this method to address the problem of WMH segmentation with re-
sults that compare favourably with two established reference methods from the
Lesion Segmentation Toolbox (LST). Finally, we demonstrate the clinical poten-
tial of the proposed automatic lesion segmentation method when applied to the
identification of VD in a clinical dataset, and show performance comparable to
identification using manually assessed Fazeka scores, a clinical measure of WMH.

2 Method

In the following, we describe the two essential components of the proposed PHI-
Syn method. First, a pseudo-healthy FLAIR image is synthesised from a patient’s
T1 -weighted image. In a second step, this estimated FLAIR image is compared
to the real FLAIR image of the patient and abnormally hyperintense regions are
identified.

2.1 Image Synthesis

To synthesise a subject’s FLAIR image that does not exhibit WMH (if present
in the T1 weighted image), we propose a method that relies on voxel-wise kernel
regression to learn local relationships between intensities in T1 -weighted and
FLAIR image pairs of healthy subjects. The regression model is then used to
synthesise pseudo-healthy FLAIR images from T1 -weighted images. There are



three factors that enable the synthesis of a pseudo-healthy image: a) the pathol-
ogy is in general not prominent in T1 -weighted images; b) the model is trained
on image pairs of healthy subjects without WMH and does therefore not learn
how to synthesise pathology; c) the method uses only information from small
local regions from the training data to synthesise each voxel, meaning intensity
relationships learnt from other regions of the brain will not be applied.

Preprocessing. As voxel intensities are compared directly between scans it
is important that all images of a respective modality are on the same intensity
scale. We employ the following steps to ensure that the distributions of intensities
within tissue classes are the same across all images of that modality.

Each T1 -weighted image is bias field corrected [13], skull stripped [14] and
anatomically segmented [15]. GM and white matter (WM) masks are generated
from these segmentations and a transformation from native to MNI space using
free form deformations (FFD) [16] is computed.

Intensity normalisation is a key step that is particularly challenging in the
presence of pathology, as it needs to be ensured that varying levels of pathology
have no impact on intensity mappings. To do this we use the method employed
in [17] using the previously computed WM and GM masks. This approach es-
tablishes a robust fixed point as the mean of the average intensities of the WM
and GM which can then be set to a common value. The method described has
the advantage of only using information from regions in which we are highly
confident the tissue type is either healthy WM or GM and will therefore be
unaffected by WMH.

FLAIR images are also bias corrected and masked using the brain mask
derived from the T1 -weighted image, rigidly transformed into the native space
of the FLAIR image. The GM and WM masks are also transformed into FLAIR
space and used for intensity normalisation.

Synthesis Training. The training set consists of pairs of T1 -weighted and
FLAIR images, Ttrain and Ftrain respectively. All images are aligned to MNI
space and re-sampled on a 1 mm3 voxel lattice using linear interpolation. The
T1 -weighted image intensities are rescaled to the range [0; m], where m is the
number of points the model will be evaluated at. The value of m will ultimately
control the size and training time of the model, with a larger value leading to
more accurate results. A kernel regression model with bandwidth h is generated
at each voxel x relating the T1 -weighted and FLAIR intensities in an s-by-s-
by-s patch around x. The result of evaluating the model at each k in the range
[1,m] is stored in vector Mx (1) using the regression model outlined below.

Mx(k) = R(nTx , n
F
x , k), nTx = N(x; Ttrain, s), nFx = N(x; Ftrain, s), (1)

R(a,b, k) =

∑
i(K((k − ai)/h)bi)∑
iK((k − ai)/h)

, K(p) =
1√
2π
e−

1
2p

2

, (2)



where N(x; T, s) and N(x; F, s) return a vector containing the voxels in a patch
around voxel x of size s-by-s-by-s from each image in T and F respectively.

Synthesis Testing. To estimate the synthetic FLAIR image, the intensities of
the T1 -weighted image, T, are rescaled to be between 0 and m and transformed
into the native space of the FLAIR image along with mapping M. The synthetic
image S at voxel x is then calculated,

Sx = Mx′′(dTx′e), x′ = LFT(x), x′′ = LFM(x), L : R3 → R3, (3)

where LFT denotes the rigid transformation between FLAIR and T1 -weighted
image spaces and LFM represents the FFD transformation between FLAIR and
MNI image spaces.

2.2 Lesion Segmentation

We identify lesions by detecting regions which are hyperintense in the FLAIR
image relative to the synthetic image. A consequence of using kernel regression
is a tendency for synthesised image intensities to be closer to the mean intensity
in the respective regions, resulting in reduced image contrast. The method we
use for intensity normalisation determines two values corresponding to the mean
intensities of GM and WM in regions with high confidence that both the tissue
is correctly identified and its appearance normal. To correct tissue contrast we
scale the synthetic image such that the mean intensities in these regions match
those of the acquired FLAIR images.

The confidence Σ in the intensity-normalised synthesised images is computed
by calculating the standard deviation of the errors achieved on the training im-
ages in MNI space. This yields a spatial variance map, which is used to assign a
relative confidence to the synthesised intensities at each voxel. A z-score corre-
sponding to the likelihood of the intensity of a voxel x falling outside of what is
expected is then computed, ZS

x = (Fx − Sx)/Σx′ where x′ = LFM(x), which is
turned into a p-value, PS

x. Another set of p-values PF are computed to reflect
areas of hyperintensity in the FLAIR image. An individual image based z-score
will be affected by the volume of hyperintense regions in the image. Therefore,
the mean and standard deviation required to compute PF are estimated from
intensity histograms of the normalised training images.

We combine the previously computed anatomical segmentations to create a
binary mask B to constrain the search for WMH to areas of the brain where
they are expected to be present. This mask includes the WM and a number of
cortical and deep GM structures which are close to areas where WMH is com-
monly found. The final WMH likelihood L at voxel x was thus computed by the
multiplication of the three likelihood maps at x, Lx = PF

xPS
xBx.

There are two main types of WMH. Small punctate lesions such as those vis-
ible in Fig. 2, and larger, lower intensity regions often connecting high intensity
peaks, such as those seen in Fig. 3. To account for both types, a low threshold tl
is first used to binarize L and only large (> 200 mm3) areas are kept. A higher



threshold th is then used and the initial segmentation taken to be the union of
these two segmentations.

A refinement step is then carried out in which segmentations are repeatedly
grown into neighbouring voxels up to 5 mm away with an intensity which lies
above the lowest intensity in the original segmentation. The 5 mm limit is im-
posed to prevent the growth of incorrect “lesions”. Finally, small (< 20 mm3)
segmentations are removed as these are often visually indistinguishable from
noise.

Fig. 2: The intermediate steps for segmentation. Left to right: FLAIR image, synthetic
image, likelihood map PS, likelihood map PF, likelihood map L. Note how the brightest
areas in the L correspond to the WMH in the FLAIR image.

3 Experiments and Results

Experiments were carried out to evaluate PHI-Syn against two widely used seg-
mentation methods, and to investigate its applicability in a clinical setting.

3.1 Data

In the first experiment, we used a stroke dataset of 42 patients (mean age 64.9
years (SD 10)) from a study of mild stroke [18], obtained as described in [19]. Im-
ages were acquired with an in plane resolution of 0.94-by-0.94 mm and slice thick-
ness 4 mm. Reference WMH segmentations were obtained semi-automatically. In
a second experiment we used a dementia dataset of 468 subjects from VUMC,
Amsterdam, which were provided for the PredictND study8. This clinical dataset
contains MRI scans of varying resolutions and field strengths along with clini-
cal scores for patients with a diagnosis of either subjective memory complaints
(110), Alzheimer’s Disease (204), Frontotemporal Dementia (88), Lewy Body
Dementia (47) and Vascular Dementia (19). Clinical Fazekas scores were visu-
ally assessed. Of the 468 subjects, 173 had a Fazekas score of 0, 205 (score 1),
61 (2) and 29 (3). Images were acquired at 3T (295), 1.5T (91) and 1T (82).

8 http://www.predictnd.eu/



For both experiments, the synthesis model was trained on 31 subjects se-
lected from the dementia dataset as the visually least pathological. However, a
consequence of training on subjects from an elderly dataset is that most subjects
have a small degree of periventricular WMH due to their age. These were, unde-
sirably, reproduced in the synthetic images. An additional post-processing step
on the synthetic images was added to address this: Voxels located up to 15 mm
from the ventricular wall were capped at a maximum intensity value equal to
the average between the mean FLAIR intensities of GM and WM. A special
case must then be made for the region around posterior prolongations of the
ventricles where non-pathological low level hyperintense streaks are often seen.
A squaring of the probabilities in these regions was sufficient to ensure that true
lesions would still be segmented, whilst the probabilities corresponding to low
level hyperintensities would be suppressed. This additional step would not be
required if a set of pathology free subjects were available for a particular appli-
cation. Free parameters for synthesis were chosen empirically for all experiments
as: m = 100, s = 7, h = 5 as they balanced model size and computational speed
with visually appealing synthesised images.

3.2 Evaluation Against Reference Segmentations

In this experiment we employ the stroke dataset to compare the proposed method
against two standard methods from the Lesion Segmentation Toolbox v.2.0.129

- the Lesion Growth Algorithm (LST-LGA) [20] and the Lesion Prediction Algo-
rithm (LST-LPA). The former requires a T1 -weighted image as well as a FLAIR
image. White matter, grey matter and CSF segmentations are obtained from the
T1 -weighted image and used to create a lesion belief map from the FLAIR im-
age. This is first thresholded at a value κ and the resulting segmentations are
grown along hyperintense voxels. LST-LPA is a supervised method for which
a logistic regression model was trained on 53 Multiple Sclerosis patients with
severe white matter lesion loads. Both methods output a lesion probability map,
which the documentation suggests should be thresholded at 0.5. For LST-LGA,
a κ of 0.3 is the default but it is strongly suggested that this is optimised. For
each method, we provide results for both the suggested parameters and parame-
ters selected through a grid search which maximised Dice Similarity Coefficient
(DSC). These were found to be: LST-LGA*, κ = 0.07, threshold= 0.10. LST-
LPA*, threshold= 0.10. PHI-Syn*, tl = 0.76, th = 0.85.

Segmentations were compared across a set of quantitative measures used pre-
viously in the ISLES 2015 segmentation challenge10: Average Symmetric Surface
Distance (ASSD, mm), DSC, Hausdorff Distance (HD, mm), Precision and Re-
call. A further metric, Load Correlation (LC) defined as the correlation between
automatic and reference segmentation volumes over all subjects was also used
with results shown in Table 1.

9 www.statistical-modelling.de/lst
10 www.isles-challenge.org



Table 1: Comparisons of segmentation results. * indicates results for optimised param-
eters. 1,2,3,4,5 indicate statistical improvement on LST-LGA, LST-LPA, LST-LGA*,
LST-LPA* and PHI-Syn* respectively using a Wilcoxon signed rank test at a 5% sig-
nificance level.

Method ASSD DSC HD Precision Recall LC

LST-LGA 7.84 0.294 50.4 0.6193 0.225 0.790
LST-LPA 3.681,3 0.4771,3 37.31 0.6831,3,4,5 0.4171 0.779
LST-LGA* 5.891 0.3671 40.31 0.467 0.3591 0.760
LST-LPA* 2.581,2,3 0.5991,2,3 33.21,2,3 0.5933 0.7131,2,3 0.711
PHI-Syn* 2.391,2,3 0.6031,2,3 30.11,2,3,4 0.6103 0.6691,2,3 0.849

3.3 Relation to clinical scores

The Fazekas score is a commonly used four point clinical score derived from
FLAIR images relating to the presence and degree of WMH [21]. It has partic-
ular use in the diagnosis of VD as it relates to the most significant pathological
changes in the patient’s brain.

In this experiment we predicted synthetic Fazekas scores from the segmenta-
tions given by PHI-Syn and compared them to clinical Fazekas scores. The exper-
iments were carried out using 1000 runs of 10-fold cross validation. At each fold,
three features were extracted from the PHI-Syn lesion segmentations: the vol-
ume of lesions as a percentage of WM, the volume of lesions greater than 15 mm
from the ventricles as a percentage of WM, and the volume of the largest lesion.
At each fold, the training set was balanced by oversampling under-represented
Fazekas scores classes. A set of support vector machine (SVM) classifiers using
an error-correcting output code schema for multi-class classification (classifier A)
were trained on the training set to predict a synthetic Fazekas score. A further
binary SVM (classifier B) was trained on data balanced with respect to disease to
predict a diagnosis of VD or not-VD from the clinical Fazekas scores. Synthetic
Fazekas scores were then calculated for subjects in the test set using classifier A
and diagnoses were predicted from both the true and synthetic Fazekas scores
using classifier B.

The balanced accuracy for predicting a synthetic Fazekas score using classi-
fier A was 61.5%, with only 4%/0.25% being predicted a score of more than 1/2
points from their respective true clinical score. The balanced accuracy for pre-
dicting a diagnosis was 83.3% from the true Fazekas scores and 83.9% from the
synthetic Fazekas scores with standard deviations of 1.2% and 3.3% respectively.

4 Discussion

The conducted experiments show that PHI-Syn achieves the highest or statisti-
cally joint highest scores in ASSD, DSC, HD, Recall and LC. Figure 3 shows three
sample segmentations. Visual examination confirms superior ability of PHI-Syn,
as compared to LST-LPA*, to locate smaller lesions distant from the ventricles



(A and C). A lower HD score supports this observation. Instances in which PHI-
Syn tends to be outperformed by LST-LPA* include cases of large areas of low
intensity (B). Objective measurements and visual inspection both suggest PHI-
Syn performs well in the majority of situations. A limitation of this experiment
is that only WMH are included in the reference segmentation, and other hyper-
intense appearing pathologies such as stroke lesions, are not. All methods tested
will identify all hyperintensities and as such the results of these experiments can
only be used to compare methods relative to each other, and should not be used
as an indicator of expected performance on another dataset.

Fig. 3: A sample of two FLAIR images (bottom) and segmentations (top). Reference
(blue), LST-LPA* (green) and PHI-Syn (red) segmentations are shown. Colours are
additively mixed where segmentations overlap. e.g purple indicates overlap between
PHI-Syn and the reference, cyan: LST-LPA* and reference, yellow: LST-LPA* and
PHI-Syn, white: all methods. Arrows draw attention to regions of particular interest.

The balanced accuracy of predicted diagnoses from the synthetic Fazekas
scores is comparable to those predicted when using the clinically assessed Fazekas
scores, however the data is highly imbalanced and as such the balanced accuracy
can be unstable and susceptible to noise. Future work involves using more VD
cases to further investigate using synthetic over true Fazekas scores. However,
these initial results suggest that a synthesised score is a valuable marker in cases
where a clinical Fazekas score is not available.

We have shown that effective synthesis of pseudo-healthy images can be car-
ried out using voxel-wise kernel regression, and that these images can be used
to reliably identify WMH. We have also shown that the resulting WMH seg-
mentations can be used to predict a Fazekas score, which discriminates between



vascular and non-vascular cases of dementia comparably to labour-intensive clin-
ical scores.
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