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Abstract

In service territory design applications, a field service workforce is responsible for providing recurring services

at their customers’ sites. We introduce the associated planning problem, which consists of two subproblems:

In the partitioning subproblem, customers must be grouped into service territories. In the scheduling sub-

problem, customer visits must be scheduled throughout the multi-period planning horizon. The emphasis of

this paper is put on the scheduling subproblem. We propose a mixed integer programming model for this

subproblem and present a location-allocation heuristic. The results of extensive experiments on real-world

instances show that the proposed heuristic produces high-quality solutions.

Keywords: territory design, multi-period planning horizon, mixed integer linear programming,

location-allocation heuristic

2010 MSC: 90B06, 90B80, 90C59

1. Introduction

Many companies employ a field service workforce for providing recurring services at their customers’ sites.

For example, manufacturers and wholesalers of consumer goods typically operate a sales force that regularly

visits their customers to promote sales or to supply product range information (see, e.g., Fleischmann and

Paraschis, 1988; Polacek et al., 2007). Also, some engineering companies employ field service technicians5

to carry out regular technical maintenance at their customers’ sites (see, e.g., Blakeley et al., 2003). The

frequency and duration of the visits depend on customer-specific factors, e.g., the customer’s sales volume

or the tasks to be performed at the customer. To increase customer satisfaction, two aspects of service

consistency play an important role in these applications: personal and temporal consistency. The former

means that always the same field worker is responsible for a particular customer, which is desirable as it10

helps establish and foster long-term personal relationships with customers (see, e.g., Kalcsics et al., 2005;

López-Pérez and Ŕıos-Mercado, 2013; Zoltners and Sinha, 2005). The latter expresses the expectation of
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customers to be visited on a regular basis (see, e.g., Groër et al., 2009, for a similar consistency requirement

arising in the small package shipping industry). Regularity means, on the one hand, that the visits should be

equally distributed over the weeks of the planning horizon according to customer-specific visiting rhythms.15

On the other hand, regularity refers to the weekdays on which visits take place as customers might prefer to

be served always on the same weekdays.

Typically, the following three planning tasks arise in these applications. (1) The customer base must be

partitioned into service territories with one field worker being responsible for each territory. This partition is

usually maintained over a long period of time to promote the development of personal relationships between20

field workers and customers. (2) On a tactical level, the visit schedules have to be created, which means

that the visiting days for each customer must be determined. The planning horizon for this task is typically

between 3 and 12 months. (3) On an operational level, the detailed planning must be performed, which

includes the planning of the daily routes and, when necessary, the rescheduling of visits. It is important

to note that short-term customer requests and unexpected events must be taken into account in this step.25

According to estimates of our project partner, about 20% of the customer visits need to be rescheduled to

another day in the short term. Therefore, both the route planning and the rescheduling are done by the

field worker in the daily business. Ideally, planning tasks (1) to (3) would be tackled by a single, integrated

approach, but the size of realistic problem instances (sometimes with ten thousand or more customers)

prohibits an integrated approach. Moreover, integrating the calculation of the daily routes and the visit30

schedules is only of little use due to the potential necessity to reschedule customer visits in the daily business.

The above problem was brought to our attention by our project partner PTV Group, a commercial

provider of districting and clustering software headquartered in Karlsruhe, Germany. In our joint project, we

tackled the partitioning task (1) and the scheduling task (2); we omitted the routing and rescheduling task

(3) as this task can only be solved reasonably in the short term when all operational details are known.35

One of PTV’s products is the xCluster Server (PTV, 2014), which solves the optimization problem result-

ing from the scheduling task (2). When the planning algorithm for the xCluster Server was initially designed

several years ago, the technological possibilities were limited, in particular with regard to the availability

of high-performance mixed integer programming (MIP) solvers and computational power in general, which

lead PTV to develop a simple local search procedure. The goal of the cooperation with PTV is the devel-40

opment of a new solution approach that takes advantage of recently available technologies. Since PTV has

many different customers, it is important that the new solution approach covers a wide range of real-world

requirements. Additionally, it must be easily adaptable to further planning requirements. The new approach

is intended to replace the existing planning algorithm in the xCluster Server.

The main contributions of this paper are the following:45

• We introduce a new problem, which we call the Multi-Period Service Territory Design Problem (MP-

STDP). Despite its high practical relevance, it has not been studied in the literature before. This is,

to the best of our knowledge, the first paper to elaborate the problem from a scientific point of view.
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• We formally define the scheduling subproblem, i.e., the subproblem corresponding to planning task (2),

as a mixed integer linear programming model.50

• We propose a heuristic solution approach for the scheduling subproblem. The approach is capable of

considering the relevant planning requirements of PTV’s customers. It involves the repeated solution

of an integer programming model, which can easily be extended by additional planning requirements.

• We perform extensive computational experiments on real-world instances and on instances that were

derived from real-world data by varying the values of some parameters. The results show that the new55

approach produces high-quality solutions and outperforms the existing solution method of PTV.

The remainder of this paper is organized as follows. In Section 2 we give a detailed description of the

problem under study. In Section 3 we review related problems and point out the differences to our problem.

In the subsequent section, we introduce a mathematical model for the subproblem that corresponds to the

scheduling task (2). In Section 5 we propose a heuristic approach based on a location-allocation scheme. To60

evaluate our approach, we introduce appropriate evaluation measures in Section 6. In Section 7 we report

the results of extensive computational experiments on real-world data and benchmark our approach against

PTV’s xCluster Server (PTV, 2014). Finally, we provide some concluding remarks in Section 8.

2. Problem Description

In this section, we describe the MPSTDP and introduce the notation for the scheduling subproblem,65

which is the major focus of this paper.

There is a given set of customers (e.g., supermarkets), represented by index set B = {1, ..., |B|}, which

demand recurring on-site services. The services must be carried out by a given set of field workers, which we

call service providers. Corresponding to planning tasks (1) and (2), the MPSTDP consists of the following

two subproblems.70

Partitioning subproblem (MPSTDP-P): This subproblem corresponds to the well-known territory design

or districting problem (see Kalcsics, 2015, for an overview of typical planning criteria). The set of customers

must be partitioned into service territories with exactly one service provider being responsible for each

service territory. As the service providers have to travel within their territories, geographically compact and

connected territories are desired because they lead to short travel times for the service providers. Furthermore,75

for reasons of fairness, all service territories should have approximately the same workload.

Scheduling subproblem (MPSTDP-S): In this subproblem, a valid visit schedule must be determined

for each service territory, i.e., customer visits must be assigned to the weeks and days of the planning

horizon subject to customer-specific visiting requirements. The planning horizon comprises |W | weeks and

m days per week, resulting in m|W | days in total. Weeks and days are indexed by w ∈ W = {1, ..., |W |}80

and d ∈ D = {1, ..., |D|}, respectively. The customer-specific visiting requirements restrict the temporal

distribution of customer visits at two levels.
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At the level of weeks, the visits of each customer must be periodically recurring according to a customer-

specific week rhythm rb ∈ N+, b ∈ B, meaning that each customer b ∈ B must be visited every rb weeks.

We call a week in which a customer is visited by a service provider a visiting week of the customer. As the85

first visit of each customer b ∈ B must be in the first rb weeks of the planning horizon, a customer’s week

rhythm can be translated into rb valid combinations of visiting weeks Pb, which we call week patterns. If,

for example, a customer’s week rhythm is rb = 2 and the planning horizon consists of |W | = 6 weeks, Pb

contains the week patterns {1, 3, 5} and {2, 4, 6}, i.e., the customer must be visited either in weeks one,

three and five or in weeks two, four and six.90

At the level of days, there are restrictions on the number of visits per visiting week and on the weekdays

on which customers may be visited. More precisely, each customer b ∈ B must be visited nb times in each

visiting week. A day on which a customer is visited is said to be a visiting day of the customer. The visiting

days within each visiting week must correspond to one of the customer’s valid weekday patterns Qb. A

weekday pattern is a combination of weekdays on which the customer may be visited. For example, for a95

customer with nb = 2, the set Qb could consist of the weekday patterns {Monday, Thursday} and {Tuesday,

Friday}, meaning that the customer must be visited either on Monday and Thursday or on Tuesday and

Friday. Additionally, if regularity is required with respect to the weekdays on which a customer is visited,

we call this a weekday regularity of the customer.

The number of weeks in the planning horizon, |W |, is typically chosen as the least common multiple of100

the week rhythms rb, b ∈ B since, after this time, the schedule could be repeated identically. Therefore, a

customer b ∈ B must be visited |W |rb nb times during the entire planning horizon. Each visit of a customer

requires an individual service time. By tbj , j ∈ {1, ..., |W |rb nb} the service time associated with the j-th visit

of customer b ∈ B is given.

When customer visits are scheduled, compactness – in the sense of geographically concentrated customer105

visits – plays a crucial role. As in the partitioning subproblem, this is again due to the fact that the service

providers have to travel to their customers. On each day in the planning horizon, a service provider has

to visit those customers within his or her service territory that are scheduled for that day. Hence, in order

to reduce travel time, all customers that need to be visited on the same day should form a geographically

compact area. Note that compactness does, of course, not necessarily lead to the shortest possible routes.110

In fact, there might be less compact solutions that lead to shorter travel times than a highly compact

solution. But compact solutions have a significant advantage when it comes to short-term customer requests

and unexpected events in the daily business as they provide a high degree of flexibility with respect to the

sequence in which customers can be visited. This is illustrated by the example in Figure 1. The figure depicts

the visits that are scheduled for a specific day. The right-hand side shows a fairly compact solution, whereas115

the solution on the left-hand side is less compact. In the example on the left-hand side, the service provider

starts his route from the depot and intends to visit customer A as the first customer of the route, followed by

customers B, C and D. But suppose that in the morning of that day, customer A calls the service provider
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A

B

C

D

Depot

B

C

D
E

Depot

Low compactness High compactness

Originally planned route Modified route due to short-term customer request

Figure 1: Compact solutions provide high flexibility with respect to the sequence in which customers can be visited, which is a

highly beneficial feature when faced with short-term customer requests or other unexpected events in the daily business.

and tells him that the only possible visiting time is 12 p.m., which is in the middle of the service provider’s

working day. In this case, the service provider would have to visit customer B first, then travel all the way120

back to customer A, then visit customers C and D, and finally return to the depot. This would lead to a

significant increase in travel time compared to the originally planned route and possibly even to the violation

of maximum working hours. In contrast, a more compact solution, such as the example on the right-hand side

of the figure, allows the service provider to fulfill short-term customer requests without a substantial increase

in travel time. Suppose, for instance, that the service provider originally planned to visit the customers in125

the sequence E, B, C and D, and that, again, a customer visit has to be rescheduled in the short term. Let

us assume in this example that customer E requests to be visited at noon, i.e., customer E cannot be visited

as the first customer of the route as it was originally planned. In this case, only a small detour compared to

the original plan would be necessary.

Besides the planning criterion that each service provider’s daily customer visits should be geographically130

close to each other, there is an additional compactness requirement related to the customer visits of each

week. More precisely, all customers that must be visited by the same service provider in the same week

should be geographically concentrated. This requirement is motivated by the fact that, in practice, a visit

which is scheduled for a certain day may not be carried out on that day, e.g., because the service provider

does not arrive at the customer on time due to a traffic jam. If the customers that are scheduled for this135

week are geographically close to each other, the service provider can catch up on the missed visit on another

day of the week without having to travel overly long distances.

The achievable compactness of the week clusters depends not only on the geographical distribution of the

customers but, too a large extent, also on their week rhythms. This is illustrated by the examples in Figures

2 and 3. Let us assume for these examples that the planning horizon consists of |W | = 2 weeks and m = 5140
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Mon

Tue

Wed

Thu

Fri

Mon

Tue

Wed

Thu

Fri

Week 1 Week 2

Weekly customer Biweekly customer (with service) Biweekly customer (without service)

Figure 2: Solution to a problem with many weekly customers

days per week and that all customers must be visited once per visiting week, i.e., nb = 1 for all b ∈ B. Figure

2 depicts the solution to a problem with almost only weekly customers that are spread evenly over the entire

service territory. In this case, there exists no feasible schedule that would prevent the service provider from

traveling almost all over the whole service region every week. However, when the customers’ week rhythms

are more favorable, it is possible to schedule the visits in such a way that the service provider needs to travel145

only through a relatively small area of the service territory every week. This situation is depicted in Figure 3.

Mon

Tue

Wed

Thu

Fri

Mon

Tue

Wed
Thu

Fri

Week 1 Week 2

Weekly customer Biweekly customer (with service) Biweekly customer (without service)

Figure 3: Solution to a problem with only few weekly customers

In order to avoid time periods with workload peaks and time periods with very little work, another

important planning criterion is workload balance over time. Each service provider’s workload should be

evenly distributed over the planning horizon, i.e., the workload should be roughly the same on all days and

in all weeks of the planning horizon.150

In summary, the MPSTDP-S consists of finding a visit schedule for each service territory that satisfies
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the following criteria:

• The schedule is feasible with respect to the customers’ visiting requirements.

• The customers to be visited on each day form a geographically compact area, which we call day cluster.

• The customers to be visited in each week form a geographically compact area, which we call week cluster.155

• The service time is distributed evenly across the days of the planning horizon.

• The service time is distributed evenly across the weeks of the planning horizon.

With the aim of establishing and maintaining long-lasting customer relationships, the design of the service

territories remains fairly stable over a long period of time, typically several years. As opposed to this, visit

schedules are valid only for at most 12 months and, hence, have to be redetermined more frequently. Therefore,160

a solution approach specifically for the scheduling subproblem MPSTDP-S is required. When the schedule

expires, this approach can be used to determine a new schedule without modifying the service territories. If,

from time to time, the service territories need to be redesigned, we solve the subproblems MPSTDP-P and

MPSTDP-S sequentially. This means that we solve a classical districting problem in the first stage. For this

purpose, any existing solution method for districting problems can be used. In the second stage, we solve165

the scheduling subproblem by designing the week and day clusters for each service territory independently.

The partitioning subproblem MPSTDP-P has been studied extensively in the districting literature (see,

e.g., Kalcsics, 2015, for a survey of applications and solution methods). However, we believe that this is the

first academic work to deal with the scheduling subproblem MPSTDP-S. Therefore, we concentrate on the

MPSTDP-S in the remainder of this paper.170

3. Related Work

To the best of our knowledge, there are only two papers dealing with multi-period territory design prob-

lems. Lei et al. (2015) consider a problem in which the occurrence of customers changes from period to

period. They assume that the customers of each period are known in advance and that a period comprises

several weeks. In each period all customers must be visited exactly once on a route which starts and ends175

at one of the available depots. The following decisions must be made: For each period, the customers must

be partitioned into districts, and a depot must be assigned to each district. Furthermore, the customers

of each district must be partitioned into subdistricts with each subdistrict representing the customers that

must be visited on a particular working day. As the objective function the authors use a weighted sum of

four measures, namely the number of districts, the compactness of subdistricts, district similarity in subse-180

quent periods and balance with respect to salesmen’s profit. They propose an Adaptive Large Neighborhood

Search and solve modified Solomon and Gehring & Homberger test instances with up to 400 customers and

a maximum of three periods. Lei et al. (2016) describe a similar problem, in which customers are either

deterministic or stochastic. Districts must be determined for each period of the planning horizon before the
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stochastic customers are revealed. All customers (deterministic and stochastic) of the same district have185

to be served on a single vehicle route from a central depot. The objectives are the same as in Lei et al.

(2015), but instead of using a weighted sum as the objective function, the authors treat the problem as a true

multi-objective optimization problem and solve it with a multi-objective evolutionary algorithm. Although

the problems in Lei et al. (2015) and Lei et al. (2016) consider a multi-period planning horizon, they do not

contain a scheduling component comparable to the MPSTDP-S. In Lei et al. (2015), the service days within190

each period must be decided, but, in contrast to the MPSTDP-S, each customer must be served exactly

once per period and, hence, there are no restrictions on the temporal distribution of visits. In particular,

Lei et al. (2015) do not consider week rhythms and weekday patterns, which are essential components of the

MPSTDP-S. In Lei et al. (2016), there is no scheduling aspect at all since the customers that have to be

served in a particular period are given by the concrete demand realization. Hence, a transformation of the195

MPSTDP-S to the problems studied in Lei et al. (2015) or Lei et al. (2016) is not possible.

The task of scheduling regular customer visits throughout a planning horizon arises also in some extensions

of the vehicle routing problem and in multi-period scheduling problems. Since there exist different variants

of regularity considered in these problems, we introduce a short classification. Figure 4 contains examples for

the most important types of regularity. In the figure, we consider one exemplary customer and a planning200

horizon of four weeks and five days per week. The filled circles indicate the visiting days of the customer.

Regularity type (1) means that the visiting weeks are periodically recurring, i.e., the number of weeks between

consecutive visiting weeks is constant. In the example, the customer is visited every second week, beginning

from the first week of the planning horizon. Regularity type (2) is similar to type (1), but refers to days

instead of weeks. A customer is said to have regularity type (2) if the number of days between consecutive205

visits is constant. Regularity type (3) is a special case of type (1). Here, besides the periodicity with respect

to visiting weeks, the weekdays on which the visits take place are the same in each visiting week. The

customer in the example is visited biweekly on the second and fifth weekday. Finally, regularity type (4) is

given if the number of days between consecutive visits is constant and the weekdays of the visits are identical

throughout the planning horizon. Note that in the MPSTDP-S, regularity type (1) or (3) is considered,210

depending on the presence of weekday regularity requirements.

Scheduling and regularity aspects are considered in the Period Vehicle Routing Problem (PVRP) and the

Inventory Routing Problem (IRP). In the classical VRP, customers must be assigned to vehicles and vehicle

routes must be determined. The PVRP extends the classical VRP by a multi-period planning horizon in

which customers must be visited several times. As an additional decision, the PVRP contains the selection of215

a feasible visit schedule for each customer. Regularity types (1) – (4) can be considered through an appropri-

ate choice of valid visit schedules. For reviews on the PVRP, we refer the reader to Francis et al. (2008); Irnich

et al. (2014). Recent papers on specific variants can be found in Archetti et al. (2015); Miranda et al. (2015);

Rahimi-Vahed et al. (2015). We would like to stress one particular paper from the PVRP literature, namely

the paper by Mourgaya and Vanderbeck (2007). The problem studied by Mourgaya and Vanderbeck is quite220
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Week

DayType of regularity

(1) Periodic w.r.t. weeks

(2) Periodic w.r.t. days

(3) Periodic w.r.t. weeks + weekday regularity

(4) Periodic w.r.t. days + weekday regularity

1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4: Examples for different types of regularity. A filled circle indicates that the customer is visited on that day.

similar to our problem as it is a tactical variant of the PVRP, in which customer visits are scheduled and as-

signed to vehicles in such a way that workload is balanced and compact clusters are achieved, whereas routing

cost are not explicitly taken into account. But in contrast to our problem, their tactical model does not contain

weeks as a separate time scale, i.e., they do not take into account the compactness of week clusters. Moreover,

the planning horizon considered in their experiments consists only of up to six days, and it appears question-225

able if their column-generation-based heuristic can be applied to planning horizons of several months.

In the IRP, a supplier is responsible for replenishing the inventory of its costumers. To this end, products

must be delivered to the customers on vehicle routes starting and ending at the supplier. Besides the routing

decision, the decisions in the IRP include the timing and the quantities of the deliveries. Regularity type

(2) can be observed, e.g., in the cyclic IRP studied by Raa and Aghezzaf (2009). A less restrictive approach230

is described by Coelho et al. (2012), who consider (among other consistency features) the possibility of

specifying a minimum and maximum time interval between consecutive visits of the same customer, which

results in regularity type (2) if the minimum and maximum time interval are set to the same value. Extensive

reviews on the IRP can be found in Bertazzi et al. (2008); Coelho et al. (2014). Recent papers on specific

variants are provided by Chitsaz et al. (2016); Dong and Turnquist (2015); Ekici et al. (2015); Li et al. (2016).235

The main difference to our problem is that both the PVRP and the IRP explicitly aim at minimizing

routing costs. In our problem, however, we aim at geographical compactness.

Another class of problems related to the MPSTDP-S are multi-period scheduling problems in which tasks

have to be scheduled according to strict, predefined rhythms. In these problems, the time period between

consecutive executions of a task is constant, corresponding to regularity type (2) with the only difference that240

time is not necessarily discretized into days. Applications of this kind of multi-period scheduling problems

can be found in maintenance scheduling (e.g., Wei and Liu, 1983), processor scheduling (e.g., Korst et al.,

1991), and logistics (e.g., Campbell and Hardin, 2005; Delgado et al., 2005; Kazan et al., 2012). However,

these problems have in common that geographical aspects are not taken into account, i.e., compactness is

not considered a relevant planning criterion. For this reason, solution approaches for this class of problems245

cannot directly be applied to the MPSTDP-S.

In summary, the main differences between the MPSTDP-S and the related problems are the following:

The presented multi-period territory design problems do not contain a scheduling aspect comparable to

the MPSTPD-S. The objective in the PVRP and IRP is to optimize routing cost, whereas in our problem

9



compact week and day clusters are desired. Multi-period scheduling problems lack the consideration of any250

geographical aspects.

4. Mathematical Formulation of the MPSTDP-S

In this section, we state the subproblem MPSTDP-S as a mixed integer linear program. To this end, we

introduce the following additional notation.

Let P =
⋃
b∈B Pb denote the set of all week patterns and Q =

⋃
b∈B Qb the set of all weekday patterns.255

Then, for each week pattern p ∈ P the parameter ψwp is 1 if the week pattern contains week w ∈ W , and 0

otherwise. Analogously, ωdq states whether weekday pattern q ∈ Q contains day d ∈ D. Due to the rigid week

rhythms, it is easy to transform the service times tbj , j ∈ {1, ..., |W |rb nb} into parameters twb , which state the

time for serving customer b ∈ B in week w ∈W , and parameters tdbq, which denote the time required for the

service of customer b ∈ B on day d ∈ D if weekday pattern q ∈ Qb is selected. The average weekly and daily260

service times are denoted by µweek = T
|W | and µday = T

|D| , respectively, with T =
∑

b∈B,j∈{1,..., |W |
rb

nb}
tbj being

the total service time over all customers. Parameters τweek and τday define the maximal allowable percentage

that the actual service times may deviate from the average weekly and daily service times, respectively. The

week of day d ∈ D is given by φ(d) ∈W . The distance from customer i to customer b is given by cib, i, b ∈ B.

We introduce the following decision variables.

gbp =

1 if week pattern p ∈ Pb is assigned to customer b ∈ B

0 otherwise

hwbq =

1 if weekday pattern q ∈ Qb is assigned to customer b ∈ B in week w ∈W

0 otherwise

These variables are sufficient to describe the temporal distribution of the visits, but they do not suffice265

to take into account the compactness criteria. As the compactness measure in our approach, we use the sum

of the distances between the customers that are served on a particular day (week) and a customer that is

selected as the cluster center for this day (week). Such a center-based compactness measure is quite common

in literature (see, e.g., Fleischmann and Paraschis, 1988; Hess et al., 1965; Hojati, 1996; Salazar-Aguilar

et al., 2011). There are also other ways to measure compactness, e.g., based on pairwise distances between270

customers. However, these measures are computationally intractable when incorporated into a MIP model

and can, therefore, only be used for an a posteriori evaluation of solutions.

To integrate the compactness measure into the model, we introduce the following auxiliary variables.

uwib =

1 if customer b ∈ B is assigned to week center i ∈ B in week w ∈W

0 otherwise
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vdib =

1 if customer b ∈ B is assigned to day center i ∈ B on day d ∈ D

0 otherwise

xwb =

1 if customer b ∈ is the center in week w ∈W

0 otherwise

ydb =

1 if customer b ∈ B is the center on day d ∈ D

0 otherwise

For a better overview, the notation used in the basic model of the MPSTDP-S is summarized in Table 1.

4.1. Basic Model

Using the introduced notation, the MPSTDP-S can be formulated as the following MIP, which we denote275

by SCHEDULEMIP .

λ
∑
b∈B

∑
i∈B

∑
w∈W

nbcibu
w
ib + (1− λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib → min (1)

s.t. ∑
p∈Pb

gbp = 1 b ∈ B (2)

∑
i∈B

uwib =
∑
p∈Pb

ψwp gbp b ∈ B,w ∈W (3)

uwib ≤ xwi b, i ∈ B,w ∈W (4)∑
b∈B

xwb = 1 w ∈W (5)

∑
b∈B,p∈Pb

twb ψ
w
p gbp ≥ (1− τweek)µweek w ∈W (6)

∑
b∈B,p∈Pb

twb ψ
w
p gbp ≤ (1 + τweek)µweek w ∈W (7)

∑
q∈Qb

hwbq =
∑
p∈Pb

ψwp gbp b ∈ B,w ∈W (8)

∑
i∈B

vdib =
∑
q∈Qb

ωdqh
φ(d)
bq b ∈ B, d ∈ D (9)

vdib ≤ ydi b, i ∈ B, d ∈ D (10)∑
b∈B

ydb = 1 d ∈ D (11)

∑
b∈B,q∈Qb

tdbqω
d
qh

φ(d)
bq ≥ (1− τday)µday d ∈ D (12)

∑
b∈B,q∈Qb

tdbqω
d
qh

φ(d)
bq ≤ (1 + τday)µday d ∈ D (13)
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gbp ∈ {0, 1} b ∈ B, p ∈ Pb (14)

hwbq ∈ {0, 1} b ∈ B, q ∈ Qb, w ∈W (15)

uwib ≥ 0 b, i ∈ B,w ∈W (16)

vdib ≥ 0 b, i ∈ B, d ∈ D (17)

xwb ∈ {0, 1} b ∈ B,w ∈W (18)

ydb ∈ {0, 1} b ∈ B, d ∈ D (19)

The Objective Function (1) aims at optimizing compactness. The first term represents the compactness

of the week clusters, whereas the second term expresses the compactness of the day clusters. Parameter

λ ∈ [0, 1] is used to weight between weekly and daily compactness. Constraints (2) guarantee that a valid

week pattern is assigned to each customer. Constraints (3) and (4) ensure that a customer which is served280

in a particular week is assigned to a week center of the same week. Constraints (5) guarantee that exactly

one week center per week is chosen. Balanced service times across the weeks are enforced by Constraints (6)

and (7) by limiting the feasible deviation from the average weekly service time. Constraints (8) link the week

pattern choice and weekday pattern choice for each customer. If the selected week pattern for a customer

implies service in a particular week, a valid weekday pattern must be selected for this week. Otherwise, no285

weekday pattern may be selected. Constraints (9) – (13) are analogous to Constraints (3) – (7), but refer to

decisions at day level instead of week level. Constraints (14) – (19) are the domain constraints. Note that

Constraints (16) and (17) define continuous variables, but due to Constraints (3), (4), (9) and (10) these

variables are implicitly binary.

Note that, due to the fact that the week patterns imply periodicity with respect to the visiting weeks of290

each customer, the basic model considers regularity type (1) for all customers.

4.2. Weekday Regularity

Recall that we defined weekday regularity as regularity with respect to the weekdays on which a partic-

ular customer is visited. We distinguish two variants, namely strict weekday regularity and partial weekday

regularity. In the following, we describe the two variants and explain how model SCHEDULEMIP must be295

adapted in each case.

4.2.1. Strict Weekday Regularity

If strict weekday regularity is required for a particular customer, the customer must be visited according

to the same weekday pattern in every visiting week. In other words, the weekdays on which the customer

is visited must always be the same throughout the entire planning horizon. Hence, a customer with strict300

weekday regularity has regularity type (3).

Let Bstrict ⊆ B denote the set of customers that demand strict weekday regularity. Then, the following

modifications of the model must be made. The first rb weeks of the planning horizon contain exactly one

12



Table 1: Summary of the notation for the basic model of the MPSTDP-S

Index sets

B Customers

W Weeks in the planning horizon

D Days in the planning horizon

P All week patterns

Pb Valid week patterns for customer b ∈ B

Q All weekday patterns

Qb Valid weekday patterns for customer b ∈ B

Parameters

cib ∈ R+ Distance from customer i ∈ B to customer b ∈ B

nb ∈ N+ Number of visits of customer b ∈ B per visiting week

twb ∈ R+ Time for serving customer b ∈ B in week w ∈W

tdbq ∈ R+ Time for serving customer b ∈ B on day d ∈ D if weekday pattern q ∈ Qb is selected

φ(d) ∈W Week of day d ∈ D

ψwp ∈ {0, 1} Indicates whether week pattern p ∈ P contains week w ∈W (1) or not (0)

ωdq ∈ {0, 1} Indicates whether weekday pattern q ∈ Q contains day d ∈ D (1) or not (0)

µweek ∈ R+ Average weekly service time

µday ∈ R+ Average daily service time

τweek ∈ R+ Maximum allowable deviation of the actual from the average weekly service time

τday ∈ R+ Maximum allowable deviation of the actual from the average daily service time

λ ∈ [0, 1] Weight for weekly compactness

Variables

gbp ∈ {0, 1} Takes a value of 1 if and only if week pattern p ∈ Pb is selected for customer b ∈ B

hwbq ∈ {0, 1} Takes a value of 1 if and only if weekday pattern q ∈ Qb is selected for customer b ∈ B in week w ∈W

uwib ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is assigned to week center i ∈ B in week w ∈W

vdib ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is assigned to day center i ∈ B on day d ∈ D

xwb ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is selected as the center for week w ∈W

ydb ∈ {0, 1} Takes a value of 1 if and only if customer b ∈ B is selected as the center for day d ∈ D

week in which customer b ∈ Bstrict is visited. Since, in the presence of strict weekday regularity, the same

weekday pattern must be selected in every visiting week, the weekday pattern which is selected for the first

rb weeks determines the weekday patterns for all remaining weeks of the planning horizon. Hence, for all

customers that require strict weekday regularity, variables hwbq need to be introduced for the first rb weeks

only. For all b ∈ Bstrict, Constraints (15) are therefore modified as follows.

hwbq ∈ {0, 1} b ∈ Bstrict, q ∈ Qb, w ∈W,w ≤ rb (15a)

Moreover, for all b ∈ Bstrict, Constraints (8), which link the week pattern and weekday pattern decisions,
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also need to be introduced for the first rb weeks only.∑
q∈Qb

hwbq =
∑
p∈Pb

ψwp gbp b ∈ Bstrict, w ∈W,w ≤ rb (8a)

In Constraints (9), (12) and (13) all variables hwbq with b ∈ Bstrict, w > rb must be replaced by the

corresponding variables of the first rb weeks. For this purpose, we define function φ̄(b, d) for all b ∈ B, d ∈ D.

φ̄(b, d) =

φ(d) if b /∈ Bstrict

((φ(d)− 1) mod rb) + 1 if b ∈ Bstrict

For all customers without strict weekday regularity, i.e., b /∈ Bstrict, φ̄(b, d) returns the week that contains the

given day d ∈ D. For all customers which require strict weekday regularity, i.e., b ∈ Bstrict, φ̄(b, d) returns305

the week within the first rb weeks of the planning horizon that determines the weekday pattern for customer

b in the week which contains day d ∈ D.

All occurrences of φ(d) in the original model are replaced by φ̄(b, d) which yields the modified Constraints

(9a), (12a) and (13a). ∑
i∈B

vdib =
∑
q∈Qb

ωdqh
φ̄(b,d)
bq b ∈ B, d ∈ D (9a)

∑
b∈B,
q∈Qb

tdbqω
d
qh

φ̄(b,d)
bq ≥ (1− τday)µday d ∈ D (12a)

∑
b∈B,
q∈Qb

tdbqω
d
qh

φ̄(b,d)
bq ≤ (1 + τday)µday d ∈ D (13a)

4.2.2. Partial Weekday Regularity310

Similarly to strict weekday regularity, partial weekday regularity also describes the requirement that a

customer must be visited according to a regular weekday pattern. However, partial weekday regularity allows

a predefined number of deviations from the regular weekday pattern and is, therefore, less restrictive than

strict weekday regularity.

Let Bpartial ⊆ B denote the set of customers which require partial weekday regularity and fb ∈ N+,

b ∈ Bpartial, the number of allowed deviations from the regular pattern for customer b. Then, for each

customer b ∈ Bpartial, additional variables and constraints need to be added to model SCHEDULEMIP .∑
q∈Qb

h′bq = 1 b ∈ Bpartial (20)

∑
w∈W

hwbq ≥ h′bq
(
|W |
rb
− fb

)
b ∈ Bpartial, q ∈ Qb (21)

h′bq ∈ {0, 1} b ∈ Bpartial, q ∈ Qb (22)
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Variables h′bq defined in Constraints (22) describe whether weekday pattern q ∈ Qb is selected as the

regular weekday pattern for customer b ∈ Bpartial.

h′bq =


1 if weekday pattern q ∈ Qb is selected as the regular weekday pattern for customer

b ∈ Bpartial
0 otherwise

Constraints (20) guarantee that for each customer b ∈ Bpartial exactly one regular weekday pattern is315

selected. |W |
rb

is the number of weeks in which customer b ∈ Bpartial is visited throughout the planning

horizon. Hence, Constraints (21) make sure that the selected weekday patterns deviate in at most fb weeks

from the selected regular weekday pattern.

4.3. Remarks on the Model

Using model SCHEDULEMIP , we tried to compute optimal solutions for small test instances with 30320

and 50 customers, four weeks and five days per week. Only three out of ten 30-customer instances could

be solved to optimality within a time limit of one hour. The average optimality gap of the remaining seven

30-customer instances was 3.6%. Out of the ten 50-customer instances, none could be solved to optimality,

even with a time limit of ten hours (the average optimality gap was 4.5%). Hence, it seems impossible to

solve this model to optimality for realistic instance sizes, which typically comprise more than 100 customers325

and several months. This is mainly due to two reasons, namely the high symmetry of the model and the

great number of variables. In the following, we describe our attempts to address these two issues.

Model SCHEDULEMIP contains variables to describe the selection of week patterns, gbp, and variables

to describe the selection of weekday patterns within weeks, hwbq. The weekday pattern variables contain

more information than the week pattern variables. In fact, the values of the week pattern variables can be330

derived from the values of the weekday pattern variables. It is easily possible to formulate the MPSTDP-S

without week pattern variables gbp and, hence, reduce the number of variables in the model. But experiments

showed that the performance of the model is better if it contains both weekday and week pattern variables.

Therefore, we decided to use both groups of variables.

There is a lot of symmetry in model SCHEDULEMIP , i.e., there exist many different feasible solutions335

that have the same objective function value. For example, consider the case where the week rhythm, rb, is

from the set {1, 2, 4} and the number of visits per visiting week, nb, is equal to one for all customers b ∈ B.

Suppose that there are no weekday regularity requirements and no restrictions in terms of valid weekdays,

i.e., the set of valid weekday patterns, Qb, b ∈ B, contains a valid pattern for each weekday. Further, let

the planning horizon consist of four weeks and five days per week. Let a given feasible solution consist of340

the four week clusters C1, C2, C3 and C4, which represent the customers that are scheduled for week one,

two, three and four, respectively. Symmetric solutions can be determined by assigning the week clusters to

different weeks. However, this rearrangement is subject to restrictions due to the customers’ week rhythms.

Customers with a week rhythm of one or four do not impose any restrictions on the rearrangement. But due
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Table 2: Example: Rearrangements of week clusters yield symmetric solutions.

Visit in week

Symmetric solution no. 1 2 3 4

1 C1 C2 C3 C4

2 C3 C2 C1 C4

3 C1 C4 C3 C2

4 C3 C4 C1 C2

5 C2 C1 C4 C3

6 C4 C1 C2 C3

7 C2 C3 C4 C1

8 C4 C3 C2 C1

to the biweekly customers, week clusters C1 and C3 as well as week clusters C2 and C4 must not be assigned345

to subsequent weeks. Thus, eight symmetric solutions can be obtained by rearrangements of week clusters

(assuming feasibility with respect to the balance constraints), see Table 2. Additionally, the model contains

a lot of symmetry at the level of day clusters. Since there are no restrictions with respect to the weekdays

on which customers are served, there are 5! different ways of assigning day clusters to weekdays within each

week. In a four-week planning horizon, this results in (5!)4 symmetric solutions due to rearrangements of day350

clusters. When the symmetry of week and day clusters is combined, 8 · (5!)4− 1 = 1, 658, 879, 999 symmetric

solutions can be determined to each feasible solution.

In order to deal with the high symmetry of the model, we tested instance-specific symmetry breaking

constraints. The idea was to order the service times of the weeks and of the days within each week in

such a way that many symmetric solutions become infeasible. However, we experienced a deterioration in355

the running times, presumably because the symmetry breaking constraints make it more difficult for the

heuristics of the MIP solver to find new feasible solutions.

5. Location-Allocation Heuristic

Due to the high complexity of the problem, we propose a heuristic solution approach. Our approach –

as many approaches in territory design – is based on the old idea of Hess et al. (1965) to decompose the360

problem into a location subproblem and an allocation subproblem (see Kalcsics et al., 2005, for an overview

of papers using this idea). Therefore, we briefly describe the approach of Hess et al. in the following.

Hess et al. (1965) deal with a (single-period) political districting problem. In this problem, basic areas

must be partitioned into electoral districts in such a way that the districts are compact, balanced with

respect to population, and contiguous. In the location subproblem, they determine a subset of the basic365

areas which serve as district centers. For the first iteration of the algorithm, they use initial trial centers;
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Figure 5: Location-allocation heuristic of Hess et al. (1965) adapted to the MPSTDP-S

for all subsequent iterations, they calculate the centers of gravity for each temporary district and use them

as the new district centers. Then, in the allocation subproblem, they assign each basic area to exactly one

district center. To this end, they solve a transportation problem and uniquely resolve all split assignments

(a customer has a split assignment if he is assigned to more than one center). Location and allocation are370

repeated in an iterative manner until the solution process converges.

We adopt this decomposition approach for the MPSTDP-S. The general procedure of our adapted location-

allocation heuristic is outlined in Figure 5. The algorithm starts with selecting an initial set of week and day

centers (Step 1). By fixing the center decisions, we obtain an integer linear program (ILP) which is solved by

a general-purpose MIP solver (Step 2). Then, the week and day centers are updated: For each week cluster375

and for each day cluster, the customer b ∈ B which, when picked as the cluster center, leads to the smallest

contribution to the Objective Function (1) is used as the new center (Step 3). Steps 2 and 3 are performed

iteratively. The algorithm terminates if the current iteration has not produced an improved solution or if a

user-defined maximum number of iterations, itermax, has been performed.

To the best of our knowledge, our approach is the first that extends the work of Hess et al. (1965) to a380

multi-period setting. The major novelties of our location-allocation heuristic are the initialization procedure

and the resulting ILP. In the following, we go into the details of these two components.

5.1. Selection of Initial Centers

The selection of good initial centers for the MPSTDP-S differs greatly from the single-period districting

problem. In the single-period case, one wants to achieve compact, non-overlapping districts. Therefore, a385

reasonable strategy is to distribute the initial centers relatively evenly across the region under study, probably

with a higher concentration in areas with high demand, i.e., in areas with a large number of customers or with

a high level of activity. However, the strategy for the single-period districting problem is not applicable to the

MPSTDP-S where customers are visited several times throughout the planning horizon. In the multi-period
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case, non-overlapping week or day clusters can, in general, not be achieved.390

In the following, we develop a suitable initialization procedure for the MPSTDP-S based on the following

observations.

1. At the level of individual customers, there is a weekly regularity due to week rhythms rb, b ∈ B. These

regularities can result in similarities at the level of week clusters, i.e., week clusters in different weeks

may have a large number of customers in common. Such similarities can establish, at the earliest, after395

rmin weeks, with rmin = minb∈Brb denoting the smallest week rhythm of all customers. To account

for this, only rmin different initial week centers should be selected. If the number of weeks within

the planning horizon, |W |, is greater than rmin, these week centers as well as their corresponding day

centers should recur every rmin weeks.

2. The rmin different week centers should be evenly distributed over the entire region under study to400

facilitate the formation of compact week clusters, i.e., week clusters which span a relatively small

geographical area.

3. The day centers of each week should obviously be close to their corresponding week center.

4. The day centers should, however, not (or at least not all) coincide with the corresponding week center,

but rather be evenly distributed in the vicinity of the week center to promote the formation of compact405

day clusters.

5. The smaller the week rhythm rb of a customer b ∈ B, the more likely it should be that the customer is

selected as a week center or a day center. This favors the selection of customers b ∈ B with rb = rmin

and, therefore, increases the probability that the visits of these customers can be scheduled in accordance

with their occurrence as centers.410

We adapt the well-known initialization procedure of k-means++ (Arthur and Vassilvitskii, 2007), a pop-

ular seeding technique for cluster analysis, to take these observations into account. Let c(b, J), b ∈ B, J ⊆ B

denote the minimum distance between customer b and any customer in set J . Then, given a set of candidate

centers I ⊆ B and the set of already selected centers J ⊆ B, the probabilistic function in Algorithm 1 is

used to determine the next initial week or day center. Algorithm 1 is equivalent to the procedure used in415

k-means++ with the only difference that, in our adapted version, also the week rhythms are taken into ac-

count. Hence, in accordance with observations 2, 4 and 5, the probability that a candidate center is selected

depends on its distance to the closest center already chosen and on its week rhythm. This means, the farther

away from an already selected center and the smaller the week rhythm, the more likely it is that a customer

is selected as the next initial week or day center.420

The function in Algorithm 1 is used in Algorithms 2 and 3 to select the initial week and day centers,

respectively. As in k-means++ (Arthur and Vassilvitskii, 2007), this is done in an iterative fashion, but we

adapt the procedure of k-means++ in such a way that observations 1 and 3 are considered.
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Algorithm 1 Function to pick the next initial week or day center based on k-means++ (Arthur and Vassil-

vitskii, 2007)

Input: Set of candidate centers I ⊆ B, set of already chosen centers J ⊆ B

Output: The next center b ∈ I

1: function Next Center(I, J)

2: if J = ∅ then

3: return b ∈ I with probability 1
rb/

∑
b′∈I

1
r
b′

4: else

5: return b ∈ I with probability
c2(b,J)

rb /
∑

b′∈I
c2(b′,J)

r
b′

6: end if

7: end function

In the first while-loop of Algorithm 2, rmin different customers are selected as the week centers, γw ∈

B, w ∈ W for the first rmin weeks of the planning horizon. The set of candidate centers consists of all425

customers, i.e., I = B. According to observation 1, the second while-loop makes sure that these centers

repeat periodically every rmin weeks.

To select the initial day centers, γd ∈ B, d ∈ D, we proceed as illustrated in Algorithm 3. We subdivide the

entire region into temporary week clusters by assigning each customer – independently of his week rhythm – to

the closest week center, i.e., the temporary week cluster C̃w is defined as C̃w = {b ∈ B : cγwb < cγw′b, w 6= w′}430

for each week w ∈ W with w ≤ rmin. We use again the function in Algorithm 1 to determine suitable day

centers, but we restrict the day center candidates to the customers within each temporary week cluster, i.e.,

I = C̃w. Through this, we make sure that the day centers of each week are close to the corresponding week

center, as is required by observation 3. Analogously to the initialization of the week centers and according

to observation 1, the day centers recur every rmin weeks.435

An example of initial week and day centers is visualized in Figure 6. In this example, we assume that the

planning horizon consists of |W | = 8 weeks and that the minimum week rhythm rmin = 4. Hence, the initial

centers of week one correspond to the initial centers of week five, the initial centers of week two correspond

to the initial centers of week six, and so on. The dashed lines indicate the borders of the temporary week

clusters. The dark triangles represent the locations of the week centers and the light triangles the locations440

of the day centers within the respective weeks.

5.2. Integer Linear Program with Fixed Centers

When week and day center decisions are fixed, variables uwib, v
d
ib, x

w
b and ydb (defined in Constraints (16) –

(19)) can be removed from model SCHEDULEMIP . The only remaining variables are the pattern variables

gbp and hwbq (Constraints (14) and (15)).445

Note that the compactness criterion in the objective can now be expressed as a function of the pattern

variables since the distances between customers and centers can be attached directly to the pattern variables.
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Algorithm 2 Initialization of week centers

Input: Set of customers B

Output: Initial week centers γw, w ∈W

1: procedure Init Week Centers

2: w ← 1

3: J ← ∅

4: while w ≤ rmin do

5: γw ← Next Center(B, J)

6: J ← J ∪ {γw}

7: w ← w + 1

8: end while

9: while w ≤ |W | do

10: γw ← γ((w−1) mod rmin)+1

11: w ← w + 1

12: end while

13: end procedure

Algorithm 3 Initialization of day centers

Input: Temporary week clusters C̃w, w ∈W

Output: Initial day centers γd, d ∈ D

1: procedure Init Day Centers

2: w ← 1

3: while w ≤ rmin do

4: J ← ∅

5: for all days d in week w do

6: γd ← Next Center(C̃w, J)

7: J ← J ∪ {γd}

8: end for

9: w ← w + 1

10: end while

11: while w ≤ |W | do

12: for all days d in week w do

13: γd ← γ((d−1) mod (mrmin))+1

14: end for

15: w ← w + 1

16: end while

17: end procedure
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Figure 6: Example of initial week and day centers with rmin = 4 and |W | = 8

Denote again by γw ∈ B the customer that represents the center of week w ∈W , and by γd ∈ B the customer

that represents the center of day d ∈ D. Further, define c̄bp =
∑
w∈W

ψwp nbcγwb and c̄wbq =
∑

d∈D(w)

ωdq cγdb with

D(w) representing the days in week w ∈W . Then, model SCHEDULEMIP reduces to the following integer450

linear program, which we denote by ALLOCMIP .

λ
∑
b∈B

∑
p∈Pb

c̄bpgbp + (1− λ)
∑
b∈B

∑
q∈Qb

∑
w∈W

c̄wbqh
w
bq → min (23)

s.t. (2), (6), (7), (8), (12), (13), (14) and (15).

If weekday regularity is required, this model is modified as described in Subsection 4.2.

6. Evaluation Measures455

Recall that in the model SCHEDULEMIP , we use a center-based compactness measure in the objective

function because other compactness measures, e.g., measures based on pairwise distances, are computationally

intractable. For the a posteriori evaluation of solutions, we are, however, not restricted to measures that are

suitable for a MIP model. Hence, we use this section to do some groundwork for our extensive experiments

in the next section by proposing appropriate measures to evaluate and compare solutions to the MPSTDP-S.460

We introduce the following notation to represent solutions to the MPSTDP-S. Let Cday denote the set

of day clusters and Cd ∈ Cday denote the day cluster of day d ∈ D, i.e., Cd = {b ∈ B : b is served on day

d}. Analogously, denote by Cweek the set of week clusters and by Cw ∈ Cweek the week cluster of week

w ∈ W , i.e., Cw = {b ∈ B : b is served in week w}. A solution to the MPSTDP-S is represented by the set

of day and week clusters C = {Cday, Cweek}. Note that the day clusters would be sufficient to fully describe465

a solution since the week clusters can be derived from the day clusters. Nevertheless, we use this redundant

representation because this allows us to keep the formulation of the evaluation measures simple.

6.1. Compactness Measures

In the context of the MPSTDP-S, compactness refers to the geographical distribution of customers within

the week and day clusters. Clusters with geographically concentrated customers are considered more compact470
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than clusters that span a large geographical area. There are many ways to quantify the concept of compact-

ness. We decided to use measures based on pairwise distances since this seems to be the most intuitive

approach for our problem. More precisely, we measure the average distance between any two customers that

belong to the same week or day cluster. The lower this distance, the higher is the geographical concentration

of the customers in the cluster.475

To evaluate the geographical compactness of the week clusters of solution C, we define the measure

WComp(C).

WComp(C) =
∑

Cw∈Cweek

∑
b∈Cw

∑
b′∈Cw, b 6=b′

cbb′

|Cw|(|Cw| − 1)
(24)

Analogously, we define DComp(C) to measure the geographical compactness of the day clusters of solution C.

DComp(C) =
∑

Cd∈Cday

∑
b∈Cd

∑
b′∈Cd, b 6=b′

cbb′

|Cd|(|Cd| − 1)
(25)

6.2. Travel Time Measures

The main motivation behind the compactness objective is the fact that the service providers have to480

travel to their customers and that geographically concentrated clusters are assumed to reduce the overall

travel time. To account for this aspect, we propose additional measures based on route lengths. Please note

that we assume that all daily routes start and end at the service provider’s depot (e.g., the office or home),

although, in practice, there can be overnight stays, meaning that the service provider does not return to the

depot after all customers of the day have been served.485

To evaluate a solution in terms of travel time, we solve a symmetric traveling salesman problem (TSP)

for each day of the planning horizon and add up the daily travel times. The TSP for each day is defined on

a complete graph. The nodes for day d ∈ D correspond to the customers that are scheduled for that day,

Cd ∈ Cday, plus the service provider’s depot, E. Each pair of nodes is connected via edges and the edge cost

corresponds to the travel time between the nodes. Let θ(N) be the travel time of an optimal solution (i.e.,490

shortest travel time, optimality gap of max. 1%) to the TSP with nodes N . Then, the total travel time,

TT (C,E), of a solution C with depot E is calculated as the sum of travel times of the daily routes.

TT (C,E) =
∑

Cd∈Cday

θ(Cd ∪ {E}) (26)

The time needed to travel from the depot to the first customer of the daily route and from the last

customer of the route back to the depot can only be reduced significantly if customers nearby the depot are

assigned to the day cluster, even when other customers of the day cluster are far from the depot. In this495

case, the travel time from/to the depot is artificially decreased at the cost of a reduced cluster compactness.

Apart from this undesirable case, daily compactness mainly effects the travel time within the day cluster,

i.e., the travel time between customers. The travel time from/to the depot is more or less constant. Thus, it

is interesting to have a measure which only considers the proportion of the total travel time that is related
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to trips between customers. For this purpose, we introduce the measure TTIC(C,E), which describes the500

total intra-cluster (IC) travel time of a solution C with depot E. Let η(N,E) denote the travel time of an

optimal solution to the TSP with nodes N minus the travel time associated with those edges of the solution

that link the customers to the depot E. Then, measure TTIC(C,E) is defined as follows.

TTIC(C,E) =
∑

Cd∈Cday

η(Cd ∪ {E}, E) (27)

6.3. Balance Measures

Balance describes the requirement that the time needed to serve the customers should be evenly distributed505

throughout the planning horizon. This means that each day and each week should have roughly the same

amount of service time. Perfect balance is achieved if the service time in each week is equal to the average

weekly service time µweek, and the service time on each day is equal to the average daily service time µday.

As it is common in districting problems, we measure the maximum relative deviation from the average. We

calculate the weekly balance, WBal(C), and the daily balance, DBal(C), of a solution C as follows:510

WBal(C) = max
Cw∈Cweek

|χ(Cw)− µweek|
µweek

, (28)

DBal(C) = max
Cd∈Cday

|ψ(Cd)− µday|
µday

, (29)

where χ(Cw) is the service time that arises in week cluster Cw ∈ Cweek, and ψ(Cd) is the service time that

arises in day cluster Cd ∈ Cday. The smaller the values of these measures, the more balanced we consider

the solution.

7. Computational Experiments515

We now present the results of extensive computational experiments. First, we report the results obtained

from solving model SCHEDULEMIP on small test instances using the standard MIP solver Gurobi and

derive some insights on the solution quality of our location-allocation heuristic. The main focus of this

section is, however, on the evaluation of our location-allocation heuristic on test instances of realistic size.

For this purpose, we develop an experimental design which covers a wide range of parameter values and520

problem characteristics. Since, for these realistic instance sizes, model SCHEDULEMIP cannot be solved

by a standard MIP solver in a reasonable time, we benchmark our approach against the PTV xCluster

Server (PTV, 2014), a commercial software product for scheduling customer visits. Additionally, we perform

experiments to examine the impact of different types of weekday regularity on the travel time of the location-

allocation solutions as well as on the running time behavior of the location-allocation heuristic, and we present525

a small extract of the solutions on a map.
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7.1. Optimality Gap on Small Instances

As already mentioned in Subsection 4.3, we tried to compute optimal solutions to ten 50-customer test

instances. The planning horizon for each instance consisted of four weeks and five days per week. We used the

MIP solver Gurobi, warm started with the location-allocation solution, to solve model SCHEDULEMIP .530

Gurobi could not find a (proven) optimal solution to any of the ten instances within a time limit of ten

hours.1 Hence, we do not know exactly how far the solutions of the location-allocation heuristic are from

the optimal solutions. We can, however, compare the solutions of the location-allocation heuristic with the

best incumbent and the best lower bound found by Gurobi for each test instance to obtain a range for the

gap between the location-allocation solutions and the optimal solutions. We found out that the location-535

allocation solutions are, on average, 3.0% worse than the best incumbent found for each instance by Gurobi.

On the other hand, the objective values of the location-allocation solutions are, on average, 8.0% higher

than the best lower bound found by Gurobi. This means that the location-allocation approach produces

high-quality solutions with an average optimality gap between 3.0% and 8.0%. The average runtime of the

location-allocation approach was 4.6 seconds.540

To provide a comparison with known optimal solutions, we briefly report in the following the results we

obtain on the three 30-customer instances that could be solved optimally within one hour.2 The optimality

gaps for the location-allocation heuristic on these instances are 4.2%, 6.0%, and 7.3%. This means that high-

quality solutions with an average optimality gap of 5.9% are found. The average running time per instance

was 0.3 seconds.545

7.2. Experimental Design

For the evaluation of the location-allocation heuristic we use 20 real-world instances provided by PTV.

The data describe the planning task arising at a manufacturer of fast moving consumer goods whose sales

force has to visit retailers, such as supermarkets and gas stations, on a regular basis. Each instance contains

the service provider’s depot and, on average, |B| = 115 customers. The customers’ week rhythms, rb, b ∈ B,550

are from the set {1, 2, 4, 8, 16}, which implies a planning horizon of |W | = 16 weeks. Each week consists of

m = 5 days. All customers must be visited exactly once per visiting week, i.e., nb = 1 for all customers b ∈ B.

The weekdays on which visits may take place are not restricted, i.e., each weekday represents a valid weekday

pattern p ∈ Pb for all customers b ∈ B. The customers do not have weekday regularity requirements. Their

service times (in minutes), tbj , b ∈ B, j ∈ {1, ..., |W |rb nb}, are from the set {22, 28, 34, 39, 42}, and each visit555

of a customer takes the same amount of time, i.e., tbj = tbk, for all b ∈ B, j, k ∈ {1, ..., |W |rb nb}

In order to test our location-allocation heuristic under many diverse conditions, we generated additional

test instances by modifying some parameters of the original real-world instances. The parameters we modified

1Gurobi version 6.0.2 was used for these tests. The tests were performed on a machine with an Intel Xeon E5-2650 v2 CPU

with eight cores, running at 2.6 GHz, and 128 GB of RAM.
2Gurobi version 6.0.5, Intel Core i5-760, four cores at 2.8 GHz, 8 GB of RAM.
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are the weekday regularity, the week rhythms, the number of visits per visiting week, and the service times

(see Table 3 for a summary of the different parameter values that are covered by our test instances).560

• Weekday regularity: First of all, we generated instances with strict weekday regularity for all customers

as well as instances with partial weekday regularity for all customers. In the case of partial weekday

regularity, we allowed one deviation from the regular weekday pattern, but we required that more than

half of the visiting weeks of each customer must follow the regular weekday pattern. This means that

all customers with at least three visiting weeks are allowed to deviate once from the regular weekday565

pattern, whereas all other customers are not allowed to deviate.

• Week rhythms / Number of weeks: With respect to the week rhythms, we generated instances in which

all weekly customers of the original instances were changed to customers with a week rhythm of eight,

and all biweekly customers of the original instances were changed to customers with a week rhythm of

16. This yields {4, 8, 16} as the set of week rhythms and a planning horizon of 16 weeks. Furthermore,570

we generated instances in which the week rhythms were randomly drawn from the set {3, 4, 6, 12, 16}

with probabilities 15%, 20%, 30%, 20%, and 15%, respectively, resulting in a planning horizon of 48

weeks.

• Number of visits per visiting week: Concerning the number of visits per visiting week, we generated

additional instances in which the number of visits per week were picked uniformly at random from the575

set {1, 2, 3}. Multiple visits per visiting week were, however, only eligible for weekly customers, since,

from a practical point of view, it does not appear to make sense to serve non-weekly customers multiple

times per visiting week. As in the original data, we assumed that there are no restrictions with respect

to the combinations of weekdays on which visits may take place, i.e., the set of weekday patterns, Pb,

b ∈ B, comprises all combinations of weekdays for which the number of contained weekdays equals the580

number of visits per visiting week.

• Service times: Finally, we generated additional instances by modifying the service times. For each visit

of a customer, we picked a service time uniformly at random from the set {15, 20, ..., 55, 60}.

We choose a full factorial design, i.e., we consider all combinations of the above mentioned parameter

values for all of the original 20 test instances. This yields, in total, 480 test instances. Using these instances,585

we perform computational experiments to compare the performance of the location-allocation heuristic with

that of the PTV xCluster Server (PTV, 2014). Furthermore, we perform additional experiments to gain

insights into the effect of weekday regularity on the travel time of the solutions as well as on the running

time behavior of our algorithm.

7.3. Implementation Details and Parametrization590

In the presence of partial weekday regularity requirements, the integer program ALLOCMIP must be

modified as explained in Subsection 4.2. Additional variables and constraints must be added to ALLOCMIP ,
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Table 3: Parameter values covered by the test instances

Parameter Values

Weekday regularity no regularity, partial regularity (1 deviation allowed), strict regularity

Week rhythms / Number of weeks in planning horizon {1, 2, 4, 8, 16} / 16, {4, 8, 16} / 16, {3, 4, 6, 12, 16} / 48

Number of visits per visiting week {1}, {1, 2, 3}1

Service times (minutes) {22, 28, 34, 39, 42}, {15, 20, ..., 55, 60}

1 Only in combination with week rhythms {1, 2, 4, 8, 16}

which makes it harder to find a feasible solution. To speed up the solution process, we first use the location-

allocation algorithm to solve an auxiliary problem. In this auxiliary problem, all partial weekday regularity

requirements are replaced by strict weekday regularity requirements, which, instead of introducing additional595

variables and constraints, leads to a reduction of the number of variables in model ALLOCMIP . Note that

the solution to the auxiliary problem is feasible for the original problem. Therefore, we use this solution to

warm start the location-allocation algorithm on the original problem.

Both the location-allocation heuristic and the PTV xCluster Server (PTV, 2014) were run on a Windows

7 machine with 8 GB of RAM and an Intel Core i5-760 at a clock rate of 2.8 GHz. The location-allocation600

heuristic was coded in Java, and Gurobi 6.0.5 was used to solve model ALLOCMIP . For all tests, the

Gurobi MIP Gap parameter was set to 1%, which we consider sufficiently small for all practical applications.

Moreover, the maximum time spent by Gurobi on solving the integer program in Step 2 of the algorithm was

limited to 15 seconds. The maximum number of location-allocation iterations was set to itermax = 20, which

did not impose a restriction for the vast majority of the test instances in our experiments. In combination605

with the time limit of 15 seconds for the solution of the integer program, the maximum runtime of our

heuristic is limited to five minutes per instance, which is according to our experiences with our industry

partner PTV Group an acceptable computation time for human planners. If the objective function value did

not improve by more than 0.1% compared to the previous iteration, the algorithm terminated early. The

user parameter λ in Objective Function (23) was set to 0.33.610

Depending on the focus of the experiments, we set the values of the balance tolerance parameters τweek

and τday differently. In Subsection 7.4, we compare the performance of the location-allocation heuristic and

the PTV xCluster Server (PTV, 2014). For a fair comparison, we make sure that for all test instances the

balance achieved with the location-allocation heuristic is at least as good as the balance of the PTV xCluster

solution. To this end, we first solve each test instance with the PTV xCluster Server, and then use the values615

obtained for the weekly and daily service time balance as the values for the balance tolerance parameters

of the location-allocation heuristic. As a consequence, all test instances in Subsection 7.4 are solved with

different values for the balance tolerance. In Subsections 7.5 to 7.7, we focus on the impact of different types

of weekday regularity on the travel time of the location-allocation solutions and on the running time behavior

of the location-allocation heuristic. To guarantee the comparability of the results from this analysis, the same620
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balance tolerance must be used for all instances. Therefore, we choose τweek = 15% as the weekly balance

tolerance and τday = 30% as the daily balance tolerance for all experiments in Subsections 7.5 to 7.7.

7.4. Comparison with PTV xCluster Server

Since the MPSTDP-S cannot be solved by a standard MIP solver for realistic instance sizes, we use the

PTV xCluster Server (PTV, 2014) as the benchmark for the location-allocation heuristic. PTV xCluster625

Server uses a local search to determine a visit schedule that is valid with respect to the customers’ visiting

requirements. The optimization criteria of the local search are compactness and balance. At the beginning

of the local search, the focus of the optimization is on improving compactness. During the course of the

optimization, the focus shifts to the improvement of balance. Two types of moves are considered, namely the

relocation of a customer to a different week or day cluster and the exchange of the week or day clusters of two630

customers. The algorithm terminates after a user-specified number of iterations or if no more improvements

are found.

Remember that, for a better comparability of the location-allocation approach and the PTV xCluster

Server (PTV, 2014), we set the balance tolerances, τweek and τday, of the location-allocation heuristic to

the actual service time balance of the xCluster solutions. Table 4 shows the average results of the two

approaches with respect to compactness and travel time, grouped according to different types of weekday

regularity. The first eight columns contain the average absolute values. DComp and WComp are measured

in kilometers, TT and TTIC are measured in hours. The last four columns show the relative deviation

between the location-allocation solutions and the xCluster solutions with respect to the four measures. The

relative deviation between the location-allocation solution CLocAlloc and the corresponding xCluster solution

CxCluster on measure M is computed as

Dev(CLocAlloc, CxCluster,M) =
M(CLocAlloc)−M(CxCluster)

M(CxCluster)
.

Hence, a negative deviation means that the location-allocation solution is better than the xCluster solution

with respect to measure M . In the table, these deviations are averaged over all test instances of a row.

The results show that the location-allocation approach clearly outperforms the PTV xCluster Server635

(PTV, 2014) in all four compactness and travel time measures. With respect to measure DComp, the

location-allocation solutions are, on average, 26.26% better than the xCluster solutions. Measure WComp is

improved by 13.47% compared to the xCluster solutions. The total travel time TT is reduced, on average, by

15.36 hours, the intra-cluster travel time TTIC by 20.46 hours, which translates into relative improvements

of 6.55% and 18.74%, respectively. It is noticeable that the reduction in the total travel time TT is smaller640

than the reduction of the intra-cluster travel time TTIC . This means that the travel time between the depot

and the day clusters increases compared to the xCluster solutions, but this increase is overcompensated by

improvements of the intra-cluster travel time TTIC . A possible explanation for this effect are outliers in the

xCluster solutions, i.e., single customers that are relatively far from the other customers of a day cluster. Such
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Table 4: Comparison between location-allocation approach and xCluster (PTV, 2014): Average compactness and travel time

grouped according to the three types of weekday regularity

Weekday
regularity Location-allocation PTV xCluster Server

Relative deviation between
location-allocation and xCluster

DComp WComp TT TTIC DComp WComp TT TTIC DComp WComp TT TTIC

None 7.94 22.79 223.83 87.85 11.28 26.05 239.58 111.25 -30.88% -13.42% -7.18% -22.42%

Partial 8.66 23.55 227.12 96.53 11.44 27.17 243.61 117.06 -25.55% -13.74% -6.72% -18.14%

Strict 9.01 23.68 229.76 99.59 11.44 27.17 243.61 117.06 -22.34% -13.25% -5.74% -15.66%

Average 8.53 23.24 226.90 94.66 11.39 26.80 242.26 115.12 -26.26% -13.47% -6.55% -18.74%

Table 5: Comparison between location-allocation approach and xCluster (PTV, 2014): Relative compactness and travel time

deviation grouped according to different sets of week rhythms and planning horizons

Week rhythms /
Number of weeks

in planning horizon

Relative deviation between
location-allocation and xCluster

DComp WComp TT TTIC

{1, 2, 4, 8, 16} / 16 -20.19% +0.49% -5.70% -13.47%

{4, 8, 16} / 16 -37.55% -39.69% -8.91% -26.57%

{3, 4, 6, 12, 16} / 48 -27.10% -15.17% -5.89% -21.46%

Average -26.26% -13.47% -6.55% -18.74%

outliers are, in some cases, produced by xCluster in an attempt to improve the balance of a solution. They can645

lead to a reduced travel time between the depot and the day cluster at the cost of intra-cluster compactness.

It can further be seen from Table 4 that, the higher the degree of freedom in terms of weekday regularity,

the higher is the improvement of the location-allocation solutions over the xCluster solutions. For example,

the average relative improvement on measure DComp is 22.34% in the case of strict weekday regularity.

When weekday regularity is relaxed to partial and none, the improvement increases to 25.55% and 30.88%,650

respectively. Similar effects can be observed for measures TT and TTIC . Only on measure WComp are the

values almost the same for all three types of weekday regularity.

Table 5 provides a different view of the same results by grouping the relative deviation between the

two approaches according to the three different sets of week rhythms and associated planning horizons.

The location-allocation heuristic clearly beats xCluster (PTV, 2014) in all dimensions except one. When655

weekly customers are present, the WComp values of the location-allocation approach and xCluster are

nearly identical. This can be explained by the fact that the weekly customers force the service provider to

travel almost across the whole service territory in every week, which leads to very similar solutions in terms

of weekly compactness. In the cases without weekly customers, the location-allocation approach is able to

produce solutions that have a significantly higher weekly compactness than the xCluster solutions.660
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Table 6: Comparison between location-allocation approach and xCluster (PTV, 2014): Average service time balance in percent

Weekday
regularity

Location-allocation PTV xCluster Server

DBal WBal DBal WBal

None 45.69 11.31 46.03 12.02

Partial 21.40 7.10 21.46 7.48

Strict 21.36 7.01 21.46 7.48

Average 29.48 8.47 29.65 8.99

Table 7: Comparison between location-allocation approach and xCluster (PTV, 2014): Average and maximum running time in

seconds

Weekday
regularity

Location-allocation PTV xCluster Server

Average Max Average Max

None 14.54 103.07 14.80 73.40

Partial 41.57 156.26 7.23 33.60

Strict 25.94 109.27 6.96 32.41

Avg/Max 27.35 156.26 9.66 73.40

The average weekly and daily balance values, WBal and DBal, are reported in Table 6. Remember

that the balance tolerances τweek and τday of the location-allocation approach were set to the actual balance

values of the xCluster solutions. Consequently, the balance values of the two approaches are almost the same,

with the location-allocation solutions having a slightly better balance.

Table 7 contains the average and maximum running times per instance in seconds. The location-allocation665

approach has significantly longer running times than the PTV xCluster Server (PTV, 2014). With an average

of approximately 27 seconds, the location-allocation running times are almost three times as high as those

of xCluster. However, one has to keep in mind that the MPSTDP-S is a tactical planning problem, which

has to be solved only every few months. In such a tactical context, the location-allocation running times are

completely acceptable. In fact, rather than having very short running times, solution quality is of utmost670

importance in practice since high-quality solutions can prevent the necessity of manual post-processing by a

human planner.

7.5. The Cost of Weekday Regularity

In practice, many customers appreciate weekday regularity because it leads to a reduction in the time

needed for coordination and to an increase in efficiency. However, enforcing partial or strict weekday regu-675

larity means that the solution space is restricted compared to the situation without weekday regularity. One

would expect that such a restriction leads to a deterioration in the compactness and the travel time of the
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Table 8: Cost of weekday regularity measured as the increase in travel time for the two types of service times relative to the

case without weekday regularity

Weekday
regularity

Service times

Original Randomly picked Average

Partial +1.27% +6.08% +3.68%

Strict +1.82% +8.88% +5.35%

solutions produced by the location-allocation approach. In this subsection, we investigate this “cost of week-

day regularity”. Concretely, we analyze the increase in travel time (measure TT ) when weekday regularity is

imposed relative to the situation without weekday regularity. Remember that we choose τweek = 15% and680

τday = 30% for all experiments in this subsection.

Table 8 contains the cost of weekday regularity for the two different types of service times considered in

the test instances. On average over all 480 test instances, we observe a 3.68% increase in travel time when

partial weekday regularity (max. one deviation from the regular weekday pattern) is enforced. In the case

of strict weekday regularity, the total travel time is increased by 5.35%. A more detailed analysis shows that685

the cost of weekday regularity differs greatly depending on the values of the service times and week rhythms.

The cost of weekday regularity is modest for instances with original service times: 1.27% in the case of partial

weekday regularity and 1.82% in the case of strict weekday regularity. For the randomly generated service

times, the cost of weekday regularity is much higher: It amounts to 6.08% and 8.88%, respectively. This

result can be explained as follows. Remember that in the original real-world data all service times are from690

the set {22, 28, 34, 39, 42} and the same service time is incurred for each visit of the same customer. In

our randomly generated test instances, the service time for each customer visit is randomly drawn from the

set {15, 20, ..., 55, 60}, i.e., the service times may vary between different visits of the same customer. For

example, a customer may require a 15-minute service on the first visit, a 60-minute service on the second

visit and a 35-minute service on the third visit. Moreover, the range of the randomly drawn service times is695

more than twice as high as the range of the original service times. This means that there is more variability

in the randomly drawn service times than in the original service times. When weekday regularity is imposed,

the higher variability of the randomly generated instances leads to a greater increase in travel time.

Table 9 shows the cost of weekday regularity for the three types of week rhythms. Again, huge differences

in the impact of weekday regularity can be observed. When week rhythms are from the sets {1, 2, 4, 8, 16}700

and {4, 8, 16}, the cost of weekday regularity is marginal (and even negative in one case). On the other hand,

when the week rhythms are from the set {3, 4, 6, 12, 16}, weekday regularity leads to a significant increase

in travel time of up to 18.51%. In the first two cases, all week rhythms are a power of two and, consequently,

higher week rhythms are an integer multiple of smaller week rhythms. This facilitates the balancing of service

times. The week rhythms in the third case do not have this beneficial property. Thus, the restrictions that705
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Table 9: Cost of weekday regularity measured as the increase in travel time for the three types of week rhythms relative to the

case without weekday regularity

Weekday
regularity

Week rhythms

{1, 2, 4, 8, 16} {4, 8, 16} {3, 4, 6, 12, 16}

Partial +0.59% -0.17% +13.69%

Strict +1.06% +0.78% +18.51%

go along with the introduction of weekday regularity cannot be compensated as easily as in the case of more

favorable week rhythms.

In summary, we observed that enforcing weekday regularity leads to an increase in travel time. However,

the extent of the increase is different under different circumstances. In our experiments, we identified the

service times and the week rhythms as the major influencing factors on the cost of weekday regularity.710

7.6. Running Time Analysis

Based on the experiments of Subsection 7.5, we now investigate the running time behavior of the location-

allocation approach. The average and maximum running times are listed in Table 10, grouped according to

different types of weekday regularity and week rhythms. The average running time over all test instances is

roughly 28 seconds, the maximum running time is 280 seconds.715

None and strict weekday regularity yield very similar running times of approximately 22 seconds on

average and 140 seconds at the maximum. In contrast, partial weekday regularity results in significantly

longer running times of 40 seconds on average and 280 seconds at the maximum. The reason for this is

that we need to adopt a more involved procedure when partial weekday regularity requirements are present

than in the other two cases. The additional variables and constraints that must be introduced to the model720

(see Subsection 4.2.2) make it hard for the MIP solver to find an initial feasible solution. Therefore, we

perform two runs of the location-allocation heuristic consecutively (see Subsection 7.3). We first solve an

auxiliary problem with strict weekday regularity and then take this solution to warm start the location-

allocation heuristic for the problem with partial weekday regularity. This two-stage procedure is obviously

more time-consuming than performing just a single run of the location-allocation heuristic as in the other725

two cases.

Regarding the week rhythms and the resulting planning horizons, one can see that the 48-week planning

horizon results in considerably longer running times than the 16-week planning horizons (on average 77

seconds vs. 11 and 13 seconds, respectively). The running times for week rhythms {1, 2, 4, 8, 16} and {4, 8,

16}, both with a planning horizon of 16 weeks, are very similar.730
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Table 10: Running times of the location-allocation approach (values in seconds)

Weekday
regularity

Week rhythms / Number of weeks in planning horizon

{1, 2, 4, 8, 16} / 16 {4, 8, 16} / 16 {3, 4, 6, 12, 16} / 48

Average Max Average Max Average Max Avg/Max

None 11.17 50.95 10.36 57.80 54.66 141.10 21.84 141.10

Partial 13.18 174.09 15.90 47.67 118.00 280.04 40.06 280.04

Strict 8.94 97.56 13.14 35.50 57.99 139.96 22.25 139.96

Avg/Max 11.09 174.09 13.13 57.80 76.88 280.04 28.05 280.04

7.7. Visualization of Results

To give a visual impression of the solutions obtained with the location-allocation approach, we visualize

the day clusters for the five working days of an exemplary week in Figure 7. The big star represents the

service provider’s depot, the circles represent the customers. A filled circle means that the customer must be

served on that particular day, whereas an empty circle stands for a customer without a service request. The735

solid lines indicate the service provider’s routes, which have been calculated a posteriori by solving a TSP

for each day cluster. The darker area represented by the convex hull of the customers is the entire service

territory, i.e., the region for which the service provider is responsible. The figure shows that the location-

allocation approach produces geographically compact day clusters. Furthermore, all day clusters of the week

are within a relatively small sub-area of the service territory, meaning that also a good weekly compactness740

could be achieved.

8. Conclusions and Future Research

In this paper, we introduced the multi-period service territory design problem. To the best of our knowl-

edge, this problem has not been treated before in the literature, although its practical relevance is high.

The MPSTDP combines two subproblems, namely a partitioning subproblem and a scheduling subproblem.745

Since the partitioning subproblem corresponds to the well-known (classical) territory design problem, we laid

the emphasis of this paper on the scheduling subproblem. We formulated the scheduling subproblem as a

mixed integer linear program. Due to the great number of variables and the high symmetry, it is – even on

small instances – not possible to solve this formulation to optimality using a standard MIP solver. Therefore,

we proposed a location-allocation heuristic. Extensive experiments on real-world instances and on instances750

derived from real-world data have shown that this heuristic produces high-quality solutions in reasonable

running times. Our heuristic clearly outperforms the PTV xCluster Server (PTV, 2014) in terms of solution

quality. Furthermore, we examined the cost of weekday regularity, i.e., the increase in travel time, when

partial or strict weekday regularity is introduced. We found out that the cost of weekday regularity depends
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(a) Monday (b) Tuesday (c) Wednesday

(d) Thursday (e) Friday

Figure 7: Day clusters and corresponding TSP routes for the five working days of an exemplary week (map data c© Open-

StreetMap contributors)

to a great extent on the characteristics of the test instances. The variability of the service times and the755

compatibility of the week rhythms have turned out to be the main influencing factors.

For the future, it is intended to integrate the location-allocation heuristic into the PTV xCluster Server

(PTV, 2014). Beyond that, there are several possible extensions of the presented work. On the one hand, it

would be interesting to investigate if at least small- or medium-sized instances of the MPSTDP-S can be solved

to optimality by a more sophisticated exact solution method. On the other hand, there are several additional760

real-world planning requirements that could be integrated into the location-allocation heuristic. For example,

it can be desirable in practice that the day clusters of consecutive days are close to each other because this

strengthens the effect which motivates the weekly compactness criterion: To help the service provider catch

up on visits of customers that have been missed on the scheduled day. Another interesting aspect is the

integration of route length approximations. Although we are not interested in explicitly determining the765

service provider’s daily routes, it could be beneficial to have an approximation for their (expected) duration.

Such an approximation would allow to balance the total workload of the service provider, not just the service

time. Another possible enhancement is the consideration of overnight stays of the service provider, which is a

highly relevant aspect in many applications. Furthermore, it would be interesting to examine the suitability of

a stochastic approach, which takes into account the uncertainty with respect to short-term customer requests770

and other unexpected situations that might occur in the daily business.
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