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Abstract. Medical countermeasures to treat biothreat agent infections require broad-spectrum 

therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) 

against ricin toxin combined with hit optimization allowed selection of a family of 

compounds that meet these requirements. The hit compound Retro-2 and its derivatives have 

been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an 

inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a 

consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in 

vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and 

Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An 

effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-

5. Since Retro-2 targets cell components of the host and not directly the pathogen, no 

selection of resistant pathogens is expected. These lead compounds need now to be developed 

as drugs for human use. 

 

Keywords: Bioterrorism; Biothreat agents; Emerging infectious diseases; Ricin toxin; Shiga-

like toxins; Retrograde cell transport; High-throughput cell-based assays. 
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1. Bioterrorism, biothreat agents and biodefense 

For several decades, the rate of health crises related to emerging infectious diseases has 

increased (H1N1 influenza virus, E. coli O104:H4, Chikungunya virus, Ebola virus, etc) (1, 

2). In parallel, biological attack by disseminating a pathogen or a biotoxin has been 

demonstrated (e.g. anthrax letters in 2001 or ricin letters to president Obama more recently) 

(3). These events led to an increased awareness of health authorities for intensification of 

research into the development of medical countermeasures for a wide range of biothreat 

agents, either naturally emerging or deliberately introduced as an act of bioterrorism (4).  

According to the U.S. Centers for Disease Control and Prevention (CDC), a bioterrorism 

attack is the deliberate release of viruses, bacteria, toxins or other harmful agents to cause 

illness or death in people, animals, or plants. The CDC bioterrorism agents are listed in (5). 

Biodefense is defined as the means or methods of preventing, detecting, or managing an 

attack involving biological weapons.  

Emerging infectious diseases are defined by the US National Institute of Allergy and 

Infectious Disease (NIAID) as infectious diseases that have newly appeared in a population or 

have existed but are rapidly increasing in incidence or geographic range, or that are caused by 

one of the NIAID Category A, B, or C priority pathogens (6). Category A includes high-

priority agents that pose a risk to national security because they can be easily transmitted and 

disseminated, result in high mortality, have potential major public health impact, may cause 

public panic, or require special action for public health preparedness. Category B includes 

agents that are moderately easy to disseminate and have low mortality rates. Category C 

agents are emerging pathogens that might be engineered for mass dissemination because of 

their availability, ease of production and dissemination, high mortality rate, or ability to cause 

a major health impact. 
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Although the causes of emergent diseases and bioterrorism are different, they share some 

characteristics: biothreat agents are highly diverse (bacteria, viruses, toxins, etc.), the agent 

that will provoke the next crisis is always indefinite, unknown pathogens may emerge, 

medical countermeasures are too long to develop in front of an immediate threat and some 

suspected biothreat agents may never provoke a crisis. Therefore, medical countermeasures 

against biothreat agents require broad-spectrum therapeutics that do not induce agent 

resistance (4). In this review we describe the development of new compounds that target the 

intracellular retrograde transport process. These compounds have been shown to be safe in 

animals and they demonstrated efficacy against toxins, such as ricin or Shiga toxins, in in 

vitro and in vivo models. Moreover, recent studies have shown that these compounds provided 

protection against filoviruses, poxviruses, Chlamydiales and Leishmania. Ricin, Shiga toxin-

producing Escherichia coli, filoviruses, poxviruses and Chlamydiales are found both in the 

CDC bioterrorism biothreat agent list and the NIAID emerging disease list (5, 6). Although 

Leishmania are not, a recent outbreak of 446 cases in Madrid, Spain, between 2009 and 2012 

had the characteristics of an emerging infectious disease (7). 

2. Identification of ricin antidotes   

Ricin is a highly toxic lectin produced in the seeds of the plant Ricinus communis. This toxin 

is used as a bio-crime and bio-suicide poison and is considered a potential bio-terrorist agent. 

The plant is used for ornamentation and industry. The oil (castor oil) contained in the seeds is 

treated for the production of ricinoleic acid, a fatty acid entering in the composition of many 

manufactured products such as cosmetics, soaps, shampoos, inks, paints, varnishes, brake 

fluids, etc. The toxin, which is hydrophilic, remains in the seed pulp after oil extraction and 

can be easily purified. Doses as low as a few micrograms are lethal for injected mice; in 

humans, 1 to 20 mg can be fatal after ingestion. There is no antidote for ricin poisoning and 

treatment relies on supportive care.  
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Ricin is a glycosylated protein which is composed of two subunits: ricin toxin A and B chains 

(8). The A subunit has ribosomal RNA N-glycosidase activity and thus it inhibits protein 

biosynthesis (adenine at position 4324 of the 28S ribosomal RNA is removed). The B subunit 

binds to cell surface receptors (galactose and N-acetylgalactosamine moieties of glycoproteins 

and glycolipids). After cell adhesion, ricin is internalized (via clathrin-dependent and 

independent mechanisms) and transported from early endosomes to the endoplasmic 

reticulum via the Golgi apparatus (8).  

Different therapeutic approaches to treat ricin toxicity have been considered such as 

vaccination (9, 10) or production of neutralizing antibodies (11, 12). Mass immunization 

against ricin is however unrealistic. Neutralizing antibodies have efficacy against ricin 

poisoning in animal models and have their place in a therapeutic arsenal (13). However, they 

need to be administered within the first 10-24 h of intoxication and cannot access ricin already 

internalized by cells. Due to the potentially high severity of ricin intoxication, co-

administration of small therapeutic molecules with anti-ricin antibodies may greatly improve 

disease outcome. Another approach was to target the catalytic activity of the A chain of ricin. 

Small-molecule compounds have been reported to inhibit enzymatic activity in in vitro tests, 

but they generally failed to protect cells or animals from ricin toxicity (14-22). 

Cell-based high-throughput screens (HTS) have been used to identify small-molecule 

inhibitors of ricin (23). An advantage of cell-based assays in which compounds are selected 

for rescuing cells from intoxication is the selection of bioactive compounds that do not affect 

cell viability (24-26). Figure 1 describes high-throughput cell-based phenotypic assays that 

measure the effects of small-molecule compounds on cell toxicity induced by ricin. Cells are 

exposed to ricin and protein biosynthesis that is the target of the toxin is measured in order to 

assess cell protection against ricin toxicity for each compound. 
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In 2007, Saenz et al. described a luciferase-based HTS with a chemical library of 14,400 

small-molecule compounds. Monkey Vero cells were transfected with cDNA encoding a 

destabilized luciferase with short half-life; luciferase activity decreased rapidly in cells 

incubated in the presence of toxin. Two compounds that protected against ricin inhibition of 

protein synthesis were reported (24). In 2010, Stechmann et al. used HTS to identify small-

molecule inhibitors that protected cells from ricin (25). 16,480 molecules from a commercial 

library of drug-like compounds (ChemBridge DIVERSet™) were tested at a concentration of 

25 µM on A549 human epithelial pulmonary cells (60,000 cells per well in 96-well 

scintillation microplates) for their capacity to rescue cells from intoxication by ricin at a 

concentration of 0.1 nM. [14C]-leucine incorporation in cell proteins was used as a marker of 

protein synthesis. Thus, ricin-intoxicated cells failed to incorporate [14C]-leucine while cells 

protected by a given compound did. Two compounds named Retro-1 and Retro-2 were 

identified and studied in detail on HeLa cells.  

These two inhibitors showed an unexpected degree of specificity. Indeed, these compounds 

blocked retrograde toxin trafficking at the early endosome/trans-Golgi network (TGN) 

interface and did not affect compartment morphology, endogenous retrograde cargos or other 

trafficking steps (Figure 2) (25). This transport pathway is also named the retrograde route 

and it is involved in many physiological and pathological situations (27). 

3. Protection of mice challenged with ricin 

The two compounds selected by Stechmann et al. after HTS were nontoxic for animals after 

intraperitoneal administration up to 400 mg/kg (25). The molecules were solubilized in pure 

DMSO at 30 mM and diluted to final concentration in saline. A model of ricin intoxication by 

nasal instillation was used in order to mimic exposure by aerosols, which is a likely modality 

in bioterror attacks. A dose of ricin leading to 90% deaths at day 21 (LD90) was chosen. With 

this dose, the first clinical signs of toxicity were observed within 24 h. A statistically 
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significant prophylactic protection was observed in first experiments with a single 

intraperitoneal dose of 2 mg/kg of Retro-2 one hour prior toxin challenge: 49% of mice 

survived vs. 11.5% in control group (p = 0.001). Complementary experiments were performed 

indicating a dose-response relationship (Figure 3). After administration of 20 mg/kg of Retro-

2, the survival was 60% at 20 days. Finally, 200 mg/kg of Retro-2 fully protected mice against 

ricin challenge. Therefore, these results clearly demonstrated that a small molecule can 

protect animals exposed to a lethal dose of ricin. Retro-2 was described as a lead compound 

for the development of inhibitors of ricin. Moreover, the retrograde route was identified as a 

potential therapeutic target for other toxins that follow this route.  

4. Inhibitor of retrograde trafficking protects mice infected with entero-hemorrhagic E. 

coli  

Shiga toxins are members of a family that includes Shiga toxin produced by Shigella 

dysenteriae and two Shiga-like toxins (SLTs) named Stx1 and Stx2 produced by entero-

hemorrhagic strains of Escherichia coli (28). Shiga toxin-producing E. coli (STEC) cause 

hemorrhagic colitis, hemolytic-uremic syndrome (HUS) and death (29). The most common 

sources for SLTs are entero-hemorrhagic E. coli with serotypes O157:H7 and O104:H4. 

There is no approved treatment of STEC-induced HUS. Despite efficacy in non-STEC-

induced HUS (atypical HUS), the use of the anti-C5 complement component antibody 

eculizumab® in STEC-induced HUS remains inconclusive (30). In addition, antibiotics may 

worsen the disease by further inducing toxin release by the bacteria (31).  

SLTs share structural and functional characteristics with ricin (8, 28). They are composed of 

an A catalytic subunit and a pentameric B subunit. The subunit A of SLTs inhibits protein 

biosynthesis through ribosomal RNA N-glycosidase activity and the subunit B binds to cell 

surface receptors (glycosphingolipid globotriaosyl ceramide; Gb3 or CD77) (28). After 
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internalization, these toxins are transported from early endosomes through the Golgi 

apparatus to the endoplasmic reticulum (28).  

Since SLTs share with ricin the trafficking via the retrograde route, inhibitors that were shown 

to be effective on ricin intoxication via inhibition of this pathway were also tested as potential 

inhibitors of intoxication by SLTs. As for ricin, Retro-2 has been demonstrated to protect 

HeLa cells from the toxic effects of Stx1 and Stx2 (25).  

Secher et al. have studied the effect of Retro-2 in a murine model of E. coli O104:H4 

infection (32). As shown in Figure 4, O104:H4 infection led to a 70% mortality rate in 

untreated control mice. Systemic treatment with two injections of Retro-2 at 100 mg/kg 

(solubilized in pure DMSO at 30 mM and diluted to final concentration in saline) significantly 

reduced mortality rate to 40%. Body weight loss and clinical scores were reduced by more 

than half.  

5. Effects of Retro-2 on viral infections  

Viruses are internalized into host cells through various routes (33). In the case of enveloped 

viruses, direct fusion at the plasma membrane may allow deposition of the nucleocapsid 

directly into the cytoplasm. However, non-enveloped viruses and some enveloped viruses are 

unable to access the host cytoplasm directly from the cell surface. After endocytosis these 

viruses exploit the host vesicular trafficking that leads them to the endosomes, the Golgi 

apparatus or to the endoplasmic reticulum where they are released into the cytoplasm (34). 

The use of retrograde transport suggested that infection by some viruses could be blocked by 

the Retro-2 compound via similar mechanisms that blocked retrograde trafficking of ricin and 

SLTs. 

Adeno-associated viruses. Gene therapy is a promising biomedical strategy, and adeno-

associated virus (AAV) vectors are currently being evaluated for the treatment of various 
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diseases. AAV vectors must reach the nucleus and retrograde transport of capsids via the 

trans-Golgi network is necessary for gene delivery. Nonnenmacher et al. showed that the 

endosome-to-TGN/Golgi apparatus transport step of AAV is dependent on syntaxin-5 

function and that this step can be inhibited by Retro-2 (35). Therefore these results support the 

concept that inhibition of retrograde transport could protect not only against ricin or SLTs, but 

also against viruses. 

Polyomaviruses and papillomaviruses. Polyomaviruses are non-enveloped DNA viruses that 

cause severe disease in immunocompromised individuals. Thus, JC polyomavirus (JCPyV) is 

the causative agent of the fatal demyelinating disease progressive multifocal 

leukoencephalopathy, and BK polyomavirus (BKPyV) is the causative agent of 

polyomavirus-induced nephropathy and hemorrhagic cystitis. There is no vaccine or antiviral 

therapy for these viruses (36). Human papillomaviruses (HPVs) are also non-enveloped DNA 

viruses. They are associated with the development of cancer of uterine cervix and oropharynx. 

Vaccination against some types of HPV has been successful, but there are no approved drugs 

to treat or prevent papillomavirus infections and these viruses remain a major public health 

concern (37). 

Nelson et al. (38) demonstrated in tissue culture cells that Retro-2 inhibited infection by 

JCPyV, BKPyV and simian virus 40, which is another polyomavirus. Infectivity was reduced 

to 30% for simian virus 40 and 20% for BKPyV and JCPyV with 100 µM of Retro-2 as 

compared to control. Retro-2 inhibited retrograde transport of polyomaviruses to the 

endoplasmic reticulum, which is a step essential for infection (38). Carney et al. confirmed 

these results on polyomaviruses and demonstrated that Retro-2 protected also cell lines from 

infection by papillomaviruses (37). 

Ebola and Marburg filoviruses. Ebola and Marburg viruses are filamentous enveloped 

viruses that are members of the family Filoviridae. Both Ebola virus and Marburg virus cause 
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severe diseases in humans in the form of viral hemorrhagic fevers, which are associated with 

a high mortality rate of up to 90% (39, 40).  

There is no approved vaccine, and only a few experimental drugs have been tested in animals 

or humans with no proven efficacy for patient treatment (favipiravir) (41). As a consequence, 

filoviruses are considered biosafety level-4 pathogens. Moreover, due to the emergence of a 

new variant of Ebola virus in West Africa, there is an urgent need for efficient therapeutics. 

The only small molecule drug with potential efficacy in mice is favipiravir, with an IC50 of 67 

µM (42). Shtanko et al. have demonstrated that Retro-2 blocked infection by Ebola virus and 

Marburg virus in vitro in a dose-dependent manner with IC50 of 8.4 µM (article under 

revision). Fifty µM of Retro-2 reduced cell infection bellow 10% as compared to control. 

Retro-2 appeared to act on a late step of virus entry at the level of intracellular endocytic 

compartments. 

In summary, Retro-2 is a potential antiviral therapy that broadly inhibits viruses that use 

retrograde trafficking (adeno-associated viruses, polyomaviruses and papillomaviruses), 

although other mechanisms of viral inhibition appear to be possible as suggested for 

filoviruses.  

Poxviruses. Endosome to Golgi retrograde transport pathway proteins have been identified as 

pro-viral host factors in two independent high throughput siRNA screens of Vaccinia virus 

(VACV) (43, 44). Two recent studies investigated the role of this pathway in poxvirus 

replication in detail and showed that Retro-2 potently prevented spread of Vaccinia and 

Monkeypox viruses in cell cultures (45, 46). Most interestingly, this protective effect was not 

linked with virus entry but rather a membrane wrapping process which occurs at late stages of 

virion maturation. Two viral proteins, F13 and B5 are required for the wrapping of a small 

percentage of the single membrane intracellular mature virions into triple membrane 

intracellular enveloped virions. These are then processed further to become responsible for 
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long range spread of the virus in vivo and in vitro (47). F13 uses the endosome to trans-Golgi 

retrograde trafficking pathway to travel from early endosomes to the trans-Golgi where it co-

localizes with B5. Retro-2 treatment causes mis-localization of B5 and F13, blocks the 

wrapping process and thereby inhibits the formation of the triple-wrapped intracellular 

enveloped virions and reduces viral spread. 

6. Effects of Retro-2 on intracellular parasites 

Leishmania is a parasite responsible for leishmaniasis that affects twelve million people 

worldwide, with two million new cases each year. Although Leishmania is not considered a 

bioterrorism agent, a recent outbreak of Leishmania infantum of 446 cases in Madrid, Spain, 

between 2009 and 2012 had the characteristics of an emerging disease (7). Current treatments 

are either toxic or induce the development of drug resistant strains of the parasite and there is 

need for new anti-leishmanial drugs (48-50). Leishmania species are unicellular eukaryotes 

with well-defined nucleus and cell organelles. These parasites are internalized by 

macrophages into membrane-bound compartments called Leishmania parasitophorous 

vacuoles (LPVs) that share many characteristics with phagosomes. Previous observations 

established a role for syntaxin-5 in the development of LPVs. Since pathways involving 

syntaxin-5 had been shown to be inhibited by Retro-2 (25), Canton and Kima studied the 

effect of this compound on LPVs development (51). Retro-2 blocked LPV development 

within 2 h in cells infected with Leishmania amazonensis. In infected cells incubated for 48 h 

with Retro-2, LPV development was significantly limited and infected cells harbored four to 

five times fewer parasites than controls. In vivo experiments in mice showed that Retro-2 

limited experimental L. amazonensis infections: a 20 mg/kg intraperitoneal dose had no effect 

on the course of infection, but a 100 mg/kg dose of Retro-2 resulted in approximately a log 

less parasites compared to control (Figure 5). No toxicity was evidenced in experimental 

animals.  
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The efficacy of Retro-2 was recently demonstrated on L. donovani infantum. Retro-2 was 

active in vitro both on axenic and intramacrophage amastigotes of L. donovani infantum in a 

range from 3 to 20 µM. In addition, Retro-2 exhibited a significant reduction of parasite 

burden after a treatment at 100 mg/kg/day × 5 days on the L. donovani infantum Balb/c mouse 

model (Table 1). Therefore, this compound is able to act in vitro and in vivo on parasites 

exhibiting two different systems of housing conditions. The amastigote forms of the L. 

amazonensis complex reside in large, communal LPVs housing many parasites, whereas those 

of L. donovani infantum are located in individual LPVs. Such observations encourage to study 

the effects of Retro-2 and analogues on common pathways used by both New-World (L. 

amazonensis) and Old-World (L. donovani infantum) parasites to set up their LPVs. 

7. Effects of Retro-2 on intracellular bacteria 

Simkania negevensis is an obligate intracellular Gram-negative bacterium of the order 

Chlamydiales. Its natural host is not known and it is widespread among humans. S. negevensis 

has been associated with transmissible infections of the upper respiratory tract. Infections with 

the two closely related human pathogenic bacteria Chlamydia pneumoniae and Chlamydia 

psittaci can cause pneumonia, chronic bronchitis and chronic asthma. Chlamydia trachomatis 

is responsible for ocular and sexually transmitted infections. S. negevensis grows in host cells 

within a membrane-bound vacuole forming endoplasmic reticulum contact sites. Herweg et 

al. recently demonstrated that 75 µM of Retro-2 decreased bacterial replication both during 

primary infection down to 50% and progeny infection down to less than 40%-20% (52). Most 

interestingly, S. negevensis progeny from cells cultured in the presence of Retro-2 were 

markedly less efficient in infecting cells cultured in the absence of Retro-2. The compound 

seemed to alter the morphology of S. negevensis–containing vacuoles and replication of the 

bacteria (52). Similar results were obtained against C. trachomatis. 
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8. Optimization of Retro-2 

In order to identify more potent compounds, a structure-activity relationship (SAR) study was 

performed by Noel et al. (53). During the course of the SAR process, it appeared that the 

bioactive compound was not Retro-2 but the cyclized analog Retro-2cycl. The N-

methyldihydroquinazolinone derivatives of Retro-2 were tested in vitro for their protective 

effect against Stx2 on cellular protein synthesis. After cyclization and optimization of the 

three main moieties of Retro-2, a dihydroquinazolinone compound was identified with 

approximately 100-fold improvement of the EC50 against Stx2 cytotoxicity. Only the (S)-

enantiomer was active (Figure 6). The mode of action of this compound was similar to that of 

Retro-2, namely a selective inhibition of the retrograde transport.  

In a next step, Gupta et al. have reported the synthesis and the evaluation of a new 

enantiopure dihydroquinazolinone compound, named Retro-2.1, with improved in vitro 

protection against Stx2 (approximately 500-fold compared to Retro-2) and ricin 

(approximately 1,000-fold increased activity) (54). (S)-Retro-2.1 is currently the most potent 

molecule to counteract the cytotoxic potential of ricin and SLT with EC50 values of 23 and 

54 nM, respectively. By comparison, the (R)-enantiomer shows EC50 values of 3200 and 2400 

nM against ricin and Stx2, respectively. 

Carney et al. also described dihydroquinazolinone analogs of Retro-2cycl with improved 

potency as suppressors of human polyoma- and papillomavirus infection in vitro (37).  

Therefore, as previously demonstrated in vitro and in vivo for Retro-2, optimized derivatives 

have the potential to be developed as broad-spectrum antidotes to a wide array of pathogens, 

including toxins, viruses, intracellular bacteria and parasites that exploit retrograde trafficking 

to enter and infect the cell. 
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9. Toxins and pathogens not affected by Retro-2 

We have found bacterial toxins and viruses against which Retro-2 had no effect, neither on 

cell intoxication nor on cell infection. These include diphtheria toxin (DT), Clostridium 

botulinum neurotoxin A (BoNT/A), dengue virus serotype 4 (DENV-4), chikungunya virus 

(CHIKV) and Venezuelan equine encephalitis virus (VEEV). Table 2 indicates the maximum 

concentration at which Retro-2 was tested against each mentioned pathogen, the target cells 

and the type of assay used.  

In the case of DT and BoNT/A, the lack of action of Retro-2 is easily understood because the 

retrograde transport from the early endosomes to the trans Golgi network is not involved in 

their mechanism of action. During cell intoxication, DT is internalized into early endosomes. 

Following acidification of these compartments its catalytic domain is translocated into the 

cytosol during trafficking through the endocytic carrier vesicles of the endosome to lysosome 

degradation pathway (55). In the case of BoNT/A, the toxin is directly endocytosed in 

recycling synaptic vesicles or clathrin-coated vesicles of the nerve terminus. These vesicles 

are acidified, which triggers the translocation of the catalytic chain of the toxin into the 

cytosol where it finds its target, the SNARE protein SNAP-25 (56).  

In the case of the viruses, the absence of effect of Retro-2 on cell infection suggests that 

enveloped, positive-sense, single-stranded RNA viruses such as DENV-4, CHIKV and VEEV 

do not involve the endosome to Golgi retrograde transport machinery for entry or other steps 

of their cycle. It has been suggested that DENV-4 enters the cytoplasm after trafficking along 

the Rab5-positive early endosomes through the Rab7-positive late endosomes to the 

lysosomes or further compartments (57, 58). The alphaviruses such as CHIKV and VEEV are 

believed to enter the cell via receptor-mediated endocytosis followed by membrane fusion in 

the acidified endosomes (59, 60); however, more recent studies suggest an alternate mode of 

entry directly at the plasma membrane (61). 
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10. Conclusions 

Medical countermeasures against biothreat agents require therapeutics that are safe and have a 

large spectrum of activity without inducing possible mechanisms of resistance in case of 

living pathogens. Retro-2 and its derivatives meet these requirements. Indeed, the use of HTS 

coupled to cell-based assays allowed selecting bioactive compounds that did not affect cell 

viability (25, 32, 51). In vivo, Retro-2 and its derivative have been demonstrated to be safe, 

even at high doses (25, 32, 51). Moreover, Retro-2 is an inhibitor of retrograde transport and 

it affects syntaxin-5-dependent pathogens. As a consequence, it has a broad-spectrum activity 

that has been demonstrated both in vitro and in vivo in mice against ricin, SLT-producing 

O104:H4 E. coli and Leishmania and in vitro against AAV, polyoma-, papilloma-, Ebola, 

Marburg and poxviruses and Chlamydiales. An effect is anticipated against other toxins or 

pathogens that use retrograde trafficking. Since Retro-2 targets cell components of the host 

and not directly the pathogen, no selection of resistant pathogens is expected (4). These lead 

compounds need now to be developed as drugs for human use. This implies solving 

drugability issues (solubility, pharmacology, efficacy post disease onset) in order to obtain a 

true drug candidate. 
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Table 1. Comparison of the effects of Retro-2 and the anti-leishmanial reference molecule 
Miltefosine on the growth of L. donovani infantum in vitro on RAW macrophages and in vivo 
in Balb/c mice. 
 
Compound In vitro In vivo 
 Intra-macrophage 

amastigotes 
Treatment regimen : 

mg/kg/day × 5 days by 
i.p. route 

Reduction of parasite 
burden in the liver (%)  

Retro-2 20.25 ± 5.91 100 77* 
Miltefosine 0.92 ± 0.07 10 82* 
In vitro  activity: IC50 is the drug concentration inhibiting the intramacrophage parasite 
growth by 50% after a 72 h incubation time. Molecules were solubilized in pure DMSO at 30 
mM and diluted in culture medium. In vivo activity: the experiment was performed on female 
Balb/c mice 18-20 g according to the protocol described in (62). Retro-2 was solubilized in 
pure DMSO at 30 mM and diluted in saline The non-parametric Mann-Whitney U-test was 
performed to compare liver parasitic load; p value <0.05 was considered as significant versus 
untreated control mice. *p<0.01. 
 
 
 
Table 2. Toxins and viruses against which no protective activity was found for Retro-2. Cell 
types, maximum concentrations of Retro-2 and assay type are given. Retro-2 was added at 
least 1 h before and maintained during intoxication/infection. 
 

Toxins Cell line Retro-2 maximum 

concentration 

tested 

Assay type 

DT HeLa cells 30 µM Protein synthesis 

BoNT/A 

Newborn rat 

cerebellum neuron 

primary culture 

20 µM 

0.5 nM BoNT/A, 

SNAP25 cleavage 

monitoring by 

Western blot 

    

Viruses    

DENV-4 HEK293 
500 µM 

(no toxicity) 

Viral cytopathic 

effect 

CHIKV HEK293 
500 µM 

(no toxicity) 

Viral cytopathic 

effect 

VEEV VeroE6 100 µM 
Viral cytopathic 

effect 
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Figure 1. High-throughput cell-based assays. These phenotypic assays measure the effects of 

small-molecule compounds on cellular cytotoxicity induced by ricin or other toxins (23). 

Chemical compounds from stock plates (1) are added to microplates seeded with cells (2); 

toxin is then added. After incubation, different methods (3) are used to assess the effects of 

each compound on toxicity induced by ricin or other toxins: a) the CellTiter-Gloluminescent 

cell-viability assay quantifies ATP that assessed metabolically active cells. b) In luciferase 

reporter-gene assays, the enzyme activity is a measure of ongoing protein biosynthesis. c) In 

the third method, the inhibitory effect of ricin on protein biosynthesis in intact cells is 

measured through the incorporation of radioactive amino acids into neosynthesized 

polypeptides. 
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Figure 2. Cellular target of Retro-2. Toxins such as ricin and SLTs penetrate cells through the 

retrograde transport route from the plasma membrane to the endoplasmic reticulum, via 

endosomes and the Golgi apparatus (27). Retro-2 blocks toxin transport between early 

endosomes and the Golgi apparatus (25).  
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Figure 3. Protection of ricin challenge by Retro-2 (25).  

Mice were treated with the indicated doses of Retro-2 and then exposed to ricin via the nasal 
route. In each experiment, treated mice received a single intra-peritoneal dose of Retro-2 
(solubilized in pure DMSO at 30 mM and diluted in saline) 1 h prior to toxin exposure (2 
µg/kg by nasal instillation); control animals received vehicle prior to ricin administration. The 
survival curves for treated animals were statistically different from control animals (log rank 
test; p < 0.0001 for 2 mg/kg of Retro-2, p = 0.031 for 20 mg/kg; p = 0.0007 for 200 mg/kg). 
The data are reproduced from (25). 
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Figure 4. Mice protected from E. coli O104:H4 infection with Retro-2 (32).  

BALB/c mice received the O104:H4 strain by oral gavage. Intraperitoneal administration of 
mitomycin C (MMC) induced toxin release at 18, 21, and 24 h after infection. Mice received 
intraperitoneal administration of Retro-2 (100 mg/kg) at 16 and 26 h after infection. Retro-2 
was solubilized in pure DMSO and diluted in saline at 10% DMSO final concentration. Body 
weight loss (A), clinical scores (B), and survival rates (C) were monitored for 10 days after 
infection. N=20 for uninfected controls, n=40 for O104:H4-infected mice treated or not 
treated with Retro-2. * P<0.05; ** P <0.01; ***, P < 0.001. The data are reproduced from 
(32). 
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Figure 5. Retro-2 can control the course of an experimental infection with L. amazonensis 
(51). 

BALB/c mice were infected in their hind feet with 2 × 106 stationary stage cultured 
L. amazonensis promastigotes. Mice received an intra-peritoneal administration of 20 or 
100 mg/kg Retro-2, 24 h after infection. A group of mice was administered the 100 mg/kg 
dose 3 weeks after the infection was initiated. The parasite titer per foot was determined after 
9 weeks of infection. The data are reproduced from (51). 
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Figure 6. Left, structure determination of the (S)-Retro-2.1 enantiomer by X-ray 

crystallography, the only enantiomer bioactive against toxins in the nanomolar range (54). 

Right, highlight of the preferential substitutions that increase Retro-2 activity. 
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The molecule Retro-2 identified by HTS protects cells from ricin and Shiga toxins 

 

Retro-2 acts by blocking toxin trafficking from early endosomes to the Golgi 

 

Acting on a cellular target, Retro-2 protects cells from many intracellular pathogens 

 

Retro-2 protected mice from ricin, Shiga toxin-producing E. coli and Leishmania 

 

The optimized analogue Retro-2.1 is 1000 fold more active than Retro-2 against ricin 


