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Abstract

Modelling in biology becomes necessary when systems are complex but the more complex the systems are the harder the
models become to read. The most common ways of writing models are by writing reactions on discrete, typed objects (e.g.
molecules of different species), or writing rate equations for the populations of such species. One problem (1) with those
approaches is that the number of species and reactions is often so large that the model cannot be realistically enumerated.
Another problem (2) is that the number of species and reactions is fixed, whereas biology often grows new compartments
which means new reactions and species. Here we develop an extension to the representation of reactions where the objects
carry variables that are defined by their type (for example objects of type Leaf all have a Mass variable). The dynamics
are defined by rules about types, which means they work for all objects of that type. This compact representation solves
problem 1. If we think of the object variables as the analogue of reaction/rate equation species, creating a new object of
some type means we are also creating new species (solving problem 2). We also developed an embedding of Chromar in the
programming language Haskell and showed its applicability to two examples. Having a more compact representation can
help make models a tool for knowledge representation and exchange instead of just a simulation input. Embedding Chromar
in a general purpose programming language lifts some of the constraints of modelling languages while still maintaining the
naturalness of a domain-specific language.

Keywords: rule-based modelling, stochastic, representation, systems biology

1 Introduction

The notation we use to describe parts of the natural or artificial world can act as a tool for

thinking about it. The characteristics that a notation for a specific domain should have in order

to be a good tool for thought have been succinctly listed by Kenneth Iverson: ease of expression

of common constructs in the domain, suggestivity, ability to subordinate detail, economy, and

amenability to formal proofs [10]. A lot of excellent notations have been invented for biological

models, some more general and some more domain specific. Of course a single notation cannot be

used for everything and some specific models are hard to write in any existing notation in a way

that satisfies the above criteria and makes it easy for people and computers to understand. To

illustrate the problem consider the model of a growing array of cells, each having a concentration

of some substance X diffuse among them, produced, and destroyed. The most common way of
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writing such systems is by writing reactions on the types (species) of molecules involved or writing

the corresponding rate equations for the populations of the species. In our case we could write

the following reactions for the molecules of X in each cell, where X1 is an X molecule in the first

cell, X2 is an X molecule in the second cell and so on:

X1
d−→ X2

X2
d−→ X1

X2
d−→ X3

...

∅ α−→ X1

...

X1
β−→ ∅

There are two problems with the above description. The first problem is that it is not very

compact and it grows with the number of cells since we have to write the diffusion reaction for

every pair of cells in both directions and production/destruction reactions for every cell. The

second problem is that it is impossible to describe the creation of new cells because we would

need to create a new species of X for the new cell and new reactions for it, but there is no operator

in this notation that allows that.

Ideally, there would be some notation that allows us to formally represent the above system in

a way that satisfies our intuition, for example writing a generic diffusion reaction Xi → Xi+1, a

generic production ∅→ Xi (similarly for destruction), and some way of generating new species.

Our principal contribution is a notation that allows us to write systems like the above in a natural

way, thereby solving the two main problems we noted: compactness of representation for larger

systems and dynamic state-space. Specifically, our main contributions are:

• We define a rule-based notation with stochastic semantics. The main entities in the notation

are objects with attributes that are defined at the type level, so that every object of that

type has these attributes. For the above diffusion model we could have for example a type

X(n : Int) with attribute n for the position of the X molecule in the array. Objects are

instantiations of this type with concrete values for the attribute like X(n = 1) for a molecule

in the first cell, X(n = 2) for a molecule in the second cell and so on. The rules describe

how objects are added or removed (Section 3) at the type level, so that a rule applies for all

objects of that type (X(n = 1), X(n = 2) etc.). This leads to a more compact representation

of the model because each rule corresponds to multiple concrete reactions. If we make our

species attributes of some type, for example in our case we could have Cell(pos : Int, x : Int),

when we create new Cell objects we are also creating new species that will automatically

be picked up by the Cell rules. This solves the second problem we noted. Our language

is like a rule-based of Coloured Petri Nets. This rule-based textual representation becomes

very important for the readability of larger models and our embedding in Haskell gives extra

expressive power that is also crucial in practice (see Section 6 for full discussion).

• We describe an algorithm for the stochastic simulation of models written in this notation

that acts directly on the attributed objects and the rules (Section 3)

• We have implemented the language, both the model definition and simulation, as an embed-

ded Domain Specific Language (DSL) inside Haskell, a functional programming language

(Section 4). The embedding means that we can use any valid Haskell expression where ex-

pressions are expected, for example in the rate expressions and in the right-hand sides of

rules. From our experience this is very useful in model building, especially for more complex

models.

2



R. Honorato-Zimmer et al.

Fig. 1. Our simple plant development model. All the interactions, that in this case are transfer of carbon, happen between the
central Cell object that represents the molecular state of the entire plant and the Leaf objects, which act as sinks of carbon.
The carbon that goes to the leaves is either used for growth, in which case it is transformed into new material (increase of
mass), or to maintain the already existing Leaf by fuelling its life sustaining processes. New leaves are also created creating
new sinks and increased competition for carbon among the leaves but also increased production of carbon by providing new
green area for photosynthesis.

• We show, using examples, the expressivity of our abstract notation but also the advantages

of having an embedding in a general purpose programming language (Sections 2 and 5).

2 An example: Plant growth

We will now give an overview of our notation through an example from plant development. We

will consider a very abstract view of plant development that has enough details to demonstrate the

main features of our notation. Our model here is inspired by the Framework Model (FM) of Chew

et al. [3], a modular whole-plant model that connects traditional Plant biology representations

of molecular processes and representations of organ and whole-plant development processes. The

above-ground part of an Arabidopsis plant before flowering has a simple architecture with a

collection of leaves arranged in a circle. Each leaf photosynthesises, creating the main currency,

carbon; uses some of it for maintenance, some of it for growth; and transfers anything left to

the other leaves. In the Arabidopsis rosette (collection of leaves) there is no preference in the

transfer and we have an all-to-all communication. Similarly to the FM, we will make all the

molecular processes happen instead at a central plant ‘cell’ which allows us to keep the leaves as

carbon sinks and track their growth, while avoiding the per-leaf molecular processes and their

communication (see Figure 1).

We will think about all the processes that affect growth in the following way: we think of

assimilation of carbon per leaf as increasing the carbon concentration of the central Cell depending

on the photosynthesis level of a leaf (which will depend on its size); we think of maintenance

respiration as the central Cell giving some carbon to a leaf; and we think of growth respiration

as the central Cell giving some carbon to a leaf and the leaf mass increasing. We will also have

creation of new leaves. There are interesting dynamics here such as the interaction between

growth and assimilation: the more we grow, the more the leaves can photosynthesise, and the

more carbon can go to the central Cell.

Since objects are the main entities in our language we can start thinking about what types of

objects should we have to model the above system. We will need:

• A Leaf type with fields for the mass and index of appearance as a proxy to a Leaf’s age:

Leaf(age : Int,mass : Real)

• A Cell type that represents our main plant ‘cell’ with a field, carbon, to keep the current

carbon level: Cell(carbon : Real). There will only be one object of this type at any one

point.

• A Ros type that represents the entire Rosette with a field, nl, to keep the current number

of leaves: Ros(nl : Int). There will also only be one object of this type at any point.

3
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For the assimilation of carbon from one particular leaf we need to increase the carbon con-

centration of the central Cell. The bigger the leaf the ‘faster’ it contributes to the production of

carbon:

Leaf(mass = m), Cell(carbon = c)
f(m)−−−→ Leaf(mass = m), Cell(carbon = c+ 1)

We can read this as saying that for any pair of Leaf, Cell the Leaf remains the same and the Cell

increases its carbon content by one. Note that we assign the values of the fields for any Leaf, Cell

pair to variables (m and c) so that we can refer to them in the right-hand side of the rule and the

rate expression. If we were to write this in a traditional reaction notation we would have to write

a reaction for every Leaf which leads to the compactness problem we have noted earlier. With

the implicit ‘for-all’ here we can also pick up new leaves when they are created. For maintenance,

we have the central Cell object giving some carbon to a Leaf object, with the amount of carbon

needed for maintenance depending on the size of the Leaf:

Leaf(mass = m), Cell(carbon = c)
g(m)−−−→ Leaf(mass = m), Cell(carbon = c− 1) [c ≥ 1]

Another way to see these rules, which is actually how their meaning is defined later (see Section 3),

is to think that any pair of Leaf, Cell objects can be removed and replaced by a Leaf object with

the same mass as the one we removed and a Cell with a carbon decreased by one compared to the

Cell object we removed. Since we are defining the replacement objects (right-hand side) in terms

of the replaced objects (left-hand side) we need to assign their field values to some variables, here

m and c, so we can refer to them again. The growth of a Leaf depends on its mass, its age (there

is some limit on how much a leaf can grow so older leaves stop growing at some point), and the

amount of carbon available:

Leaf(mass = m, age = i),Cell(carbon = c)
h(i,m,c)−−−−−→ Leaf(mass = m+1),Cell(carbon = c−1) [c ≥ 1]

Note that we use the condition c ≥ 1 to make sure that the carbon levels do not go negative.

Finally, for the creation of new leaves we have:

Ros(nl = n)
k−→ Ros(nl = n+ 1), Leaf(age = n+ 1,mass = 0.0)

3 Chromar

In the previous section we got an idea of what the language looks like. Here we will make a more

careful definition of the abstract syntax of the language and its semantics.

3.1 Syntax

Objects or agents are the main entities in the language. Each object is an instantiation of a

type that provides the general structure of all objects of that type. Agent types have a name and

a number of named fields for their attributes. Their syntax is:

agentType := AgentName ( fieldDecl_1, ..., fieldDecl_k )

fieldDecl := fieldName : type

An example of an agent type is the Leaf agent type that we have seen in the previous section that

has mass and age fields: Leaf(mass : Real, age : Int). Any specific Leaf object is an instantiation

of this agent type, for example: Leaf(mass = 3.5, age = 3). The types for the fields are not fixed

here and the language is parametric in them. In the next section, when we define the Haskell

embedding, we will fix these to be the Haskell types.
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The state of the system is a multiset of objects of the defined types. For example for the types

of objects we had in the example in the previous section a possible valid state of the system is:

{| Leaf(mass = 2.3, age = 3),Leaf(mass = 3.1, age = 2),

Leaf(mass = 3.5, age = 1),Ros(n = 3),Cell(carbon = 5.6) |}

We write multisets using {| . . . |} brackets.

Rules have the following syntax:

rule := lhs --> rhs at rate ([cond])

lhs := agentPat_1, agentPat_2, ..., agentPat_n

agentPat := AgentName (fieldPat_1, ..., fieldPat_n)

fieldPat := FieldName = Var

rhs := agentR_1, ..., agentR_n

agentR := AgentName (field_1, ..., field_n)

field := FieldName = expr

rate := expr

cond := expr

Rules have a left-hand side, which is matched against the state of the system. Any match can then

be replaced by the right-hand side. The left-hand side is really simple: it can only select objects

based on their type and bind the values for their fields to some variables which can then be used

in the expressions for the values of the objects appearing on the right-hand side. The variables

can also be used in the rate and condition expressions. We impose some constraints on the use

of the variables: variables can only appear once in the left hand side of rules and the number

of patterns, fieldPats, for some AgentName should match the fields in the type declaration of

AgentName. Variables appearing in the expressions of rhs, rate, and cond must appear on the

lhs of the corresponding rule. The cond is an expression that evaluates to a Boolean value and

determines the applicability of the rule. Again, we deliberately do not fix the exprs and vars to

any specific sets and we could think of the language as being parametric on these. In the Haskell

embedding we fix these to be Haskell variables and expressions.

For the rest of the text we will assume that we have accessor functions to the various parts of

some rule with names coming from the syntax above. For example for some rule r, lhs(r) is the

accessor function for the left-hand side of the rule and so on.

3.2 Rule application

Rules can only be applied given a specific match of the rule to the state of the system. Matches

occur between left-hand sides of rules and the concrete objects in the multiset that represent the

state of the system. First we define a bind-map as an assignment of values to the variables in

the agentPats in the left-hand side of rules that we write like this: [var1/val1, . . . , varn/valn].

A bind map can be used to produce a concrete realisation of the rule by substituting all the

occurrences of the vars with the associated vals in the map. We will write this substitution as

[var1/val1, . . . , varn, valn].r for some rule r. A bind-map, σ, for a particular rule is a match to the

state of the system if lhs(σ.r) is equal to some part of the state. The agentPats in the left-hand

side of rules become concrete Agents and two Agents are equal if they have the same name and

they have the same values for their fields.

To illustrate the matching, consider the following system with types of agents A(x : Int) and

B(y : Int), a multiset of objects of these types {|A(x = 5), A(x = 5), A(x = 2), B(y = 3), B(y =

4), B(y = 3)|} and a rule, A(x = x), B(y = y)
f(x,y)−−−−→ A(x = x − 1), B(y = y + 1)[g(x, y)] with

f : Int → Int → Real and g : Int → Int → Bool. The bind-map [x/5, y/3] is a valid match

5
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between the rule left-hand side and the state (multiset) since A(x = 5), B(y = 3) exists in our

state. Other bind-maps that are matches are for example: [x/5, y/4], [x/5, y/3], [x = 2, y/3] and

so on. The bind-map [x/5, y/3] yields a concrete reaction from our rule by substitution:

[x/5, y/3].

(
A(x = x), B(y = y)

f(x,y)−−−−→ A(x = x− 1), B(y = y + 1) [g(x, y)]

)
 

A(x = 5), B(y = 3)
f(5,3)−−−→ A(x = 4), B(y = 4) [g(5, 3)]

For some rule r and a match σ, applying the rule to a multiset M gives a new multiset M ′

given by:

M ′ = M ] rhs(σ.r) \ lhs(σ.r)
where ] and \ are multiset addition and difference respectively [23]. A rule can only be applied

if cond(σ.r) evaluates to True for the particular match σ.

3.3 Stochastic semantics

Since any rule and a match give a concrete reaction, any Chromar model can be expanded into

an equivalent simple reaction system by considering all possible matches, that is all possible

instantiations of the defined types. The stochastic semantics of Chromar is then the same as the

stochastic semantics of the equivalent simple reaction system. Specifically, the stochastic process

is a Continuous Time Markov Chain (CTMC) and the state-space consists of all possible multisets

over concrete realisations of our types. The expanded system will, in most cases, give infinite

reactions unless we constrain the types of the fields in our object types. However for a given

state only finitely many of these reactions will apply, so we can still use the normal Stochastic

Simulation Algorithm (SSA) to get sample paths from the CTMC.

Specifically our algorithm is the usual SSA, but with an extra step that dynamically creates

the reactions based on the current state of the system:

(i) Find all reactions for every rule and every match:

R = {σ.r|r ∈ Rules, σ ∈ Φ(r), cond(σ.r) = True}

where Φ(r) consists of all the matches of rule r in the current state.

(ii) Calculate the total rate rateT =
∑

r∈R rate(r).

(iii) Pick the waiting time for the next reaction event from the exponential distribution with

cumulative distribution function F (t) = 1− e−rateT t.

(iv) Pick exactly one of the reactions, choosing reaction i with probability rate(ri)
rateT

.

(v) If reaction i is picked then update the state: M ′ = M ] rhs(ri) \ lhs(ri) and iterate.

4 Haskell embedding

In any implementation of the language, eventually all entities have to become data structures in

some programming language in order to set the model in motion on a computer. There are two

extremes to this. At one end, we could make the model definition exactly like the abstract one

presented in the previous section and then translate it to the programming language constructs.

At the other end, the model definition could happen directly as constructs in some programming

language. There are advantages and disadvantages to both but here we choose something in the

middle: the model definition stays inside the programming language but we tweak the language

a bit so that it understands the convenient rule syntax.

We chose the functional programming language Haskell for the implementation and for em-

bedding our language. For an implementation we need to choose how to define the objects and
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how to define the rules. The objects and their types are exactly record types in Haskell and our

matching has the same semantics as Haskell’s pattern matching so the definition of the types is

easy. This is how the types of the objects in the Plant growth example are defined:

data Object = Leaf { mass :: Double,

age :: Int }

| Cell { carbon :: Double }

| Ros { nleaves :: Int }

The keyword data defines a new datatype and here we are defining a union type with three

possible constructors separated by |.

The definition of rules is a bit less straightforward but we can think of rules as functions of

the following type Multiset a -> [Reaction a] where a is a type variable that can stand for

any user-defined type of objects. Each rule is, as we have seen, a generator of concrete reactions.

We cannot expect the user to write the function doing the matching and creating the reactions

(even though it is not too hard to write in Haskell since we can take advantage of Haskell’s

pattern matching) so we have made an easier definition of rules using Quasi-quotes. Quasi-quotes

in Haskell allow for special syntax inside [| ... |] quotes as long as you provide a quoter, a

function that takes the string inside the quotes symbols and produces Haskell abstract syntax

that gets injected in the place of the quotes during compile time. Since all the rule function

definitions that we want have a similar structure, it is easy to write such a quoter function that

takes a rule written in the abstract syntax and creates a function of the correct type. This is how

the growth rule from the Plant system (Section 2) is written:

growth = [rule| Leaf{mass=m, age=i}, Cell{carbon=c} -->

Leaf{mass=m+1, age=i}, Cell{carbon=c-1} @f(m, i) [c-1>0] |]

This looks very close to how we have been writing rules in our abstract syntax, but with some

minor syntactic differences such as the placement of the rate expression at the end of the rule

preceded by the @ symbol. Crucially, being inside a programming language means that we can

use any valid Haskell expression in the places where expressions are expected, i.e. in the values

of fields in the right-hand side of rules, rates, and conditions.

Our simulate function takes a list of rules, an initial state as a multiset, and the number of

steps:

rules = [growth, assimilation, leafCreation]

initState = ms [Leaf{age=1, mass=1.0}, Leaf{age=2, mass=1.5},

Ros{nleaves=2}, Cell{carbon=4.5}]

simulate rules initState 100

where ms is a function [a] -> Multiset a that creates a multiset from a List. The simulate

function implements the simulation algorithm defined in the previous section.

4.1 Observables

The simulation algorithm is a way of getting sample paths from the state-space of the system and

since our states are multisets over objects of the defined types, the path is just a time-indexed

sequence of multisets. However the full state of the system is rarely what we want to know or at

least it is rarely the only thing we want to know. For example given a multiset representing the

state of our virtual plant from the previous example we might want to compute the mass of the

entire plant or we might only want the carbon levels. Thinking of suitable query primitives on

top of multisets the following two operations seem natural:

select :: (a -> Bool) -> Multiset a -> Multiset a

aggregate :: (a->b->b) -> b -> Multiset a -> b
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Fig. 2. Diffusion rule. Any molecule inside a cell can move to the cell to its right or left with equal probability.

These are just the select and aggregate statements in database query languages, where databases

are often viewed as multisets [2] (more theoretically in [14]). In fact our object types with

named fields are similar to database records. These query statements compose nicely with normal

function composition which is primitive in Haskell so for example we can get the mass of the first

three leaves by:

mass3 = aggregate sumM 0.0 . select isFirstThree . select isLeaf

with the functions isFirstThree, isLeaf :: Object -> Bool and the evident implementa-

tion. These are the most generic query constructs, but starting from them we can specialise to the

most common use-cases with default filter and accumulation functions. For example, to select

elements from the multiset we have special selects for objects with a specific type, or objects

that have certain values for a field. And to aggregate we have special aggregate functions like

sum, min/max, average, count.

5 Another example

We give another example here of a growing domain of cells with some substance diffusing between

them. This is a more complicated version of the example given in the introduction where, instead

of growing the domain of cells at one end, any cells at any position can divide. Assuming a one

dimensional array of cells, each having a concentration of substance x that diffuses between them,

we introduce the following types:

• Cell(pos : Pos, x : Int)

• T(ncells : Int)

A Cell object has a pos field that keeps positional information. In this case, to fully determine

the cell’s position in the array we need its identifier and the identifier of its neighbour. That

way we can define the neighbour relation using equality between the identifier of one cell and

the identifier in the neighbour field of another cell. A Cell also keeps track of the number of x

molecules. We also have a T object, standing for a tissue with a field ncells, to keep track of

the number of cells in the array. This is needed to give fresh identifiers to the cells created by

division.

Going into the dynamics of the system, diffusion is the transferring of one molecule from one

cell to the other and we assume it happens with equal probability to the left and right neighbours

of the cell (see Figure 2). This gives the following rule:

Cell(pos = p, x = x), Cell(pos = p′, x = x′)
x−→

Cell(pos = p, x = x− 1), Cell(pos = p′, x = x′ + 1) [nextTo(p) = id(p′) & x− 1 > 0]

where id : Pos → Int and nextTo : Pos → Int are accessor functions to the identifier of the

Cell and its right neighbour respectively. Here we use a condition to limit our matches since the

diffusion rule is not applicable to all pairs of Cell objects that are picked up by the left-hand side.

For growth, we create a new cell on the right of the dividing cell and split the x molecules as

8
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Fig. 3. Growth rule. Here cell b divides creating cell n+ 1 (assuming we had n cells before the division), cell b moves to the
left of the new cell. The 5 X molecules of cell b get divided between itself and the newly created cell.

(a)

(b)

Fig. 4. On the left the number of Xs in the first cell with and without growth. We start both processes at 10 cells and in
the growth case we activate the growth rule with G = 0.1. In the beginning when the number of cells is close the trajectories
are close but as the number of cells increases in the growth process, the number of molecules in the Cell on average is lower
than the process without the growth. On the right, we plot the standard deviation of the cell contents (number of cells) in
3 different cases, diffusion only process, diffusion+growth at rate G = 1, and diffusion+growth at rate G = 10 all starting
again with 10 cells. We can see that the faster the growth the faster the molecules get spread.

evenly as possible between the two cells:

T(ncells = n), Cell(pos = p, x = x)
G/n−−→

T(ncells = n+ 1), Cell(pos = Pos(id(p), n+ 1), x = ceil(x/2)),

Cell(pos = Pos(n+ 1, nextTo(p)), x = floor(x/2))

The dividing cells gets pushed to the left keeping its id and changing its neighbour identifier to

the identifier of the new cell. The new cell gets a fresh identifier from our counter in T and a

neighbour identifier the old neighbour of its mother cell (Figure 3). We assume there is a general

growth rate G for the entire array so the rate for each cell is scaled to G/n.

It is interesting in this system to compare the behaviour with and without growth. Since we

are not creating new molecules, we expect diffusion to spread the molecules among the cells. With

growth we expect fewer molecules per cell since the same number of molecules is spread over a

bigger number of cells - see Figure 4a for the number of X molecules in cell 1 in one realisation

of the process with and without growth. Since diffusion spreads the molecules among the cells

we expect the variability in the cell contents to go down with time. It is also interesting to see

how fast variability is reduced in the diffusion only and diffusion+growth processes. In Figure 4b

we plot how the standard deviation of the cell contents (number of molecules) is reduced over

time in three different cases - diffusion only, diffusion + growth with rate G = 1, and diffusion +

growth with rate G = 10. While we cannot compare the absolute numbers since we have different

number of cells in each case, we can see that growth amplifies the effects of the diffusion spreading

the molecules and reduces variability in the cell contents faster.
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6 Relevant work

The idea of extending simple objects with fields to represent some of their attributes has been

used before for example in Coloured Petri Nets [11] and in a more rule-based setting in CSMMR

[19]. Our notation is inspired by both of these and we can think of our notation as a rule-based

version of stochastic coloured petri nets where the richer types are first class and not merely a

means of translation to a non-coloured version. We can also think of our notation as a simpler

version of CSMMR with only the colours left. Our embedding in a programming language for

increase of expressive power is also new, and fits with the availability of rich types. The use of

the database inspired operations for the observables is also new and in practise we have found

it very useful in model building. The declarative nature of our multiset query primitives makes

the definition of the observables very intuitive. Similar database-inspired query operations on

top of collections are used in LINQ [1] although the collections are usually taken to be lists not

multisets. Buneman’s comprehension syntax [2], again a collection query language similar to

practical database query languages, considers other types of collections including multisets.

Colours can be used to encode the binding of species as in the example in the previous section.

However, whenever we use them to encode binding we would probably be better off using a

language that represents binding directly like Kappa [5]. Yet in the dividing cell and diffusion

model of the previous section we use colours in other ways that can’t be easily represented as

binding. In particular, the division of the contents of a cell would be hard to express in Kappa.

Also, counting how many X molecules we find at each position would be have to be done by

manual inspection of the state.

In the next two sections we will focus on the comparison to Coloured Petri Nets since this is

the most directly comparable system and on a comparison to a system coming from (primarily)

a different domain (ecology) and a different paradigm – deterministic instead of stochastic.

6.1 Coloured Petri Nets

The closest formalism to our notation is Coloured Petri Nets. Petri Nets are a graphical network-

based formalism often used to represent reactions. There are two type of entities in the nets:

places and transitions. Places carry a population of tokens and transitions are a way of moving

tokens from one place to the other. The state of the system is just the number of tokens at each

place. Coloured Petri Nets (CPN) are an extension to Petri Nets that allows distinctions between

tokens (colouring of tokens) by allowing them to have an associated data value adhering to the

type (colourset) of their place [11]. For example, if a place has type Leaf(mass : Real, age : Int), a

token in that place might have value Leaf(mass = 3.0, age = 2). Our growth transition from the

plant growth example in Section 2 would give the network in Figure 5. We have two coloursets:

Leaf which is a product type over age and mass, and carbon. Our initial state has two tokens in

the Leaf place, one with age 1 and mass 10 and another with age 2 and mass 5, and we have one

token of carbon with value 10. A transition removes tokens from its pre-places (places with arcs

going from them to the transition) and moves tokens to its post-places (places with arcs going

into them from the transition). In this case pre and post places are the same so the effect of the

transition is as in our system: to remove one Leaf and replace it with a Leaf with updated mass

and remove the carbon token and replace it with a carbon token with an updated value.

The correspondence to our system is straight-forward, coloursets are our object types (records

with named fields), tokens are our objects, and transitions are our rules. CPN transitions also

have predicates that are the same as our conditions. One difference is that CPNs also allow

union types instead of just product types as in our language. A stochastic version of this CPN

formulation has also been used for biological modelling before for example for describing planar

cell polarity in Drosophila wings [7], and other use-cases [22,8]. In these examples where the

stochastic version was used its semantics are just given as a translation to the corresponding

simple Petri Net.
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Fig. 5. The growth rule as a Coloured Petri Net transition.

The problem with that is that in a lot of cases the unfolded simple Petri Net has an infinite

number of reactions. This means that in order to be able to do the unfolding at all the types

have to be bounded to some finite set which further means that real values are not allowed.

This is also reflected in the Coloured Petri Net tools implementation where one can define a

Stochastic Coloured Petri Net but the definition is unfolded before it is run [9]. Here we have

defined the semantics on the coloured stochastic version directly and have a simulation algorithm

where reactions are generated as needed dynamically, instead of being created statically in the

beginning. This allows us to have unbounded types for our fields, including real numbers. We can

think of our language then as a stochastic rule-based (and therefore textual) version of Coloured

Petri Nets. Our embedding in a general purpose programming language is also new, as most

Petri Net tools have a graphical interface for defining the models although there is a hybrid

approach where you can mix the graphical definition with programming language constructs (ML

language) [12]. While graphical notations are intuitive for smaller models, we have found that

for larger models they become hard to read whereas text-based approaches like our language

produce much more readable representations. The embedding in Haskell also further helps to

manage complexity in larger models since we can use Haskell’s constructs for modularisation

(from functions to modules). The ability to use any Haskell expression is also crucial since we

can reuse existing libraries, have access to the full range of language primitives, and we are able

to write any number of functions for the expressions (for rates, rule right-hand sides etc.) that

helps hide some of the complexity from the rules.

6.2 Simile

Simile is another graphical language that has similarities to our approach [18]. Simile is used

mainly in the domains of Ecology and Agricultural Sciences but has also been used in Systems

Biology before (for the whole-plant model [3] that was the inspiration to our first example in Sec-

tion 2) to exactly solve the kind of problems we noted in the Introduction. In Simile there are two

levels of definition of a model, at the first level we have continuous variables with rate equations

and at the second level we have discrete objects with discrete dynamics – adding/removing. The

objects are grouped based on their types and their behaviour is given at the population level.

Following from our plant growth example the growth of the leaves in Simile would be written as

shown in Figure 6. We have a population of Leaf objects and a single Biochem object represent-

ing what we called Cell in our rules. Each Leaf in the population has a mass that grows as a

continuous variable. In order to define the use of carbon for growth from the carbon variable in

the Biochem object we have to do at the population level by summing the contribution of each

Leaf. The population of Leaf objects also grows (see creation box).

The dynamics of the two types of entities, continuous variables and objects, are not integrated

like our language. In Chromar creating new objects or updating the values at the fields of objects

works in the same way by removing and adding objects. The main difference is though that an

execution of a Simile model ends up as a system of ODEs whereas in Chromar we are in the

stochastic world. Again the graphical notation of Simile becomes, in our experience, problematic

for larger than a few variables models.
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Fig. 6. The growth rule as a Simile model.

7 Discussion and Conclusions

We have defined an extension to the representation of reactions where we extend the simple,

typed objects to objects employing rich types, namely records with named typed fields. Writing

rules on these richer types yields a more compact representation than one would get by writing

reactions on the simpler types in the traditional reactions setting. Moreover it sometimes helps

writing systems that are impossible to write otherwise for example systems with dynamic number

of species by allowing us to store variables as object attributes which means that creating new

objects creates new species.

We have seen from our representative examples that the more compact model representation

we get can be easier to read and more intuitive to write. In the end we write models to express

our understanding of the world, but the more complex the models get, the further away their

representation gets from our mental model of the world. The models then become just simulation

inputs and the mental model becomes diagrams/pictures to capture the intuition of the process.

Our work here is a step in the direction of closing the gap between mental models and formal

executable models, at least for a class of models in Systems Biology.

On the implementation side, our embedding in Haskell lifts some of the constraints of modelling

languages and we think gets the best of both worlds: it naturally and succinctly captures some

elements in our domain of interest but at the same time when greater expressive power is needed

we can turn to the programming language. This increase in expressive power might come at the

expense of the ability to do general analysis of models since we cannot say much about what

is happening in the Haskell exprs inside the rules. There seems to be a trend though in the

direction of mixing domain-specificity and general purpose programming languages, for example

Pedersen et al. [21] allow embedded F# scripts inside LBS-κ, and in PySB [15] Kappa models

are defined inside Python. Embedding a domain-specific inside a programming language like we

did is in some cases better than doing the opposite – embedding a programming language inside a

domain-specific language – because we have less constraints on our definitions and more generally

full access to the language for structuring our model definitions.

In terms of the simulation our implementation is simple and basically follows the steps we

presented in Section 3. The idea about dynamic creation of reactions also appears in [20]. One

area of improvement is the reaction generation step where we currently generate all the active

reactions at every step. In practise though we do not need to completely regenerate them at every

step since only a subset of them changes between steps. The performance gains will depend on

the efficiency of calculating the change in the reactions set after a change in the state. Similar

techniques where the matches are generated only once at the beginning of the simulation and

then updated according to state changes are used in Kappa [6].

There are various ways our notation could be extended. Our rule left-hand sides are really

simple and can only select based on type which means the only relations we can encode directly

are products of types (we can think of types as sets containing all the objects of that type). For

example in our array of cells example writing Cell(. . . ),Cell(. . . ) on the left-hand side mean the
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rule is applicable to any pair in the relation Cell×Cell. A lot of times this is okay, for example in

our Plant system (from Section 2) all Leaf objects interact with all Cell (only one in this case)

objects so writing the left-hand at the type level is okay because the rules are then applicable to

exactly the pairs of objects we want, {(Leaf1,Cell), (Leaf2,Cell), . . . }. In other cases though the

relation we want is some subset of the product of the types. For example in our array of cells

example the diffusion rule is not applicable to all pairs of Cells so writing Cell(. . . ),Cell(. . . ) on

the left-hand side gives us more pairs than we want. In those cases we can restrict the applicability

of the rules by our conditions and the only way to do that is by somehow in the fields of the types

encode the relation information and use that in the condition.

In the array of cells case, we encoded the relation through identifiers and the next-to relation

pairs were stored inside our objects. This works nicely in this simple case but what if we had

more complex relations or had more than one relation? For example in a plant with a more

complex architecture and some interaction between the leaves we will need to know which leaf

is connected to which and if we further had a ‘nested-in’ relation between leaves and let’s say

cells then we would have a hard time keeping track of the relations. Ideally we would at least

have the language keep track of some of these things for us and a special notation for the most

common types of relations – for example in Biology the ‘connects-to’ and ‘nested-in’ relations

seem natural. We could then write rule left-hand sides that say ‘this rule is applicable to any two

leaves that are connected’ or ‘this rules is applicable to any two cells inside the same leaf’. The

‘connects-to’ relation is the main driver of the models in Kappa for example giving a graph-like

state to the system [4]. A version of Kappa with richer types like the ones we have shown here

would be very powerful. Another system where both connection and nesting has been defined is

Bigraph and Stochastic bigraphs in particular are applicable in the biological setting [17,13].

Our observables could be developed further and made into first-class entities in the language,

for example by making them fields of types. Take for example the number of leaves in our Plant

example that is a field of the Ros type. The value of the field at any given point in time is a function

of some other part of the system, namely the leaves part of the state. This means that we have

two representations of the same process at the population level and at the individual level inside

the same model, which is problematic in some cases because we need to keep them consistent

with each other. Ideally we would like this correspondence between the two representations to

be made explicit so for example when declaring the Ros type we will able to say that its field

nleaves is an observable and define it using our query primitives – nleaves = count . select

isLeaf. Having the mapping there explicitly is good for the readability of the model and more

practically means that the propagation of information to keep the two representations consistent

can be automated. These mappings, defined as observables, would work particularly well with an

extension for a native representation of levels (the ‘nested-in’ relation we noted earlier) because

in that case we would definitely have representations of the same process at different levels of

abstraction, in which case the idea of the fields of objects at a higher level being observables of

objects at a lower-level would be really intuitive and powerful. The idea of multiple levels has

already explored in the rule-based setting, for example in [16] and [19].

Finally, in a lot of use-cases the environment in which the rules are operating is not constant.

This is especially important in Plant biology since plants are very adaptive to environmental

inputs, for example our system in Section 2 is very detached from reality since the assimilation

rule is always active whereas in reality it should switch on only during the day when the plant

photosynthesises. Incorporating a changing environment means somehow incorporating time

inside our language. Such an extension would be really powerful and very practically useful.
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