

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform

Citation for published version:

Wood, R, Zhuravlev, AY, Sukhov, SS, Zhu, M & Zhao, F 2016, 'Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform' Geology. DOI: 10.1130/G38367.1

Digital Object Identifier (DOI):

10.1130/G38367.1

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Geology

Publisher Rights Statement: © Geological Society of America

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

- 1 Demise of Ediacaran dolomitic seas marks widespread
- 2 biomineralization on the Siberian Platform
- 3 R.A. Wood^{1,*}, A. Yu. Zhuravlev², S.S. Sukhov³, M. Zhu⁴, and F. Zhao⁴
- 4 ¹School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9
- 5 *3FE, UK*
- 6 ²Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State
- 7 University, Leninskie gory 1(12), Moscow 119234, Russia
- 8 ³Siberian Scientific Research Institute of Geology, Geophysics and Mineral Resources,
- 9 Krasny prospekt 67, Novosibisrk 630091, Russia
- ⁴State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology
- 11 and Palaeontology, 39 East Beijing Road, Nanjing 210008, China
- 12 *E-mail: *Rachel.Wood@ed.ac.uk*

13 ABSTRACT

14 The trigger for biomineralization of metazoans in the terminal Ediacaran, ~550 15 million years (Ma) ago has been suggested to be the rise of oxygenation or an increase in 16 sea water Ca concentration, but geochemical and fossil data have not been fully 17 integrated to demonstrate cause and effect. Here we combine the record of macrofossils 18 with early marine carbonate cement distribution within a relative depth framework for 19 terminal Ediacaran to Cambrian successions on the eastern Siberian Platform, Russia to 20 interrogate the evolution of sea water chemistry and biotic response. Prior to \sim 545 Ma the 21 presence of early marine ferroan dolomite cement suggests dominantly ferruginous 22 anoxic 'aragonite-dolomite seas', with a very shallow oxic chemocline that supported

23 mainly soft-bodied macrobiota. After ~545 Ma, marine cements changed to 24 aragonite/high-Mg calcite, and this coincides with the appearance of widespread 25 aragonite and high-Mg calcite skeletal metazoans suggesting a profound change in sea 26 water chemistry to 'aragonite seas' with a deeper chemocline. By early Cambrian Stage 27 3, the first marine low-Mg calcite cements appear coincident with the first low-Mg calcite 28 metazoan skeletons suggesting a further shift to 'calcite seas'. We suggest that this 29 evolution of sea water chemistry was caused by enhanced continental denudation that 30 increased the input of Ca into oceans so progressively lowering Mg/Ca which, combined 31 with more widespread oxic conditions, facilitated the rise of skeletal animals and in turn 32 influenced the evolution of skeletal mineralogy.

33 INTRODUCTION

34 The appearance and diversification of diverse animal skeletons in the late 35 Ediacaran to early Cambrian (550 - 520 Ma) suggests an external trigger such as a 36 change in seawater chemistry or rise in predation (Knoll, 2003). Abiotic factors proposed 37 include the increased availability of oxygen (Towe, 1970) or a rise in the concentration of 38 calcium in seawater (Brennan and Lowenstein, 2004). Uncertainty persists, however, as 39 to both the record of shallow marine oceanic redox during this interval, and the 40 relationship to changes in sea water chemistry. 41 Most early metazoan skeletons were calcium carbonate (CaCO₃), forming as 42 aragonite, low-Mg calcite and high-Mg calcite (Zhuravlev and Wood, 2008), which were 43 also major abiotic precipitates (e.g. Corsetti et al., 2003). By contrast, dolomite

44 (CaMg(CO₃₎₂), has a highly ordered crystal lattice with slow kinetic growth rates, does

45 not readily form in modern oceans despite supersaturation, and has never been

46	documented as a biomineral. This is of note because early metazoan skeletal clades often
47	co-opt carbonate minerals in concert with ambient ocean chemistry driven mainly by
48	inferred changing seawater Mg/Ca (Porter, 2007; Zhuravlev and Wood, 2008).
49	Here we analyze an underutilized proxy for seawater chemistry – the mineralogy
50	and trace element chemistry of early marine carbonate cements. This avoids bulk
51	sampling which can lead to an averaging or contamination of redox signal, and also
52	allows analysis of shallow carbonate settings where Ediacaran-Cambrian skeletal
53	metazoan biodiversity was highest. Mimetic preservation by dolomite (i.e. retention of
54	original crystallographic orientation) of originally aragonite/high-Mg calcite grains
55	(Tucker, 1982; Corsetti et al., 2006) and dolomite cements (Hood and Wallace, 2015)
56	provide evidence that early marine dolomite precipitation dominated Cryogenian to early
57	Ediacaran oceans (~740- ~630 Ma). This is inferred to be due to widespread low oxygen
58	or stratified oceans and high Mg/Ca seawater (Hood et al., 2011). The presence of high
59	iron (ferroan) concentrations in early dolomite cements (Hood and Wallace, 2015), and
60	ferroan dolomite concretions in shales further indicates that these oceans were anoxic and
61	ferruginous (Spence et al., 2016). These so-called 'aragonite-dolomite seas' (Hood et al.,
62	2011) are thought to have been largely replaced by 'aragonite seas' by the early
63	Ediacaran (Corsetti et al., 2006; Hardie, 2003). Here we present evidence, however, for
64	the continuation of 'aragonite-dolomite seas' very close to the Ediacaran/Cambrian
65	boundary on the Siberian Platform.
~	

66 GEOLOGICAL SETTING

67 We consider the stratigraphic distribution of carbonate minerals and macrofossils
68 across three Ediacaran-Cambrian sections on the Yudoma River, Uchur–Maya Region

69	-1) Yudoma-Maya confluence, 2) Nuuchchalakh valley, and 3) Kyra-Ytyga river (Fig.
70	1). These sections encompass the entire Ediacaran Yudoma Group which is
71	unconformably overlain by the lower Cambrian Pestrotsvet Formation (Fig. 1) (see
72	Supplementary Information). The Yudoma Group is subdivided into the Aim
73	(stratigraphic thickness, 45 - 95 m) and Ust'-Yudoma (150 - 205 m) formations
74	(Khomentovsky, 1985).
75	The sections record a shelf-edge transect from proximal to the shore (Yudoma-
76	Maya confluence), to increasingly distal settings toward the northeast. Sequences are
77	dominated by clastics proximally and carbonates distally (Khomentovsky, 1985). We use
78	sequence stratigraphy to place lithological and macrofossil distribution within a
79	framework of changing relative sea level (Fig. 1). Aim Formation sequences are
80	composed of Transgressive Systems Tracts (TST) of mainly dolomitised siltstones and
81	shales (Fig. DR1), followed by thick (up to ~150 m) Highstand Systems Tracts (HST) of
82	shallow marine dolostones and subordinate limestones. Dolomite dominates these
83	successions, except in the mainly HSTs of the Aim Formation and the uppermost 10-70
84	m of the Ust' - Yudoma Formation where the lithology switches to limestone. Limestone
85	then persists into the lower Cambrian Pestrotsvet Formation (Fig. 1), and continues to
86	dominate throughout the Cambrian over the entire Siberian Platform (Ashtashkin et al.,
87	2003).
88	MACROFOSSIL DISTRIBUTION

MACROFOSSIL DISTRIBUTION

The distribution of fossils is closely related to lithology in these successions (Fig. 89 90 1). Macrofossils in the Aim Formation are restricted to TST and early HST facies, and 91 consist almost exclusively of soft-bodied biota: Gaojiashania (Fig. 2A), Beltanelliformis

92	brunsae (Fig. 2B), Aspidella terranovica, Beltanelliformis brunsae, Shaanxilithes and
93	Palaeopascichnus (Zhuravlev et al., 2009, 2012; Ivantsov, 2016). Thrombolites occur in
94	the HST limestones in the Aim Formation, and microbial structures are abundant
95	throughout, particularly in the dolomitic parts of the Ust'-Yudoma Formation.
96	Calcareous macrofossils are restricted to carbonate lithologies. Suvorovella
97	aldanica (Fig. 2D) and Majaella verkhoianica (Khomentovsky, 1985) occur in the latest
98	HST dolostone at the top of the Aim Formation. Suvorovella is very similar in size and
99	morphology to Aspidella found in the underlying sandstones. The terminal Ediacaran
100	Cloudina (Fig. 2E) and Anabarites (Fig. 2F) both appear 50 m below the top of the Ust'-
101	Yudoma Formation within the HST limestones (Zhuravlev et al., 2012). Rare dolomitised
102	megasphaeromorph acritarchs occur just below this level (Fig. 2D). In the uppermost 8
103	m of light-gray dolomitic limestone of the Ust'-Yudoma Formation at Kyra-Ytyga river,
104	a characteristic upper Nemakit–Daldynian Purella cristata Zone (= Fortunian,
105	lowermost Cambrian) skeletal assemblage appears, including protoconodonts, anabaritids
106	(Zhuravlev et al., 2012), the hyolithid Allatheca, and trace fossil Diplocraterion.
107	EVIDENCE FOR EARLY DOLOMITIZATION
108	Several observations suggest that dolomitization of these sections was very early,
109	and rapid. First, siltstone clasts from shallower depths are dolomitized within a non-
110	dolomitised matrix (Fig. DR1C) suggesting dolomitization occurred prior to reworking.
111	Second, organic-walled acritarchs are preserved in folded, but uncompressed, form by
112	encrustations of very fine crystalline dolomite (Figs. 2D). Third, cavities in dolostones
113	are lined with dolomite cements. In a subtidal-intertidal dolomitic grainstone, grains and
114	Suvorovella skeletal material are preserved as molds with a pronounced micrite envelope

with no breakage or compaction features (Fig. 3A). These molds are now filled with, and
encrusted by, isopachous rims of fibrous dolomite and a later generation of dolomite
rhombs (Figs. 3B). We infer an originally aragonitic or high-Mg calcite mineralogy for *Suvorovella* and other grains, with rapid dissolution occurring post-micritisation as
evidenced by the symmetrical growth of early marine cement crusts from micrite
substrates.

121 Dolomite cements are fibrous and radial, with a length-slow character (a high 122 angle between the c-axis and the greatest growth direction), and have abundant inclusions 123 which define steep rhombic patterns that follow the crystal form (Figs. 3B). Under 124 cathodoluminescence, crytsals show a well-preserved primary growth zonation of 125 multiple dull and bright zones of rhombic patterns confined to individual crystals that do not extend across crystal boundaries (Fig. 3C, D). These features confirm the primary 126 127 marine nature of these dolomite cements (Hood et al., 2011), and are distinct from burial 128 cements and the coarsely recrystalline, dolomitic replacements of primary calcite and 129 aragonite cements characteristic of early Cambrian carbonates (Whittaker et al., 1994; 130 Corsetti et al., 2006).

By contrast, earliest marine intergraular cements from the limestone intervals of the Aim, latest Ust'-Yudoma and Pestrotsvet formations are exclusively low-Mg calcite. In the Aim and latest Ust'-Yudoma formations these are present as recrystallized spar, but in the Pestrotsvet Formation cements occur as fascicular optic fibrous and prismatic crystals (Fig. 3E), which are largely non-luminescent or with some blotchy bright patches, with limited preservation of primary growth zonation (Fig. 3F). **REDOX OF EARLY CEMENTS**

138 Mn and Fe content of seawater is mainly controlled by redox, and

cathodoluminescence zonation follows this chemical variation. Non-luminescent
cements have low Fe and Mn; bright luminescent cements have high Mn but low Fe; and
dull luminescent cements have moderate values of both Fe and Mn. A non-bright-dull
progression is caused by carbonate precipitation in waters with decreasing Eh (Barnaby
and Rimstidt, 1989).

144 Dolomitic isopachous crusts reveal moderate to high levels of Fe, up to 3624 ppm

145 (mean: 1393 ppm, n = 68) and variable levels of Mn up to 552 ppm, but with the mean

146 below the detection limit (n = 68) (see Supplementary Information). Later dolomite

147 rhombs show higher levels of Fe (up to 6127 ppm; mean: 2733 ppm, n = 68) and Mn up

148 to 218 ppm, mean 113 ppm (n = 68).

149 By contrast, the recrystallized low-Mg calcite cements from the Aim Formation show

150 far lower levels of Fe (up to 1044 ppm; mean: 501 ppm, n = 10) but moderate to high

levels of Mn (up to 602 ppm; mean: 237 ppm, n = 10). Recrystallized low-Mg cements

152 from the Pestrotsvet Formation show very low levels of Fe (mean = 148 ppm) and

153 moderate levels of Mn (mean = 213 ppm) except for a thin, very early Fe- and Mn-

enriched crust (Fe = 4084 ppm, Mn = 1219 ppm), and later, burial, ferroan calcite zones.

155 This Fe-Mn abundance and behavior indicates that these cements were precipitated in

156 variable redox conditions: dolostones with early dolomite cements under ferruginous,

anoxic conditions, but limestones under dominantly non-ferruginous, sub-oxic to oxic

158 conditions.

159 **DISCUSSION**

160	Within any one conformable sequence and traced laterally across equivalent tracts, we
161	see evidence for exclusively aragonite or high-Mg calcite early cement precipitation, as
162	inferred from recrystallized low-Mg calcite spar, only in very shallow proximal settings,
163	but extensive early marine dolomite precipitation at other all water depths. The
164	stratigraphic distribution of early dolomitization with changes in relative sea level
165	suggests a very shallow chemocline below the upper Aim Formation. Limestone is found
166	when accommodation space was decreasing and the sedimentary system switched to
167	dominantly carbonate production (Figs. 1; 4B). The HST of the Ust'-Yudoma Formation
168	is extensively dolomitised suggesting that the originally aragonitic sediments were
169	rapidly bathed in anoxic, ferruginous seawater. In such a setting the originally aragonitic
170	Suvorovella was rapidly dolomitised. The oxic layer was therefore restricted to proximal
171	and very shallow coastal waters, where wave action aerated and oxygenated, or where
172	oceans received oxidised continental waters (Fig. 4B). In the latest Ust'-Yudoma
173	Formation (~545 Ma) all localities show a change from dolostone to limestone lithologies
174	with aragonite or high-Mg calcite early cement precipitation, but no attendant changes in
175	facies. This implies a change in local sea water chemistry rather than another
176	environmental factor such water depth or hydrodynamic regime.
177	Given the continued absence of early dolomite in the Siberian Cambrian record we
178	interpret this as a change in seawater chemistry from 'aragonite-dolomite seas' to
179	'aragonite seas' probably controlled by a marked expansion of the oxic zone associated
180	with a lowering of the chemocline (Fig. 4A). There is a globally documented general
181	decrease in ferruginous dolomite during the Ediacaran to early Cambrian interval
182	(Corsetti et al., 2003; Spence et al., 2016). Individual basins probably responded variably,

183	with the expansion and contraction of the local oxic chemocline manifest in an oscillation
184	between dominant early dolomite and limestone shallow marine lithologies.
185	The precise controls on Neoproterozoic dolomite formation is unclear as there is little
186	experimental data to infer conditions under which mixed Fe-Ca-Mg carbonates form
187	(Spence et al., 2016), but precipition was probably promoted by ocean anoxia, high
188	Mg/Ca and ferruginous conditions, and possibly by organic matter enrichment,
189	concentrated organic surface carboxyl groups, low marine sulfate, high pH and alkalinity
190	(Vasconcelos et al., 1995; Hardie, 2003; Roberts et al., 2013; Hood and Wallace, 2015;
191	Spence et al., 2016). These conditions coupled with unstable and reactive phases such as
192	aragonite would further enhance the dolomitization potential of fluids sourced from
193	seawater (Corsetti et al., 2006).
194	Dramatically enhanced continental weathering occured during the Neoproterozoic,
195	creating a marked increase in carbonate deposition inferred to be due to a substantial
196	input of Ca ²⁺ into seawater (Peters and Gaines, 2012). Fluid inclusion data confirms that
197	seawater Ca ²⁺ increased markedly and Mg ²⁺ declined slightly during the Ediacaran to
198	early Cambrian so progressively lowering Mg/Ca by the early Cambrian (Brennan and
199	Lowenstein, 2004). This reduction in seawater Mg/Ca is also supported by models
200	(Hardie, 2003).
201	We propose that the Neoproterozoic anoxic 'aragonite-dolomite seas' may have
202	ceased due to increasing oxygenation potentially combined with a reduction in organic

203 matter preservation, as well as an increase of Ca which lowered Mg/Ca. Further decrease

204 in Mg/Ca would favor another switch to low-Mg calcite marine precipitates, and indeed

205	this is documented in lower Cambrian Stage 3 (525-520 to 514 Ma) (Zhuravlev and
206	Wood, 2008) (Fig. 4C).

207	We note a biotic response to this proposed progressive decline of Mg/Ca from the
208	Ediacaran to early Cambrian in the Yudoma successions (Fig. 4D). When ferruginous
209	dolomite dominates, we record mainly soft-bodied macrofossils in exclusively very
210	shallow settings inferred to be above the chemocline. The rariety of skeletal biota may be
211	due to restricted habitable space with a seawater chemistry permissive for
212	biomineralisation: the slow kinetics of dolomite make it unsuitable to be co-opted as a
213	biomineral. Additionally, the low-Mg calcite cements of the Aim Formation have
214	comparatively high concentrations of Mn and Fe compared to both modern marine
215	cements (Barnaby and Rimstidt, 1989), and those in the Pestrotsvet Formation,
216	suggesting a lower oxidation state than the earliest Cambrian.
217	Most skeletal macrofossils (Cloudina, Anabarites) appear with the succeeding
218	limestones at the top of the Ust'-Yudoma Formation. This is coincident with the
219	appearance of widespread high-Mg calcite/aragonite marine cements. We infer that
220	biomineralisation was facilitated by a rise in oxygenation and increased concentration of
221	Ca, which is known to enhance biologically-induced calcification (Brennan and
222	Lowenstein, 2004). Moroever, all known Ediacaran and lowermost Cambrian (Fortunian
223	and Stage 2) metazoans have either aragonitic or high-Mg calcitic skeletal mineralogies.
224	But synchronous with the first low-Mg calcitic marine cements in Cambrian lower Stage
225	3, we record the first metazoans with low-Mg calcite skeletons (Fig. 4D; Zhuravlev and
226	Wood, 2008).

227 CONCLUSIONS

228 We propose that the late Ediacaran to early Cambrian early diagenetic setting 229 underwent step changes coincident with the rise of skeletal metazoans. We document a 230 succession of early marine cements on the Siberian Platform from dominantly dolomite 231 (pre-545 Ma), to aragonite/high-Mg calcite (~545 to ~525 Ma), to low-Mg calcite (525-232 520 to 514 Ma). This coincides with the first appearance of aragonite/high-Mg calcite 233 skeletons at ~545 Ma, and low-Mg calcite skeletons at 525-520 Ma. These events may 234 have been facilited by the rising oxygenation state of the oceans enabling irrigation of the 235 shallow diagenetic environment, as well as an input of Ca driven by enhanced continental 236 weathering. 237 ACKNOWLEDGMENTS 238 We thank the Director of Biological Resources and Protected Natural Territories

239 of the Ministry of Nature Protection of the Republic of Sakha (Yakutia), led by Semen

240 Terekhov and the administration of the Ust'Maya Region for logistical support, and

241 Nikolay Atlasov and Elena Aleksandrova for fieldwork support. MZ and FZ received

242 grant support from the National Natural Science Foundation of China, the Ministry of

243 Science and Technology of China (2013CB835006). We thank Aleksander Fedorov,

244 Mike Hall, Chris Haywood, Donald Herd, Amena Al Harthi, Mariam Al Blooshi, Amelia

245 Penny and Fred Bowyer.

246 **REFERENCES CITED**

247 Ashtashkin, V. A., Pegel, T. V., Repina, L. N., Rozanov, A. Yu., Shabanov, Tu. Ya.,

248 Zhuravlev, A. Yu., Sukhov, S. S., and Sundukov, V. M., 2003, Cambrian System on

- 249 the Siberian Platform: Cirelation chart and explanatory notes: International Union of
- 250 Geological Sciences Publication, v. 27, p. 1–133.
- 251 Barnaby, R.J., and Rimstidt, J.D., 1989, Redox conditions of calcite cementation
- 252 interpreted from Mn and Fe contents of authigenic calcites: Geological Society of
- 253 America Bulletin, v. 101, p. 795–804, doi:10.1130/0016-
- 254 7606(1989)101<0795:RCOCCI>2.3.CO;2.
- 255 Brennan, S.T., and Lowenstein, T.K., 2004, Seawater chemistry and the advent of
- biomineralisation: Geology, v. 32, p. 473–476, doi:10.1130/G20251.1.
- 257 Corsetti, F., Kidder, D.L., and Marenco, P.J., 2006, Trends in oolite dolomitization across
- the Neoproterozoic-Cambrian boundary: A case study from Death Valley,
- 259 California: Sedimentary Geology, v. 191, p. 135–150,
- doi:10.1016/j.sedgeo.2006.03.021.
- 261 Hardie, L.A., 2003, Secular variations in Precambrian seawater chemistry and the timing
- of Precambrian aragonite seas and calcite seas: Geology, v. 31, p. 785–788,
- doi:10.1130/G19657.1.
- Hood, A.S., Wallace, M.W., and Drysdale, R.N., 2011, Neoproterozoic aragonite-
- 265 dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef
- 266 complexes: Geology, v. 39, p. 871-874, doi:10.1130/G32119.1
- 267 Hood, A.S., and Wallace, M.W., 2015, Extreme ocean anoxia during the Late Cryogenian
- 268 recorded in reefal carbonates of Southern Australia: Precambrian Research, v. 261,
- 269 p. 96–111, doi:10.1016/j.precamres.2015.02.008.

270	Ivantsov, A.Yu., 2016, The finding of Flinders-type preservation in fossils of the
271	Yudoma Group of eastern Siberia in Alekseev, A. S., ed., Paleostrat-2016.
272	Programme and Abstracts: Moscow, PIN RAS, p. 36–37 [in Russian].
273	Khomentovsky, V.V., 1985, Vendian in the Siberian Platform, in Sokolov, B.S., and
274	Fedonkin, M.A., eds., Vendian System. Historical-geological and paleontological
275	Substantiation: Nauka, Moscow, v.2, p. 83–161 [in Russian].
276	Knoll, A.H., 2003, Biomineralization and evolutionary history, in Dove, P. M., et al., eds,
277	Biomineralization: Reviews in Mineralogy and Geochemistry, v. 54, p. 329-356.
278	Peters, S.E., and Gaines, R.R., 2012, Formation of the 'Great Unconformity' as a trigger
279	for the Cambrian explosion: Nature, v. 484, p. 363-366, doi:10.1038/nature10969.
280	Porter, S. M., 2007, Seawater chemistry and early carbonate biomineralization: Science,
281	v. 316, p. 1302. DOI: 10.1126/science.1137284.
282	Roberts, J.A., Kenward, P.A., Fowle, D.A., Goldstein, R.H., González, L.A., and Moore,
283	D.S., 2013, Surface chemistry allows for abiotic precipitation of dolomite at low
284	temperature: Proceedings of the National Academy of Sciences of the United States
285	of America, v. 110, p. 14540-14545, doi:10.1073/pnas.1305403110.
286	Spence, G.H., Le Heron, D.P., and Fairchild, I.J., 2016, Sedimentological perspectives on
287	climatic, atmospheric and environmental change in the Neoproterozoic Era:
288	Sedimentology, v. 63, p. 253-306, doi:10.1111/sed.12261.
289	Towe, K.M., 1970, Oxygen-collagen priority and the early metazoan fossil record:
290	Proceedings of the National Academy of Sciences of the United States of America,
291	v. 65, p. 781–788, doi:10.1073/pnas.65.4.781.

- 292 Tucker, M.E., 1982, Precambrian dolomites: petrographic and isotopic evidence that they
- differ from Phanerozoic dolomites: Geology, v. 10, p. 7–12, doi:10.1130/0091-

294 7613(1982)10<7:PDPAIE>2.0.CO;2.

- 295 Vasconcelos, C.I., McKenzie, J.A., Bernasconi, S., Grujic, D., and Tien, A.J., 1995,
- 296 Microbial mediation as a possible mechanism for natural dolomite formation at low
- 297 temperatures: Nature, v. 377, p. 220–222, doi:10.1038/377220a0.
- 298 Whittaker, G., James, N.P., and Kyser, D.K., 1994, Geochemistry and synsedimentary
- 299 cements in early Cambrian reefs: Geochimica et Cosmochimica Acta, v. 58, p. 5567–
- 300 5577, doi:10.1016/0016-7037(94)90250-X.
- 301 Zhuravlev, A.Yu., Gámez Vintaned, J.A., and Ivantzov, A. Yu., 2009, First finds of
- 302 problematic Ediacaran fossil *Gaojiashania* in Siberia and its origin: Geological

303 Magazine, v. 146, p. 775–780, doi:10.1017/S0016756809990185.

- 304 Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B.,
- 305 2012, New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian
- 306 Platform and Spain: Acta Palaeontologica Polonica, v. 57, p. 205–224,

307 doi:10.4202/app.2010.0074.

- Zhuravlev, A.Yu., and Wood, R.A., 2008, Eve of biomineralization: Controls on skeletal
 mineralogy: Geology, v. 36, p. 923–926, doi:10.1130/G25094A.1.
- 310

311 FIGURE CAPTIONS

312

- 313 Figure 1. Sections of the Ediacaran-Cambrian Yudoma Group on the Yudoma River, with
- 314 inset map of Uchur–Maya region (UM) within the Siberian Platform (SP), Russia. 1,

315	Yudoma-Maya confluence. 2, Nuuchchalakh valley. 3, Kyra–Ytyga river. Stratigraphic
316	logs and fossil distribution with inferred zones and international stages. Fm, Formation;
317	Pet., Pestrotsvet. AT = <i>Anabarites trisulcatus</i> Zone; PC = <i>Purella cristata</i> Zone; FT =
318	Fortunian. MFS = Maximum Flooding Surfaces. <i>Diplo. = Diplocraterion; Shaan. =</i>
319	Shaanxilithes.
320	
321	Figure 2. Ediacaran macrofossils of the Yudoma Group. A: Gaojiashania, Aim
322	Formation, Nuuchchalakh valley. B: Aspidella terranovica, Aim Formation, Yudoma-
323	Maya confluence. C: Dolomitised, skeletal Suvorevella aldanica, Aim Formation,
324	Yudoma-Maya confluence. D-F, SEM photomicrographs. D: Dolomitised
325	megasphaeromorph acritarch, Ust-Yudoma Formation, Kyra-Ytyga river. E: Cloudina ex
326	gr. C. riemkeae, Ust'-Yudoma Formation, Kyra-Ytyga river (photo: Aleksander
327	Fedorov). F: Anabarites trisulcatus, Ust'-Yudoma Formation, Kyra-Ytyga river (photo:
328	Aleksander Fedorov).
329	
330	Figure 3. Early marine cements from A-D Ediacaran Yudoma Group and E,F Cambrian
331	Pestrovset Formation. A - D, Photomicrographs of isopachous crusts of radial-slow
332	fibrous dolomite, Aim Formation, Yudoma-Maya confluence. A: Uncompacted grains
333	and Suvorevella aldanica fragment (S). B: Plane polarized image of symmetrical growth
334	from a micrite envelope around Suvorevella aldanica (S) fragment, showing rhombic
335	inclusion-rich early zones and clear latest zones. C, D, Cathodoluminescent images
336	showing primary alternating thin dull and bright zones. Dotted line shows approximate
337	outline of Suvorevella aldanica fragment. C: Radial slow isopachous crust. D: Radial

338	slow isopachous crust and later rhombic cements (R). E,F, Recrystallized fibrous calcite
339	cements from Nuuchchalakh valley. E: Multiple generations interlayered with sediment.
340	F: Cathodoluminescent image showing dominant non-luminescence except in latest
341	generations.
342	
343	Figure 4. Relationship between the evolution of Ediacaran-Cambrian seawater chemistry
344	and skeletal metazoans. A: post- ~545 million years (Ma). B: pre-~545 Ma during
345	relative sea level changes: transgression, and regression (highstand), with inferred Mg/Ca
346	and redox state. C: Inferred changes in oceanic mMg/Ca . FT = Fortunian. AT =
347	Anabarites trisulcatus Zone. HMC/A = high-Mg calcite/aragonite; LMC = low-Mg
348	calcite. Fluid inclusion <i>mMg</i> /Ca (Brennan and Lowenstein, 2004). D: Biotic response
349	showing the first appearance of HMC/A, then LMC skeletal metazoans.
350	
351	¹ GSA Data Repository item 2016xxx, xxxxxxxx, is available online at

352 <u>http://www.geosociety.org/pubs/ft2016.htm</u> or on request from editing@geosociety.org.