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The problem of antibiotic resistance poses challenges across many disciplines. One such challenge
is to understand the fundamental science of how antibiotics work, and how resistance to them can
emerge. This is an area where physicists can make important contributions. Here, we highlight
cases where this is already happening, and suggest directions for further physics involvement in
antimicrobial research.

The emergence and spread of bacterial infections that are resistant to antibiotic treatment, combined with the
lack of development of new antibiotics, pose a global health problem that is now well recognised1–5. Tackling
antimicrobial resistance (AMR) requires coordinated, cross-disciplinary effort: relevant themes include clinical
medicine, microbiology, diagnostics, drug discovery, epidemiology, evolutionary biology, global public health policy,
veterinary science and agriculture. What role can physicists play in this spectrum of activities? Some of these themes
obviously require physics tools, for example to aid the development of new experimental methods and devices. We
argue here that a ‘physics-inspired’ approach to basic science also has a prominent role to play in the effort to tackle
AMR.

For a new, antibiotic-resistant, infectious bacterial strain to become a clinical problem, three events must occur.
First, an individual pathogenic bacterium must acquire resistance to the antibiotic in question. This could happen
via a spontaneous mutation in one of its genes, which might for example render a target protein less susceptible to
the antibiotic by modification of the antibiotic binding site. Alternatively, the pathogenic bacterium could gain a
gene encoding antibiotic resistance via horizontal transfer of DNA from a different bacterial strain. Second, the newly
resistant bacterium must proliferate such that its resistance-encoding gene spreads in the local bacterial population
and cannot be wiped out through random fluctuations in the number of organisms carrying this gene. Third, the
resistant strain must spread beyond the local bacterial population where it originated, until it infects a significant
number of humans and becomes clinically relevant. These events occur on widely varying length and time scales,
from those of molecules (e.g. a mutational event in a DNA strand) to those of macroscopic objects (bacterial biofilms,
host animals, or even whole ecosystems), and they involve processes that relate directly to the realms of soft matter,
chemical and statistical physics.

On the molecular level, physical scientists are already contributing to our understanding of how antibiotics
bind to their cellular targets, using both computer simulations and novel imaging techniques6–8. At the level of
a bacterial cell, questions arise as to whether an antibiotic kills, or inhibits, a bacterial cell, via direct inhibition
of its target (e.g. the cell wall synthesis machinery for beta-lactam antibiotics or the protein synthesis machinery
for macrolide antibiotics), or via other, downstream effects9–11. Here, physicists can contribute by developing
simple models for how the complex network of reactions that constitutes bacterial physiology response to the
antibiotic-induced stress12,13. At the level of a bacterial population, physical interactions between cells and their
environment shape the self-assembly of spatially-structured bacterial conglomerates such as biofilms that form on
medical implants14. From a physics point of view, the interplay between biological phenomena such as growth
and physical phenomena such as chemical diffusion and physical forces provides many interesting questions. For
example, biofilms are often surrounded by a secreted polymer matrix whose physical properties (e.g. viscosity)
may affect how the biofilm assembles and how it responds to drug treatment15. Moreoever nutrient and drug
gradients can emerge in biofilms due to the interplay between growth and chemical transport; these can affect
biofilm structure16–18 and potentially also the rate of evolution of resistant bacteria19–21. Other population-level
phenomena of interest to physicists include stochastic differences in the behaviour of individual cells, caused by noise
in gene expression22, which can have drastic consequences for the response of the population to antibiotic treatment23.

“A physics-like” approach thus has a role to play in many aspects of AMR if we define such approach as a belief
that biological processes can be explained by a combination of simple, yet quantitative experiments and mathematical
modelling. In the remainder of this article, we highlight three areas where such physics-like approaches are already
proving successful, and we also comment on promising directions for future research.
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Figure 1: (A) Example of a resistance landscape with three mutations. “+”/“-” denote the presence/absence of a particular
mutation, hence the sensitive strain is represented by − − − and the most-resistant mutant strain by + + +. The level of
resistance is indicated by the height of the bars, and permitted mutations are marked by gray lines. The mutant + + + can be
reached by many paths, for example (−−−)→ (−−+)→ (−+ +)→ (+ + +) along which resistance increases monotonously
(blue lines), or (−−−) → (+−−) → (+ +−) → (+ + +) which has a “valley” at +−− (black lines). (B) Evolution in the
presence of an antibiotic gradient for an expanding population. The fate of mutant red cells depends on whether they arise in
the “bulk” or at the front of the population wave. In the first case there is no selective pressure due to low drug concentration
and the mutant does not spread. However, if the mutant arises at the front, it benefits from the access to nutrients/higher
growth rate, and it spreads quickly. (C) If resistant cells arise in microbial colonies, they form spatial “sectors”. The number
and the size of such sectors depends on the roughness of the colony’s frontier, which in turn is affected by physical interactions
between the cells and their environment. (D) A microbial population often contains “persister” cells which grow slowly but
are resistant to drugs. If the population is treated with antibiotics, persisters can survive the treatment, switch back to the
growing state and cause regrowth.

Pathways to resistance

An active area of current research focuses on how antibiotic resistance evolves “de novo”, i.e. by genetic mutation
in bacterial strains that are not initially resistant (as opposed to via gene transfer from an already resistant strain).
Typically, the process of resistance evolution involves not just one genetic mutation but a sequence of mutations. This
mutational “pathway to resistance” is one of many possible sequences of mutations in a hugely multidimensional space
made up of all the possible genetic variants (genotypes) of the organism (Fig. 1A). To understand how resistance
evolves we must therefore understand the structure of this “resistance landscape”.

Two alternative models represent extreme limits of the resistance landscape. In the first model, the level of resistance
changes randomly with each mutation (known as a “maximally rugged”, or “House of Cards” landscape24), while in the
second, mutations are additive, such that the total resistance is the sum of the contributions of the various mutations
that a bacterium has acquired (this corresponds to a smooth fitness landscape). Using a statistical physics approach,
an analysis of measured resistance landscapes for several different antibiotics suggests that these landscapes are neither
fully random nor fully additive, but that they can be approximated by a “rough Mount Fuji” model, which essentially
corresponds to a superposition of the rugged and smooth models25,26. Further computer modelling27 has shown
that the pathways followed by evolution on such landscapes are most predictable in intermediate-size populations
(Nµ2 � 1 � Nµ, where N is the population size and µ is the mutation probability) whereas the evolution of
resistance is predicted to be less reproducible in either very small or very large populations.

The predictability of the evolution of resistance has recently been tested experimentally by growing bacteria in
antibiotic under constant selective pressure, using a “morbidostat”28,29. This is a device in which the population
density and growth rate of a bacterial population are constantly monitored, and the dosage of antibiotic to which
it is subjected is adjusted to maintain (on average) a fixed growth rate. Thus, as the population evolves resistance,
the antibiotic dosage increases. By sequencing the DNA of bacteria sampled from the morbidostat as the population
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evolves, qualitative differences in the pathways by which resistance to different drugs emerges have been revealed.
In particular, the evolution of resistance to the antibiotic trimethoprim has been found to be rather reproducible,
occurring by a well-defined and universal sequence of mutations, but the evolution of resistance to the antibiotics
chloramphenicol and doxycycline was found to show a less predictable pattern, occurring via different sequences of
mutations in replicate experiments28.

Another “simple yet smart” experimental design has led to a different insight into the pathways leading to
antibiotic resistance evolution. Here, bacteria are subjected to repeated brief exposures to antibiotic, alternating
with periods of growth without antibiotic30. Remarkably the bacteria become tolerant to the antibiotic by matching
the duration of their “lag time”, or the dormancy period before they start to grow when exposed to fresh nutrient
medium, to the duration of antibiotic exposure30. This is an important finding because it suggests that tolerance to
antibiotic exposure can be achieved much more easily than full resistance, by tinkering with the cell’s existing gene
regulatory components, and that this may be a first step in the pathway to full resistance. Thus, to fully understand
the pathways by which bacteria become resistant to antibiotics, we may need to study not just genetic mutations but
also phenotypic changes that arise via gene regulation31–33.

Evolution in spatially structured environments

Most studies of antibiotic resistance evolution assume that it happens in a well-mixed, spatially homogeneous
environment. However, in infections, as well as more widely in the natural environment, bacterial populations are
often highly spatially structured. For example, in biofilm infections bacteria deep within the biofilm are likely to
experience quite different local concentrations of nutrients and, possibly, of antibiotic, compared with bacteria on the
outside of the biofilm. Indeed, confocal microscopy images of lab-grown biofilms exposed to antibiotics show that
some antibiotics act selectively on cells on the outside of the biofilm, while others selectively kill those on the inside34.
Could the spatial gradients of antibiotic that arise during treatment of infections influence the evolution of antibiotic
resistance?

Experimental and theoretical physicists have recently addressed this topic by investigating the growth and evolution
of bacterial populations in the presence of controlled spatial gradients of antibiotic. In particular, Zhang et al con-
structed a microfluidic device which allowed antibiotic gradients to be imposed across a spatially expanding bacterial
population19. In this device, the evolution of E. coli bacteria which were resistant to the antibiotic ciprofloxacin
occurred much more rapidly in the presence of an antibiotic gradient than in a uniform concentration of antibiotic.
This work inspired the development of several theoretical models in which an expanding bacterial population invades
a one-dimensional habitat containing a gradient of antibiotic20,21 (Fig. 1B). These models suggest that the presence
of an antibiotic gradient can accelerate the evolution of resistance because mutants that emerge at the tip of the
expanding population wave are exposed to high antibiotic concentrations, for which they have a strong selective ad-
vantage, and because of the low population density at the tip of the population wave, they do not have to compete
with less resistant genotypes. However this is not always the case; too steep a gradient can actually slow down the
evolution of resistance, and the process also depends on the rate of bacterial migration20 and the mutational pathway
to resistance21.

Other important recent work shows that, even in the absence of an antibiotic gradient, evolution can work very
differently in a spatially structured population compared to a spatially well-mixed one. Using colonies of bacteria
and yeast cells growing on the surface of a semi-solid agar gel, Hallatschek et al, and others, showed that population
fluctuations at the front of an expanding microbial colony can lead to some cell lineages randomly spreading in the
population while others die out35–38. In these experiments, spreading lineages are strikingly visualised as sectors of
differently-coloured fluorescent cells (Fig. 1C). Further work investigating the probability of fixation of mutants in
these expanding populations suggests that the roughness of the growing front plays a crucial role39. However, much
more work is needed before we can translate these principles into a full understanding of how the spatial structure
of a bacterial population, for example in a biofilm infection, links to its propensity to generate and fix harmful
antibiotic-resistant mutants.

Response of individual cells to antibiotics

Over the past decades, physicists have played a leading role in establishing the existence, and importance, of varia-
tion between individual cells within bacterial populations40–42. This phenotypic heterogeneity arises from stochasticity
in the molecular processes involved in gene expression, modulated by the networks of interactions between proteins and
genes that regulate gene expression. From the perspective of antibiotic resistance, a particularly important example
of phenotypic heterogeneity is the existence within bacterial populations of a subpopulation of “persister cells” which
can survive antibiotic treatment (Fig. 1D). Classic experiments using microfluidic devices by Balaban et al visualised
E. coli cells switching into and out of the non-growing persister state23; yet the molecular mechanisms controlling this
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switch are still the topic of active research43–46.
Evidence is also now emerging that bacterial population heterogeneity in the response to antibiotics may be a more

general phenomenon. Several different theoretical models for the effects of antibiotics on bacterial growth predict
the existence of bistable regimes, in which some cells in the population show fast growth while others grow only
very slowly, if at all12,47. The models suggest that this growth bistability can have a number of origins, including
the interplay between bacterial growth and drug dilution47 and an irreversible “annihilation” reaction between an
antibiotic and its target12. Joint experimental and theoretical work has also shown that growth bistability can arise
from the partitioning of cellular resources between growth and production of proteins leading to antibiotic resistance48.
Whether, and how, these bistable growth regimes are related to the persister phenomenon, remains unclear. From
the clinical point of view, we would also like to understand which drugs produce a heterogeneous response and how
this impacts both on treatment strategies and on the evolution of resistance.

From an experimental point of view, investigations of bacterial phenotypic heterogeneity often rely on microfluidic
technology which combines physical, chemical, and engineering knowledge to image and manipulate individual
bacterial cells. Devices such as the “mother machine”49 allow the proliferation of individual cells to be tracked
under constant conditions over long times in the microscope, and these devices are beginning to reveal interesting
information about the response to antibiotics50. Another recently-developed microfluidic technique, Microscopy
Assisted Cell Screening, provides a way to rapidly image thousands of cells immediately after sampling them from
a growth device51. This approach can be used, for example, to measure population heterogeneity in processes like
DNA damage, which involve small numbers of molecules per cell.

Perspective

The topics discussed above highlight important contributions that are being made by physicists to our understanding
of antibiotic action and to AMR. We believe that this is just the beginning. Many questions remain to be addressed
about how bacteria respond (and become resistant) to antibiotics, and physicists have an important role to play in this
effort. As a first example, it is imperative to gain better understanding of how bacterial cells interact mechanically
with one another and with their environment. Mechanical interactions appear to be very important in bacterial
self-assembly52–55, yet our limited knowledge of these interactions prevents us from building accurate models of how
spatially structured infections like bacterial biofilms form. As a second example, horizontal gene transfer – the
transmission of genes encoding antibiotic resistance between (potentially) unrelated bacteria by direct transfer of
DNA – is very important in clinically relevant antibiotic-resistant infections, and has also been studied in a “physics”
context in abstract, mathematical models56–61, although so far without consideration of the mechanics of bacterial
interactions. It would be very interesting to investigate how physical factors such as the forces existing between
adjacent bacterial cells in a colony or biofilm affect the rate of gene transfer62.

We also believe that AMR can provide a rich source of more abstract problems in areas of physics from non-
equilibrium statistical mechanics to soft matter physics and fluid mechanics. For example, the growth of bacterial
biofilms shows a non-equilibrium phase transition (or fingering instability) between rough and smooth modes of
interface growth16. Other examples include random walk models inspired by the dynamics of mutant sectors in
expanding bacterial populations35,36, and stochastic differential equation models to describe the emergence of waves
of resistant mutants in an antibiotic gradient21. Physics models that are inspired by AMR may also be transferable
to other biological fields - for example the evolution of bacterial antibiotic resistance has important analogies with
the evolution of drug resistance in cancer tumours63, while models for the dynamics of bacterial and viral infections
also have many similarities.

Finally, we believe that an important goal of future research in AMR, by physicists and others, must be to
make a link between the findings of simple laboratory experiments and theoretical models, and what happens in
real infections, in clinical settings64. Existing areas of progress in this direction include using observations on how
antibiotics interact with the physiology of bacterial cells to suggest more effective clinical treatment strategies12,65,66,
using systematic measurements of thousands of bacterial growth curves, combined with simple theoretical models,
to predict the clinical effectiveness of multi-drug therapies67,68, and tracking mutational pathways in in vivo
infections69. Future challenges will include understanding the role of spatially structured infections in the evolution
of clinical antibiotic resistance and the impact of bacterial population heterogeneity on clinical responses to treatment.

Conclusion

Achieving a better understanding of how antibiotic resistance emerges and spreads could help us to design
strategies to prevent this from happening, for both current and future antibiotics. This is a goal to which physicists
can contribute, not just by developing new machines and software tools, but also by designing simple yet insightful
experimental and theoretical models to test basic principles. This work should not be carried out in isolation, but
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in coordination with the broad spectrum of other efforts that are being made to tackle the problem of antibiotic
resistance. To make this possible, however, support is needed in the form of funding. This requires a breakdown
of traditional discipline barriers. Indeed, for the breakthroughs highlighted in this article it is not relevant to ask
“is it physics”? or “is it biology”, but simply “is it ground-breaking science”? It also requires a breakdown of
national barriers, to allow the most talented scientists, within what is still a rather small international field, to work
productively together without restrictions imposed by funding regulations.
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