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Abstract 31	

Coxsackievirus A6 (CV-A6) infection is a major etiologic agent for hand, foot and mouth 32	

disease (HFMD) in recent years.  HFMD outbreaks associated with CV-A6 results from the 33	

evolutionary dynamics of CV-A6 and the appearance of novel recombinant forms (RFs).  To 34	

examine this, 151 variants collected between 2013 and 2014 from Germany, Spain, Sweden, 35	

Denmark, and Thailand were genotyped for the VP1 capsid and 3Dpol genes.  Analysis of the 36	

VP1 gene showed an increasing likelihood between CV-A6 genome recombination and 37	

sequence divergence (estimated substitution rate of 8.1 × 10-3 substitutions/site/year and RFs 38	

half-life of 3.1 years).  Bayesian phylogenetic analysis showed that recent recombination 39	

groups (RF-E, -F, -H, -J and -K) shared a common ancestor (RF-A).  Thirty-nine full-length 40	

genomes of different RFs revealed recombination breakpoints between the 2A-2C and the 5’ 41	

untranslated regions.  The emergence of new CV-A6 recombination groups has become 42	

widespread in Europe and Asia within the last 8 years.	 	43	
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Human enteroviruses are genetically diverse RNA viruses within the Enterovirus 44	

genus in the family Picornaviridae and are responsible for a wide spectrum of clinical 45	

manifestations (Knowles et al., 2012).  Human enteroviruses are divided into four species (A 46	

to D).  Species A, of which coxackievirus A6 (CV-A6) is a member, currently comprises 20 47	

types (Pons-Salort et al., 2015).  CV-A6 possesses a positive-stranded RNA genome of 48	

approximately ~7,400 nucleotides encapsidated by a highly structured icosahedral capsid.  49	

The viral genome is translated into a large polyprotein that is subsequently cleaved into 50	

structural (VP1 to VP4) and non-structural (2A to 2C and 3A to 3D) proteins (Whitton et al., 51	

2005).  The degree of similarity of nucleotides and amino acid sequences of the VP1 region 52	

provides the primary tool for the identification and assignment of new types within a species, 53	

in which novel variants showing less than 75% nucleotide sequence identity are classified as 54	

new types (Oberste et al., 1999).	55	

CV-A6 infections are typically mild and asymptomatic, whereas enterovirus 71 (EV-56	

A71) and coxackievirus A16 (CV-A16) are most often implicated in causing hand, foot and 57	

mouth disease (HFMD), a disease characterized by vesicular exanthema on the hands, feet, 58	

and oral mucosa (Puenpa et al., 2011; Schuffenecker et al., 2011; Wu et al., 2010).  In 2014, 59	

atypical HFMD was linked to CV-A6 infection in children with erythematous papular rash 60	

resembling eczema herpeticum (Sinclair et al., 2014) as a result of newly emerging variants 61	

of CV-A6.  Such novel recombinant forms (RFs) of the virus have been assigned into RF-A 62	

to -H based on the 3D polymerase (3Dpol) phylogeny (Gaunt et al., 2015; McWilliam Leitch 63	

et al., 2011).  It was subsequently determined that RF-H, which possessed phylogenetically 64	

distinct 3Dpol region sequences likely acquired from other human enterovirus species A 65	

serotypes through recombination, was largely responsible for the clinically unusual HFMD in 66	

Edinburgh, U.K (Gaunt et al., 2015).  Here, we further defined how recently emerged RFs 67	
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including RF-H and its predecessor RF-A are circulating more widely and contributing to the 68	

increased incidence of HFMD elsewhere around the world.	69	

We initially examined the VP1 sequence divergence and 3Dpol sequence grouping by 70	

analyzing 151 CV-A6 strains from Denmark (n = 22), Germany (n = 4), Spain (n = 14), 71	

Sweden (n = 6) and Thailand (n = 105) collected between 2013 and 2014 (Table S1).  Nested 72	

RT-PCR was performed using newly designed primers to amplify the VP1 and 3Dpol genes 73	

(Table S2), followed by sequencing.  The reverse transcription and first-round PCR utilized 74	

Superscript III One-Step RT-PCR system with Platinum Taq High Fidelity (Invitrogen), 75	

while the second-round PCR utilized GoTaq DNA polymerase (Promega).  Sequences were 76	

analyzed using the SSE 1.2 sequence editor package (www.virus-evolution.org) (Simmonds, 77	

2012) and phylogenetic tree reconstruction was performed with the MEGA program (v6) 78	

using the best-fit models and the maximum-likelihood method (Tamura et al., 2013).  All 79	

newly generated sequences were deposited in the GenBank database under the accession 80	

numbers KX212338 - KX212678. 81	

The VP1 sequences from the CV-A6 identified in Denmark and Spain clustered 82	

within lineage I, the very same group of CV-A6 responsible for eczema herpeticum in 83	

Edinburgh in 2014 (Fig. S1).  They were distinct from CV-A6 from Taiwan (lineage II), 84	

Thailand (lineage III), China (lineage IV) and Finland (lineage V).  Examination of the 85	

sequences from the 3Dpol region enabled the designation of bootstrap-supported clades 86	

comprising groups A, B, C, D, E, F, G, H, I, J and K (Fig. 1 and Table S3) in agreement with 87	

previous analysis (McWilliam Leitch et al., 2009; McWilliam Leitch et al., 2012; McWilliam 88	

Leitch et al., 2010).  The majority of the CV-A6 strains clustered within two of the 89	

previously assigned recombinant forms RF-A (105/151) and RF-F (37/151).  Meanwhile, 90	

four variants from Denmark grouped with RF-H, as did two variants from Spain.  Additional 91	

three variants from Denmark and Spain comprised RF-G.			92	
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Strong evidence of recombination was demonstrated by the observed differences in 93	

the phylogenetic trees based on the 3Dpol region, for which RF groups were assigned, and 94	

VP1 region for several strains.  For example, the TW/00141/E/2007 strain was assigned RF-E 95	

by the 3Dpol phylogeny, but grouped with the two RF-B strains (FI/TS3FinTu81042/B/2008 96	

and JP/Kyoto1/B/1999) in the VP1 tree.  The 3Dpol-assigned RF-J strain CN/P143/J/2013 97	

grouped with some of the RF-A strains.  Finally, the CN/CC13/K/2013 is an RF-K strain, but 98	

instead appeared next to an RF-D strain CN/HN421/D/2011 in the VP1 phylogeny.   99	

To enable examination of the sequence relationships in other parts of the genome, we 100	

obtained 39 nearly complete genome sequences of CV-A6 variants (Germany = 3, Spain = 3, 101	

Denmark = 8, Thailand = 25) representing RF-A (n = 21), RF-F (n = 10), RF-G (n = 2), and 102	

RF-H (n = 6).  Comparison of the phylogenetic trees of the VP1, 5´UTR and VP4/2 regions 103	

yielded broadly similar groupings of CV-A6 variants (Figs. 1 and S2).  However, several 104	

instances of discordance in the trees provided additional evidence for potential CV-A6 105	

recombination.  For example, RF-E variants grouped with RF-A and -H in the VP1 but not in 106	

the 5´UTR and VP4/2 regions.  RF-A strains were interspersed in the 5´UTR and VP4/2 trees 107	

with RF-J, which contrasts with their consistent grouping in theVP1 region.  All of RF-K was 108	

monophyletic in the VP1, VP4/2 and the 5´UTR regions except one which grouped with RF-109	

D.  Therefore, the patterns of phylogenetic discordance were consistent with recombination in 110	

CV-A6 and in agreement with previous findings for other enteroviruses (Cabrerizo et al., 111	

2014; Calvert et al., 2010; McIntyre et al., 2010; McWilliam Leitch et al., 2009; McWilliam 112	

Leitch et al., 2012; McWilliam Leitch et al., 2010).	113	

We estimated the rates of evolution and molecular clock phylogeny (Drummond & 114	

Rambaut, 2007) from VP1 gene sequences using the Bayesian Markov Chain Monte Carlo 115	

(MCMC) method implemented in BEAST (v1.8.0) (Drummond et al., 2012).  Two 116	

independent runs involved constant and exponential growth as priors with a chain length of 117	
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100 million and a relaxed log-normal molecular clock model were analyzed using the SRD06 118	

model of substitution.  All other parameters were optimized during the burn-in period.  119	

Convergence of the chains and effective sample sizes of the estimates were checked using 120	

Tracer (http://beast.bio.ed.ac.uk/Tracer).   121	

Since sequence divergence in VP1 provides a proxy measure for the time of 122	

divergence of CV-A6 variants from which estimates of the life spans of individual 123	

recombinant forms can be derived as described previously for echovirus type 30 (E30) 124	

isolates (McWilliam Leitch et al., 2009), we evaluated the VP1 evolutionary divergence and 125	

the proportion of recombinant comparisons for variants with different 3Dpol groups.  126	

Pairwise comparison among CV-A6 variants showed precise correlation between VP1 127	

sequence distances and assignment to different RF group by the 3Dpol region (Fig. S3).  128	

Furthermore, an estimate of the approximate RF half-lives of CV-A6 lineages were 129	

calculated by combining the mean sequence divergence in VP1 at the 50% recombination 130	

frequency threshold (estimated at 0.05) with the substitution rate in VP1 (8.1 × 10-3 131	

substitutions/site/year) (Table 1).  This corresponds to a period of 6.17 years (0.05/0.0081) of 132	

divergent evolution, or approximately 3.1 years from a common ancestor. This RF half-life of 133	

CV-A6 was very much similar to that estimated previously for E30, although higher than E6 134	

and E9 but lower than EV-71 and E11 (Cabrerizo et al., 2014; McWilliam Leitch et al., 2009; 135	

McWilliam Leitch et al., 2012; McWilliam Leitch et al., 2010).  	136	

To determine when CV-A6 recombination groups first appeared, we reconstruct the 137	

temporal phylogeny from VP1 sequences.  Since variability of the VP1 sequence was 138	

restricted primarily to synonymous sites, most sequence changes likely occurred through 139	

neutral drift.  Using molecular clock analysis, we estimated the nucleotide substitution rate 140	

and times to the most recent common ancestor (tMRCAs) of different regions and the 141	

assignment of 3Dpol clades of the greatest RFs (RF-A and RF-F).  The substitution rate of 142	
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the whole data set of all VP1 sequences was estimated to be 8.1 × 10-3 substitutions/site/year 143	

(high-probability distribution [HPD] range, 6.0 × 10-3 to 10.5 × 10-3).  The MRCA of all CV-144	

A6 clusters likely first appeared in 1947 (HPD, 1940 to 1949), while that of RF-A probably 145	

emerged in 1999 (HPD, 1995 to 2003).  The diversity was low for RF-F as demonstrated by 146	

their tight clustering at the top of the tree (Fig. 1 and Table 1), whereas RF-A dispersed into 147	

other branches and therefore implied that they possessed higher substitution rate.  The 148	

number of RF-F variants was only one-third that of RF-A and therefore might have 149	

contributed to the bias due to sampling size. 150	

To determine more precisely the timescale of recombination events underlying the 151	

appearance of each RF, datasets of VP1 gene sequences were further analysed using the 152	

Bayesian Markov Chain Monte Carlo (MCMC) method to generate time-correlated 153	

phylogeny (Fig. 2).  While earlier recombination events could not be reconstructed in any 154	

detail due to inadequate sampling of CV-A6 before 2008, variants collected after this date 155	

were monophyletic and fell into three further lineages with estimated dates of splitting 156	

betweeen 2004 and 2005.  The oldest lineage comprised purely of RF-G samples, which first 157	

appeared in 2011, and thereafter underwent the recombination event that exchanged the 158	

3Dpol region sequences between 2004 and 2011.  The other two lineages contained samples 159	

belonging to RF-A.  One comprised solely of RF-A and persisted for at least 11 years (2005 160	

to 2015).  The other lineage contains RF-A sequences and samples isolated subsequently, 161	

which belonged to other RF groups (E, F, H, J and K).  In lineage 1, the oldest variants were 162	

those originally described in Asia (Thailand and Japan) before 2012 and then spread into 163	

Europe and Asia between 2013 and 2014.  Within this lineage, CV-A6 variants belonging to 164	

RF-F with the recombination event dated between 2009 and 2012.  The most recent group, 165	

RF-H, which appeared in 2013, probably recombined between 2011 and 2013.  The RFs (F, 166	

G, H and K) were monophyletic and likely originated from single recombination events, 167	
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unlike RF-E and RF-J which were detected in more than one VP1 lineage. With the exception 168	

of RF-F which was isolated from both Europe and Asia, other RFs groups were detected only 169	

from Europe or Asia; G and H (Europe), E (Taiwan), J and K (China).  Variants within 170	

lineage 2 (RF-A) were those detected in the first HFMD outbreak in Finland in 2008 along 171	

with variants detected subsequently in Europe and Asia over the following 1 to 5 years.   172	

 Having identified the likely time course and direction of the recombination events, 173	

divergence scan analyses were performed between the ancestral RF-A sequences with 174	

complete genome sequences generated in the current study (RF-F, -G, and -H) and the 175	

recombinant forms from previous study (RF-J and RF-K) to identify recombination 176	

breakpoints (Fig. S4).  The sharp increase in sequence divergence at various points in the P2 177	

region provided evidence for the occurrence of separate, individual recombination events for 178	

each RF.  The first breakpoint was found at the 2A protein-encoding region around 179	

nucleotide position 3500 (RF-G).  The next breakpoints were located in 2B and at the border 180	

between 2B and 2C regions (RF-F, -J and -H).  The last breakpoint of RF-K can be 181	

recognized at nucleotide position 5000 and included the 3´ part of the 2C region. 182	

This study reports a detailed, multi-centre investigation of the emergence of an 183	

enterovirus serotype associated with epidemics of HFMD.  It catalogues the complexity of 184	

the evolutionary processes associated with its geographical expansion and the occurrence of a 185	

number of recombination events each involving replacement of close to complete non-186	

structural gene blocks at varying times since the founder recombinant form RF-A was first 187	

described in 2008 (Osterback et al., 2009).  Non-structural (NS) region sequences of most 188	

RFs have not been described in association with other species A serotypes including any of 189	

the RFs described for EV-A71 (McWilliam Leitch et al., 2012).  However, there was some 190	

evidence for a limited degree of re-circulation within the recombination pool of NS region 191	

sequences; RF-E and RF-K appeared at two different positions in the VP1 phylogenetic tree. 192	
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Furthermore, a limited degree of sharing of NS regions sequences between different species 193	

B serotypes has been documented (Bailly et al., 2009).  194	

Phylogenetic reconstruction was used to analyze trait evolution such as temporal and 195	

geographical correlates of individual recombination events, which was previously 196	

incomplete. The most frequently detected recombinant form, RF-A, showed decades-long 197	

circulation and was the ancestor of five separate recombination groups (RF-E, F, H, K and J) 198	

that have emerged in the past 5-10 years. The HFMD outbreak in Finland in 2008 was 199	

associated with RF-A with the subsequent appearance of this RF across of Europe and Asia 200	

between 2013 and 2014. The more recent emergence of RFs originated from descendants of 201	

multiple VP1 lineages that have diverged from RF-A variants circulating in Asia (Thailand 202	

and Japan) between 2008 and 2010.		Enterovirus recombination events can play a significant 203	

role in the evolution and breakpoints detected in this study (2A - 2C regions) are well-known 204	

recombination hotspots (Lukashev et al., 2005).  CV-A6 recombination breakpoints within 205	

VP3 and between 5´UTR and VP1 have been detected in the genomes of RF-E variants in 206	

Taiwan (Gaunt et al., 2015).	 207	

 In summary, the typical pattern for an RF was its rapid emergence, variable 208	

penetrance into the sampled virus population and relatively rapid extinction, within years 209	

rather than decades, based on the average recombination half-lives documented for CV-A6 210	

and other EV types.  These patterns are well-attested in the turnover of RFs of CV-A6.  211	

While we remain relatively ignorant of the reasons for RF turnover, whether driven by 212	

immunological, host adaptive factors or transmissibility, or alternatively whether it occurs as 213	

a consequence of population bottlenecks and replacements without a fitness component, 214	

molecular epidemiological studies will be of value in understanding the nature of enterovirus 215	

evolution and their clinical outcomes.  216	
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Figure Legends	305	

Figure 1. 	Phylogenetic analysis of CV-A6 variants in different genome regions.  Maximum-306	

likelihood trees of (a) VP1 [positions 2485 and 3816 numbered based on the Gdula prototype 307	

strain, GenBank accession number AY421764], (b) 3Dpol [positions 5061 and 6364 308	

numbered based on the Gdula prototype strain, GenBank accession number AY421764] and 309	

previously determined reference groups (RF-B, -C, -D, and -E).  The optimal substitution 310	

models were Kimura two-parameter (K2P) with invariant sites (I) for VP1 and K2P with I 311	

and gamma distribution (I-) for 3Dpol.  Each sequence is identified by the country of origin, 312	

sample code, 3Dpol clade assignment and year of collection.  Dot colors indicate the 313	

recombination group assignments based on 3Dpol phylogeny.  Bars denote the evolutionary 314	

distance according to the number of nucleotide substitutions per site.  Bootstrap consensus 315	

was inferred from 1,000 replicates. 316	

 317	

Figure 2.  A temporal phylogeny of VP1 sequences of CV-A6 variants in this study and 318	

published sequences.  Branch colours denote recombination groups in each clade.  Two RF-A 319	

lineages (1 and 2) are noted.320	
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Supplementary Materials 

Supplementary Table S1. Sequence information. 

Supplementary Table S2. Primer sets used for whole genome amplification by nested RT-

PCR. 

Supplementary Table S3. Recombination groups (RF-A to -K) identified in different 

countries based on phylogenetic analysis of the 3Dpol region. 

 

Supplementary Figure S1.  Phylogenetic analysis of VP1 nucleotide sequences of CV-A6 

for study subjects and those previously determined (RF-B, -C, -D, and -E).  Dot colors 

indicate different countries.  Lineages are denoted in Roman numerals.   

Supplementary Figure S2. Phylogenetic analysis of CV-A6 variants in different genome 

regions.  Maximum-likelihood trees of (a) 5´UTR [positions 111 and 745 numbered based on 

the Gdula prototype strain, GenBank accession number AY421764], (b) VP4/2 [positions 746 

and 1720 numbered based on the Gdula prototype strain, GenBank accession number 

AY421764] and previously determined reference groups (RF-B, -C, -D, and -E).  The optimal 

substitution models were Kimura two-parameter (K2P) with invariant sites (I) for 5´UTR and 

K2P with I- for VP4/2.  Each sequence is identified by the country of origin, sample code, 

3Dpol clade assignment and year of collection.  Dot colors indicate the recombination group 

assignments based on 3Dpol phylogeny.  Bars denote the evolutionary distance according to 

the number of nucleotide substitutions per site.  Bootstrap consensus was inferred from 1,000 

replicates.  

Supplementary Figure S3. Association between VP1 sequence divergence and the 

proportion of recombinant comparisons.   

Supplementary Figure S4. Divergence scan of nucleotide sequences between RF-A with 

other recombination groups (RF-F, -G, -H, -J, and -K).  Thirty-nine complete genome 

sequences by RF groups obtained from this study were used, except RF-J and -K which were 

Chinese strains.  

 

 



Table S1: Sequences information 

 
Isolate 

 
Country 

 
City 

 
Year 

 
RF group 

Accession number 

Complete 
genome 

VP1 3D 

US/Gdula/I/1949 US NS 1949 I AY421764 - - 

FI/Se8926/A/2008 Finland NS 2008 A KP144346 - - 

FI/Se8925/A/2008 Finland NS 2008 A - KP129346 KP129366 

FI/Se8717/A/2008 Finland NS 2008 A KP144344 - - 

FI/Ta81126/A/2008 Finland NS 2008 A - KP129337 KP129357 

FI/Se8841/A/2008 Finland NS 2008 A KP144345 - - 
FI/Se8931/A/2008 Finland NS 2008 A - KP129344 KP129364 

FI/Tu81038/A/2008 Finland NS 2008 A - KP129341 KP129361 

FI/Ta81252/A/2008 Finland NS 2008 A - KP129336 KP129356 

FI/Ta8966/A/2008  Finland NS 2008 A - KP129339 KP129359 

FI/Tu81274/A/2008 Finland NS 2008 A - KP129340 KP129360 

FI/81163/A/2008 Finland NS 2008 A - KP129335 KP129355 

FI/Se8928/A/2008 Finland NS 2008 A - KP129345 KP129365 

FI/Tu81027/A/2008 Finland NS 2008 A - KP129343 KP129363 

FI/Finland/A/2008 Finland NS 2008 A KM114057 - - 
JP/Shizuoka18/A/2011 Japan Shizuoka 2011 A AB678778 - - 
UK/GlaV1/A/2014 UK Glasgow 2014 A KP144343 - - 
JP/Kyoto2/A/2003 Japan Kyoto 2003 A AB779616 - - 
JP/Kyoto3/A/2009 Japan Kyoto 2009 A AB779615 - - 
JP/Kyoto5/A/2009 Japan Kyoto 2009 A AB779618 - - 
UK/EdV1/A/2012 UK Edinburgh 2012 A KP144350 - - 
UK/EdV2/A/2012 UK Edinburgh 2012 A - KP129347 KP129367 

UK/EdV1/A/2010 UK Edinburgh 2010 A - KP129348 KP129368 

TW/409/A/2010 Taiwan NS 2010 A JQ946055 - - 
TW/1537/A/2011 Taiwan NS 2011 A JN582001 - - 
TW/391/A/2010 Taiwan NS 2010 A JQ946053 - - 
TW/399/A/2010 Taiwan NS 2010 A JQ946054 - - 
UK/EdV7/A/2013 UK Edinburgh 2013 A KP144342 - - 
UK/EdV13/A/2013 UK Edinburgh 2013 A KP144339 - - 
TH/CU25/A/2008 Thailand Bangkok 2008 A KX212500 KX212346 KX212536 

TH/CU47/A/2009 Thailand Bangkok 2009 A KX212498 KX212344 KX212534 

TH/CU83/A/2010 Thailand Bangkok 2010 A KX212495 KX212341 KX212531 

TH/CU84/A/2010 Thailand Bangkok 2010 A KX212496 KX212342 KX212532 

TH/CU86/A/2010 Thailand Bangkok 2010 A KX212499 KX212345 KX212535 

TH/CU1499/A/2014 Thailand Bangkok 2014 A KX212503 KX212338 KX212528 

TH/CU1508/A/2014 Thailand Bangkok 2014 A KX212504 KX212403 KX212593 

TH/CU1420/A/2014 Thailand Bangkok 2014 A -  KX212380 KX212570 

TH/CU1555/A/2014  Thailand Khon kaen 2014 A - KX212404 KX212594 

TH/CU1430/A/2014 Thailand Bangkok 2014 A - KX212384 KX212574 

TH/CU1271/A/2014 Thailand Bangkok 2014 A KX212505 KX212405 KX212595 

TH/CU1443/A/2014 Thailand Bangkok 2014 A - KX212385 KX212575 

TH/CU1364/A/2014 Thailand Bangkok 2014 A - KX212379 KX212569 

TH/CU1379/A/2014 Thailand Khon kaen 2014 A - KX212409 KX212599 



TH/CU1483/A/2014 Thailand Khon kaen 2014 A - KX212410 KX212600 

TH/CU1552/A/2014 Thailand Khon kaen 2014 A - KX212408 KX212598 

TH/CU1433/A/2014 Thailand Bangkok 2014 A - KX212417 KX212607 

TH/CU1474/A/2014 Thailand Bangkok 2014 A - KX212387 KX212577 

TH/CU1393/A/2014 Thailand Bangkok 2014 A - KX212378 KX212568 

TH/CU1327/A/2014 Thailand Bangkok 2014 A - KX212391 KX212581 

TH/CU1421/A/2014 Thailand Bangkok 2014 A - KX212396 KX212586 

TH/CU1695/A/2015 Thailand Bangkok 2015 A - KX212422 KX212612 

TH/CU1278/A/2014 Thailand Bangkok 2014 A - KX212419 KX212609 

TH/CU1428/A/2014 Thailand Bangkok 2014 A - KX212399 KX212589 

TH/CU1389/A/2014 Thailand Bangkok 2014 A - KX212381 KX212571 

TH/CU1288/A/2014 Thailand Bangkok 2014 A - KX212373 KX212563 

TH/CU1330/A/2014 Thailand Bangkok 2014 A - KX212375 KX212565 

TH/CU1365/A/2014 Thailand Bangkok 2014 A - KX212374 KX212564 

TH/CU1398/A/2014 Thailand Bangkok 2014 A - KX212418 KX212608 

TH/CU1324/A/2014 Thailand Bangkok 2014 A - KX212386 KX212576 

TH/CU1373/A/2014 Thailand Khon kaen 2014 A - KX212407 KX212597 

TH/CU1292/A/2014 Thailand Bangkok 2014 A - KX212402 KX212592 

TH/CU1257/A/2014 Thailand Bangkok 2014 A - KX212383 KX212573 

DK/M22061/A/2014 Denmark NS 2014 A - KX212411 KX212601 

DK/F49465/A/2014 Denmark NS 2014 A - KX212412 KX212602 

DK/W38361/A/2014 Denmark NS 2014 A - KX212413 KX212603 

TH/CU1353/A/2014 Thailand Khon kaen 2014 A - KX212420 KX212610 

TH/CU1362/A/2014 Thailand Bangkok 2014 A - KX212395 KX212585 

TH/CU1391/A/2014 Thailand Bangkok 2014 A - KX212406 KX212596 

TH/CU1504/A/2014 Thailand Bangkok 2014 A - KX212421 KX212611 

DK/H36898/A/2014 Denmark NS 2014 A - KX212416 KX212606 

DK/T53016/A/2014 Denmark NS 2014 A - KX212414 KX212604 

TH/CU1608/A/2014 Thailand Bangkok 2014 A - KX212393 KX212583 

TH/CU1624/A/2015 Thailand Bangkok 2015 A - KX212394 KX212584 

TH/CU1548/A/2014 Thailand Bangkok 2014 A - KX212392 KX212582 

TH/CU1590/A/2014 Thailand Bangkok 2014 A - KX212397 KX212587 

TH/CU1599/A/2014 Thailand Bangkok 2014 A - KX212398 KX212588 

TH/CU1665/A/2015 Thailand Bangkok 2015 A - KX212388 KX212578 

TH/CU1302/A/2014 Thailand Bangkok 2014 A KX212501 KX212389 KX212579 

TH/CU1648/A/2015 Thailand Bangkok 2015 A KX212502 KX212415 KX212605 

TH/CU1558/A/2014 Thailand Khon kaen 2014 A - KX212390 KX212580 

TH/CU1296/A/2014 Thailand Bangkok 2014 A KX212506 KX212400 KX212590 

TH/CU1493/A/2014 Thailand Bangkok 2014 A - KX212401 KX212591 

TH/CU1360/A/2014 Thailand Bangkok 2014 A - KX212376 KX212566 

TH/CU1404/A/2014 Thailand Bangkok 2014 A - KX212377 KX212567 

DK/T27464/A/2014 Denmark NS 2014 A - KX212426 KX212616 

ES/41833/A/2013 Spain Teruel 2013 A - KX212425 KX212615 

ES/40068/A/2013 Spain Mallorca 2013 A - KX212427 KX212617 

ES/41830/A/2013 Spain Teruel 2013 A - KX212424 KX212614 

ES/41816/A/2013 Spain Teruel 2013 A - KX212423 KX212613 

ES/41814/A/2013 Spain Teruel 2013 A - KX212429 KX212619 



DE/G4/A/2014 Germany NS 2014 A KX212508 KX212428 KX212618 

TH/CU1415/A/2014 Thailand Bangkok 2014 A KX212507 KX212382 KX212572 

ES/07754/A/2013 Spain Salamanca 2013 A - KX212430 KX212620 

ES/07766/A/2013 Spain Salamanca 2013 A - KX212433 KX212623 

ES/07767/A/2013 Spain Salamanca 2013 A - KX212431 KX212621 

ES/07726/A/2013 Spain Salamanca 2013 A - KX212432 KX212622 

DK/W17257/A/2014 Denmark NS 2014 A - KX212434 KX212624 

DE/G3/A/2014 Germany NS 2014 A KX212509 KX212435 KX212625 

TH/CU1268/A/2014 Thailand Bangkok 2014 A - KX212436 KX212626 

TH/CU1307/A/2014 Thailand Bangkok 2014 A - KX212437 KX212627 

ES/14623/A/2013 Spain Mallorca 2013 A - KX212351 KX212541 

DE/G1/A/2014 Germany NS 2014 A - KX212350 KX212540 

DK/M2489/A/2014 Denmark NS 2014 A - KX212354 KX212544 

TH/CU1249/A/2014 Thailand Bangkok 2014 A - KX212365 KX212555 

DK/M59573/A/2014 Denmark NS 2014 A - KX212352 KX212542 

DK/W22166/A/2014 Denmark NS 2014 A - KX212371 KX212561 

TH/CU1251/A/2014 Thailand Bangkok 2014 A - KX212357 KX212547 

TH/CU1559/A/2014 Thailand Bangkok 2014 A - KX212366 KX212556 

DK/W21152/A/2014 Denmark NS 2014 A - KX212353 KX212543 

TH/CU1368/A/2014 Thailand Bangkok 2014 A KX212494 KX212368 KX212558 

TH/CU1464/A/2014 Thailand Bangkok 2014 A - KX212358 KX212548 

TH/CU1270/A/2014 Thailand Bangkok 2014 A - KX212369 KX212559 

TH/CU1326/A/2014 Thailand Bangkok 2014 A - KX212361 KX212551 

TH/CU1382/A/2014 Thailand Bangkok 2014 A - KX212359 KX212549 

TH/CU1406/A/2014 Thailand Bangkok 2014 A KX212493 KX212364 KX212554 

TH/CU1352/A/2014 Thailand Bangkok 2014 A - KX212360 KX212550 

TH/CU1427/A/2014 Thailand Khon kaen 2014 A - KX212356 KX212546 

TH/CU1519/A/2014 Thailand Bangkok 2014 A KX212492 KX212370 KX212560 

TH/CU1318/A/2014 Thailand Bangkok 2014 A - KX212367 KX212557 

TH/CU1328/A/2014 Thailand Bangkok 2014 A - KX212362 KX212552 

TH/CU1298/A/2014 Thailand Bangkok 2014 A - KX212363 KX212553 

TH/CU1243/A/2014 Thailand Bangkok 2014 A KX212491 KX212355 KX212545 

TH/CU1596/A/2014 Thailand Bangkok 2014 A - KX212372 KX212562 

DK/W15075/A/2014 Denmark NS 2014 A - KX212348 KX212538 

DK/S45898/A/2014 Denmark NS 2014 A - KX212349 KX212539 

TH/CU160/A/2012 Thailand Bangkok 2012 A KX212497 KX212343 KX212533 

TH/CU209/A/2012 Thailand Bangkok 2012 A KX212489 KX212339 KX212529 

TH/CU262/A/2012 Thailand Bangkok 2012 A KX212490 KX212340 KX212530 

SE/116246/A/2014 Sweden Stockholm 2014 A - KX212488 KX212673 

SE/116413/A/2014 Sweden Stockholm 2014 A - KX212483 KX212674 

SE/117236/A/2014 Sweden Stockholm 2014 A - KX212484 KX212675 

SE/117446/A/2014 Sweden Stockholm 2014 A - KX212485 KX212676 

SE/506607/A/2014 Sweden Stockholm 2014 A - KX212486 KX212677 

SE/510615/A/2014 Sweden Stockholm 2014 A - KX212487 KX212678 

CN/P115/A/2013 China Wenzhou 2013 A KP289367 - - 
CN/P169/A/2013 China Wenzhou 2013 A KP289369 - - 
CN/P2/A/2013 China Wenzhou 2013 A KP289370 - - 



CN/P223/A/2013 China Wenzhou 2013 A KP289371 - - 
CN/P225/A/2013 China Wenzhou 2013 A KP289372 - - 
CN/P246/A/2013 China Wenzhou 2013 A KP289373 - - 
CN/P345/A/2013 China Wenzhou 2013 A KP289376 - - 
CN/P358/A/2013 China Wenzhou 2013 A KP289377 - - 
CN/P360/A/2013 China Wenzhou 2013 A KP289378 - - 
CN/P362/A/2013 China Wenzhou 2013 A KP289380 - - 
CN/P366/A/2013 China Wenzhou 2013 A KP289381 - - 
CN/P6/A/2013 China Wenzhou 2013 A KP289384 - - 
CN/P66/A/2013 China Wenzhou 2013 A KP289385 - - 
CN/P702/A/2013 China Wenzhou 2013 A KP289388 - - 
CN/P731/A/2013 China Wenzhou 2013 A KP289390 - - 
CN/SZc173/A/2013 China Shenzhen 2013 A KF682362 - - 
CN/SZc294/A/2013 China Shenzhen 2013 A KF682363 - - 
CN/5084SH/A/2013 China Shanghai 2013 A KJ541154 - - 
CN/PF19SH/A/2013 China Shanghai 2013 A KJ541155 - - 
CN/5047SH/A/2013 China Shanghai 2013 A KJ541156 - - 
CN/4645SH/A/2013 China Shanghai 2013 A KJ541157 - - 
CN/5069SH/A/2013 China Shanghai 2013 A KJ541158 - - 
CN/4592SH/A/2013 China Shanghai 2013 A KJ541159 - - 
CN/PF001SH/A/2013 China Shanghai 2013 A KJ541165 - - 
CN/1827SH/A/2013 China Shanghai 2013 A KJ541166 - - 
CN/1232SH/A/2013 China Shanghai 2013 A KJ541167 - - 
CN/3913SH/A/2013 China Shanghai 2013 A KJ541168 - - 
CN/4368SH/A/2013 China Shanghai 2013 A KJ541169 - - 
CN/12743GZ/A/2013 China Guangzhou 2013 A KR815992 - - 
FI/TS3FinTu81042/B/2008 Finland NS 2008 B - KP129342 KP129362 

JP/Kyoto1/B/1999 Japan Kyoto 1999 B AB779614 - - 
JP/Kyoto4/C/2009 Japan Kyoto 2009 C AB779617 - - 
CN/HN421/D/2011 China Henan 2011 D JQ964234 - - 
TW/295/E/2009 Taiwan NS 2009 E JQ946052 - - 
TW/273/E/2009 Taiwan NS 2009 E JQ946051 - - 
TW/20/E/2009 Taiwan NS 2009 E JQ946050 - - 
TW/00141/E/2007 Taiwan NS 2007 E KR706309 - - 
UK/EdV13/F/2012 UK Edinburgh 2012 F KP144341 - - 
UK/EdV12/F/2013 UK Edinburgh 2013 F KP144340 - - 
DK/S48908/F/2014 Denmark NS 2014 F KX212510 KX212438 KX212628 

DK/T52656/F/2014 Denmark NS 2014 F - KX212439 KX212629 

TH/CU1256/F/2014 Thailand Bangkok 2014 F KX212519 KX212460 KX212650 

DK/S43334/F/2014 Denmark NS 2014 F KX212511 KX212441 KX212631 

DE/G2/F/2014 Germany NS 2014 F KX212512 KX212442 KX212632 

ES/06707/F/2014 Spain Mallorca 2014 F KX212513 KX212440 KX212630 

TH/CU1383/F/2014 Thailand Bangkok 2014 F - KX212463 KX212653 

TH/CU1422/F/2014 Thailand Bangkok 2014 F - KX212464 KX212654 

TH/CU1440/F/2014 Thailand Bangkok 2014 F - KX212467 KX212657 

TH/CU1260/F/2014 Thailand Bangkok 2014 F KX212518 KX212462 KX212652 

TH/CU1385/F/2014 Thailand Bangkok 2014 F - KX212461 KX212651 



TH/CU1407/F/2014 Thailand Bangkok 2014 F - KX212470 KX212660 

TH/CU1435/F/2014 Thailand Bangkok 2014 F - KX212471 KX212661 

TH/CU1265/F/2014 Thailand Bangkok 2014 F - KX212469 KX212659 

TH/CU1310/F/2014 Thailand Bangkok 2014 F - KX212468 KX212658 

TH/CU1526/F/2014 Thailand Bangkok 2014 F KX212517 KX212473 KX212663 

TH/CU1392/F/2014 Thailand Bangkok 2014 F - KX212447 KX212637 

TH/CU1466/F/2014 Thailand Bangkok 2014 F - KX212446 KX212636 

TH/CU1329/F/2014 Thailand Bangkok 2014 F - KX212458 KX212648 

TH/CU1331/F/2014 Thailand Bangkok 2014 F KX212515 KX212448 KX212638 

TH/CU1498/F/2014 Thailand Bangkok 2014 F - KX212452 KX212642 

TH/CU1332/F/2014 Thailand Bangkok 2014 F - KX212451 KX212641 

TH/CU1503/F/2014 Thailand Bangkok 2014 F - KX212453 KX212643 

TH/CU1465/F/2014 Thailand Bangkok 2014 F - KX212445 KX212635 

TH/CU1423/F/2014 Thailand Khon kaen 2014 F KX212516 KX212459 KX212649 

TH/CU1426/F/2014 Thailand Khon kaen 2014 F - KX212450 KX212640 

TH/CU1424/F/2014 Thailand Khon kaen 2014 F - KX212449 KX212639 

TH/CU1350/F/2014 Thailand Bangkok 2014 F - KX212455 KX212645 

TH/CU1376/F/2014 Thailand Bangkok 2014 F - KX212457 KX212647 

TH/CU1372/F/2014 Thailand Bangkok 2014 F - KX212465 KX212655 

TH/CU1375/F/2014 Thailand Bangkok 2014 F - KX212456 KX212646 

TH/CU1374/F/2014 Thailand Bangkok 2014 F - KX212466 KX212656 

TH/CU1556/F/2014 Thailand Khon kaen 2014 F - KX212472 KX212662 

TH/CU796/F/2012 Thailand Bangkok 2012 F KX212514 KX212347 KX212537 

UK/EdV2/G/2011 UK Edinburgh 2011 G KP144351 - - 
UK/EdV3/G/2013 UK Edinburgh 2013 G KP144353 - - 
UK/EdV11/G/2013 UK Edinburgh 2013 G KP144352 - - 
UK/EdV1/G/2011 UK Edinburgh 2011 G KP144349 - - 
DK/M22416/G/2014 Denmark NS 2014 G KX212526 KX212475 KX212665 

ES/00507/G/2014 Spain Mallorca 2014 G - KX212474 KX212664 

DK/T24787/G/2014 Denmark NS 2014 G KX212527 KX212476 KX212666 

UK/EdV12/H/2014  UK Edinburgh 2014 H - KP129352 KP129374 

UK/EdV1/H/2014 UK Edinburgh 2014 H - KP129354 KP129373 

UK/EdV2/H/2014  UK Edinburgh 2014 H - KP129353 KP129372 

UK/EdV16/H/2014 UK Edinburgh 2014 H KP144347 - - 
UK/EdV4/H/2014 UK Edinburgh 2014 H KP144348 - - 
UK/EdV6/H/2014 UK Edinburgh 2014 H KP129370 - - 
DK/S52397/H/2014 Denmark NS 2014 H KX212524 KX212477 KX212667 

DK/T22324/H/2014 Denmark NS 2014 H KX212525 KX212480 KX212670 

DK/H15054/H/2014 Denmark NS 2014 H KX212522 KX212479 KX212669 

DK/T36724/H/2014 Denmark NS 2014 H KX212523 KX212478 KX212668 

ES/06417/H/2014 Spain Vigo 2014 H KX212521 KX212482 KX212672 

ES/04587/H/2013 Spain Madrid 2013 H KX212520 KX212481 KX212671 

CN/P143/J/2013 China Wenzhou 2013 J KP289368 - - 
CN/P278/J/2013 China Wenzhou 2013 J KP289374 - - 
CN/P309/J/2013 China Wenzhou 2013 J KP289375 - - 
CN/P361/J/2013 China Wenzhou 2013 J KP289379 - - 
CN/P406/J/2013 China Wenzhou 2013 J KP289382 - - 



CN/P426/J/2013 China Wenzhou 2013 J KP289383 - - 
CN/P674/J/2013 China Wenzhou 2013 J KP289386 - - 
CN/P695/J/2013 China Wenzhou 2013 J KP289387 - - 
CN/P728/J/2013 China Wenzhou 2013 J KP289389 - - 
CN/P786/J/2013 China Wenzhou 2013 J KP289391 - - 
CN/P794/J/2013 China Wenzhou 2013 J KP289392 - - 
CN/5039SH/J/2013 China Shanghai 2013 J KJ541160 - - 
CN/5056SH/J/2013 China Shanghai 2013 J KJ541161 - - 
CN/PF3SH/J/2013 China Shanghai 2013 J KJ541162 - - 
CN/PF1SH/J/2013 China Shanghai 2013 J KJ612513 - - 
CN/P289/K/2013 China Wenzhou 2013 K KP289365 - - 
CN/P423/K/2013 China Wenzhou 2013 K KP289366 - - 
CN/P874/K/2013 China Wenzhou 2013 K KP289393 - - 
CN/CC13/K/2013 China Changchun 2013 K KM279379 - - 

 

NS: non specified 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2: Primer set used for whole genome amplification by nested RT-PCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Primer Sequence (5'  to  3') Position 

1 

CAV6-F39/OS ACT GGG CGC YAG CAC ACT GAT TC 39 - 61 

CAV6-R1673/OAS AGT TAR TGT RAT TGG YAC YTC TGT 1650 - 1673 

CAV6-F55/IS CTG ATT CTA YGG AAY CTT TGT GCG 55 - 78 

CAV6-R1567/IAS GGA AGY GCR TTR ACA TAT GGC AT 1545 - 1567 

2 

CAV6-F1266/OS TCG GGY TTC TGY ATG CAY GTT CA 1266 - 1288 

CAV6-R2806/OAS GAY AGT TCT AGY TTG CGC CGC TG 2784 - 2806 

CAV6-F1290/IS TGY AAY GCR AGC AAR TTC CAT CA 1290 - 1312 

CAV6-R2727/IAS CCG AGT CCT TYA CCT CCA CAA C 2706 - 2727 

3 

CAV6-F2458/OS CRA ATG CDG TGG AAA GYG CTG T 2458 - 2479 

CAV6-R3832/OAS CCT TTG ATR TAA TCW GAY ACD CC 3810 - 3832 

CAV6-F2485/IS GCR CTY GCT GAY ACC ACA ATA TC 2485 - 2506 

CAV6-R3816/IAS GAC ACC CTG YTC CAT RGC TTC 3795 - 3816 

4 

CAV6-F3498/OS GCT CAR GGA TGT GAY ACY ATT GC 3498 - 3520 

CAV6-R4564/OAS CTA GAG TGR TAY TTR TCR GCT AT 4542 - 4564 

CAV6-F3603/IS GTC TTY GTG GAA GCT AGT GAG TA 3603 - 3625 

CAV6-R4463/IAS ACG GTG TTT GCT CTT GAA CTG CAT 4440 - 4463 

5 

CAV6-F4107/OS AGY GCA TCN TGG CTH AAG AAG TT 4107 - 4129 

CAV6-R5482/OAS TGA TCY GTY TGV ACY TGC CTR AT 5460 - 5482 

CAV6-F4214/IS TRT ACC AGC AGC TAA AGA GAA GGT 4214 - 4237 

CAV6-R5330/IAS GTA GAT RAC ATA CAC CAR TGA RAC 5307 - 5330 

6 

CAV6-F4994/OS ATC CAA RGT BAG RTA YAG TGT GGA 4994 - 5017 

CAV6-R6422/OAS GAG RTC AAR DCC ATA CTT RTC CAT 6399 - 6422 

CAV6-F5061/IS GCY ATT GGN AAC ACA ATC GAA GC 5061 - 5083 

CAV6-R6364/IAS GGG TCY AAR ATG TCY CTC TTC TT 6342 - 6364 



Table S3. Recombination groups (RF-A to -K) identified in different countries based on 
phylogenetic analysis of the 3Dpol region. 

Country RF-A RF-B RF-C RF-D RF-E RF-F RF-G RF-H RF-J RF-K Total 
All 105     37 3 6   151 

Denmark 13     3 2 4   22 
Germany 3     1     4 
Spain 10     1 1 2   14 
Sweden 6          6 
Thailand 73     32     105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


