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Abstract 14 

Despite frequent use of metered dose inhalers (MDIs) and spacers in equine practice, limited 15 

information exists on the efficiency of aerosol delivery using such devices. We determined the 16 

particle size distribution within an MDI-generated salbutamol aerosol delivered via an equine 17 

spacer using “best practice” delivery technique and assessed the effect of variations in MDI 18 

use technique (shaking prior to each actuation, rapid repetitive actuations and MDI angulation) 19 

on aerosol delivery efficiency. 20 

Under optimal conditions, only 53(+18) microgrammes (g) salbutamol per 100g actuation 21 

was delivered beyond the spacer. Although this aerosol had a high (89.6% [+2.4]) fine particle 22 

(<5 micron [m]) fraction, and a low mass median aerodynamic diameter (2.52 [+0.29]m) 23 

and particle size variability (geometric SD - 1.66 [+0.16]m), within all particle size fractions 24 

there was a high coefficient of variance (31-79%) of the percentage salbutamol delivered 25 

between experimental runs, thus impeding any effort to predict drug delivery to the patient 26 

during equine inhalation therapy. Despite observable trends and with the exception of minor 27 

statistically significant changes in the least abundant particle sizes, none of the deviations from 28 

a “best practice” delivery technique significantly altered the relative salbutamol delivery 29 

beyond the spacer, a finding which has potential relevance with regard to maintaining user 30 

compliance.  31 

 32 

Keywords: horse, MDI, inhalation, aerosol, nebuliser  33 
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Introduction  34 

The use of inhalation therapy in equine practice has recently increased in popularity, 35 

particularly in relation to corticosteroid and bronchodilator treatment of equine asthma 36 

(Robinson et al., 1993; Tesarowski et al., 1994; Derksen et al., 1996; Derksen et al., 1999; 37 

Durham, 2001) but also for the delivery of other therapeutic agents including antibiotics (Art 38 

et al., 2010; Burton et al., 2013; Ferrucci et al., 2013; Fultz et al., 2015). The proposed 39 

advantages over systemic drug delivery include a relatively lower cost, drug delivery directly 40 

to the site of action and, particularly in the case of corticosteroids, a reduced risk of systemic 41 

adverse effects (Hoffman, 1997, Duvivier et al., 1997; Duvivier et al., 1999; Lavoie, 2001). 42 

Various means of aerosol generation exist, including ultrasonic, jet and mesh nebulisation and 43 

metered dose inhalers (MDIs), each differing with respect to the variability in aerosol particle 44 

size distribution (Duvivier et al., 1997; Votion et al., 1997; Duvivier et al., 1999). Furthermore, 45 

a variety of delivery devices are available, including equine-specific and customised spacers 46 

and airtight facemasks, the use of which is indicated largely due to the inability to accurately 47 

synchronise aerosol generation with inspiration in the horse (Lavoie, 2001).  48 

Although successful drug delivery to the peripheral airways is partly dependent the patient’s 49 

breathing pattern and the viscosity, density, surface tension and hygroscopic growth potential 50 

of the drug solution (Silverman, 1990; Morrow, 1996),  ultimately the aerodynamic diameter 51 

of the aerosolised particles is the major determinant of peripheral airway deposition 52 

(Stahlhofen, 1980). Despite the small size and low variability of the aerosolised particles 53 

generated by MDIs (Kim et al., 1985), there are a variety of factors which can significantly 54 

influence MDI-generated aerosol delivery to peripheral airways. In human respiratory 55 

medicine, this has led to established protocols for MDI use (Everard et al., 1995); protocols 56 

which have subsequently been applied to the field of equine inhalation therapy. However, 57 

despite many of the recommendations deriving from in vitro studies, there remains a lack of 58 
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concordance between the standard protocols used in human respiratory medicine and those 59 

employed in the laboratory setting (Everard et al., 1995). Such inconsistency has the potential 60 

to result in unnecessary recommendations being made to MDI users which may have a negative 61 

impact on patient compliance with appropriate self-medication. Such negative impact is likely 62 

to be amplified when unnecessary recommendations result in an extended duration of 63 

treatment, a significant consideration with equine inhalation therapy when multiple actuations 64 

are generally required. Recommendations which may significantly extend the duration of 65 

treatment include shaking the MDI prior to each actuation when multiple actuations are 66 

required and the avoidance of rapidly performed consecutive actuations (Everard et al., 1995; 67 

Wildhaber, 1996).  68 

The limited data relating to drug delivery via an equine-specific spacer are largely derived from 69 

in vivo scintigraphic studies which revealed relatively poor and markedly varied aerosol 70 

delivery to the peripheral airways (Votion et al., 1997; Rush et al., 1999; Votion et al., 1999). 71 

Due to the lack of published in vitro studies on MDI-generated aerosol characteristics using 72 

equine spacers, this study was designed to measure the efficiency of delivery and particle size 73 

distribution of an MDI-generated salbutamol aerosol delivered via an equine spacer device. 74 

Specific deviations, regarded as having potential influence on owner compliance with respect 75 

to MDI use, from a “best practice” protocol, were evaluated in relation to their effect on the 76 

efficiency of aerosolised drug delivery. 77 

 78 

Materials and methods 79 

Three sets of comparative experiments were conducted within the study, each with a measured 80 

output of aerosolised salbutamol delivery to the various stages of a next generation impactor 81 

(NGI)a, as follows: Experiment 1 - Effect of shaking the MDI prior to each sequential actuation; 82 
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Experiment 2 - Effect of angulation of the MDI device within the spacer; Experiment 3; Effect 83 

of multiple actuations in rapid succession. Additionally, in light of the variability in data 84 

derived from experiment 1, selected data from experiments 2 and 3 were also used to measure 85 

the efficiency of salbutamol delivery with the MDI device secured in an optimal position 86 

relative to the spacer device (Optimal delivery measurement), whereby salbutamol retention 87 

within the spacer was also measured.  88 

 89 

Salbutamol aerosol generation and delivery to the NGI 90 

For comparative purposes, the quantity of aerosolised salbutamol delivered was determined by 91 

the number of 100g actuations of the MDIb directly into an equine spacerc (Figure 1a). The 92 

spacer was connected to the throat of the NGI, a high-performance, precision, particle 93 

classifying cascade impactor designed for testing MDIs, dry powder inhalers, nebulizers and 94 

nasal sprays, separating aerosolised particles based on particle size and aerodynamic properties. 95 

The NGI is comprised of a throat (designed to mimic the calibre and airflow directional changes 96 

within the human upper airway) and a series of eight stages, characterised by different pore 97 

sizes of sequentially decreasing diameter, thus simulating the sequential decrease in airway 98 

diameter from the trachea to the terminal bronchioles (Figure 1b). Consequently, aerosolised 99 

particles delivered into the NGI are fractionated and collected onto each of these stages. The 100 

distal portal of the NGI was connected to a vacuum pumpd, calibrated to generate a constant 101 

flow rate of 60L/min through the entire system (spacer, throat, NGI and all connecting tubing). 102 

Leaks within the system were prevented by sealing all connections with parafilme and the 103 

absence of leaks was confirmed by comparing airflow rate before and after each experimental 104 

run. Airflow was maintained for 30s after each experimental run. With a constant airflow of 105 

60L/min, the stage effective cut off particle diameters (at 50% efficiency) were as follows: 106 
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stage 1 - 8.06m; stage 2 – 4.46m; stage 3 – 2.82m; stage 4 – 1.66m; stage 5 – 0.94m; 107 

stage 6 – 0.55m; stage 7 – 0.34m; stage 8 - 0m. 108 

 109 

Following aerosol delivery, samples were retrieved from the spacer (Experiments 2 and 3 only), 110 

throat and each collection stage by instilling 10ml distilled water, re-suspending any deposited 111 

salbutamol with a cell scraper, pipetting into a labelled container and storing at 4°C until further 112 

analysis. The decision to measure salbutamol deposition within the spacer was made following 113 

completion of experiment 1 which revealed a relatively low drug delivery to the NGI. This 114 

additional sample collection was conducted to determine whether, and to what extent, this low 115 

output reflected retention within the spacer. A separate pipette was used for each sample to 116 

reduce the risk of cross contamination. Following sample collection, the spacer, NGI stages 117 

and throat were washed in dilute detergent and rinsed with distilled water before being air dried, 118 

to avoid accumulation of static electricity. Prior to each experiment, the NGI, NGI stages, and 119 

throat were refrigerated at 4°C for 1h to minimise subsequent evaporative losses. Between 120 

experiments, the MDI was stored up-right at room temperature.  121 

 122 

Salbutamol assay 123 

Standard salbutamol concentrations (0 to 100g/ml) were prepared from the stock solution 124 

(10mg/ml salbutamol hemisulphate salte in distilled water) and 100l of standard and sample 125 

(spacer, throat and NGI stages) was pipetted in duplicate into wells of a UV-clear flat bottom 126 

microwell platef. Absorbance was read at 224nm and standard and sample concentrations 127 

calculated using multi-detection microplate data collection and analysis softwareg. A mean 128 

value of duplicate results showing acceptable agreement was used for subsequent statistical 129 

analyses. 130 
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 131 

Experimental designs 132 

Within each set of comparative experiments, the order of runs was randomised. For each 133 

experiment, the MDI device was shaken for 30s prior to each run and two ‘waste’ actuations 134 

were performed prior to connecting the MDI to the spacer. Constant airflow was established 135 

prior to aerosol generation. All comparative experiments involved 8 repetitions of the delivery 136 

of 10 x 100g actuations (total 1mg salbutamol) with the exception of Experiment 3 (effect of 137 

rapid actuations), whereby 8 repetitions of 8 x 100g actuations (total 0.8mg salbutamol) were 138 

delivered .The experimental designs are summarised in Table 1. Briefly, Experiment 1 139 

compared 8 repeats of 10 actuations delivered at 5 s intervals without removing the MDI from 140 

the spacer with 8 repeats of 10 actuations, each preceded by a 30s period of MDI shaking; 141 

Experiment 2 compared 3 sets of 8 repeats of 10 actuations delivered at 5s intervals; each set 142 

differing with respect to the direction of actuation within the spacer (with the output nozzle 143 

horizontal or at 10° or 20° above the horizontal) (Figure 1c); Experiment 3 compared 3 sets of 144 

8 repeats of 8 actuations (MDI actuated in a horizontal direction), either delivered individually 145 

at 5s intervals, as 4 x double actuations in rapid succession (approximately 2 actuations per 146 

second) or as 2 x quadruple actuations in rapid succession (approximately 2 actuations per 147 

second); the Optimal Delivery Experiment measured the efficiency of salbutamol delivery 148 

under presumed optimal delivery conditions using selected data derived from Experiments 2 149 

and 3 (horizontal actuation of the MDI and 5s interval between individual actuations).  150 

 151 

Statistical analyses 152 
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For the comparative delivery experiments, values are presented as, and analyses applied to, 153 

measured salbutamol expressed as a percentage of the anticipated total aerosolised salbutamol 154 

actuated (median and range) (Experiments 1 and 2 – 1mg; Experiment 3 – 800g). When only 155 

2 experimental conditions were compared, a Mann Whitney test for non-parametric data was 156 

applied directly. When more than 2 experimental conditions were compared, a Mann Whitney 157 

test for non-parametric data was applied only if differences were revealed by a Kruskal-Wallis 158 

analysis. Significance was assumed at P<0.05. For the Optimal Delivery Experiment, 159 

salbutamol delivery is expressed as both percentage (median and range) anticipated total 160 

aerosolised salbutamol per series of actuations and micrograms salbutamol per actuation (mean 161 

and SD). The fine (<5m) particle fraction is expressed as a percentage (mean and SD) per 162 

actuation and the mean aerodynamic particle size is expressed in m (mean and SD) per 163 

actuation. 164 

 165 

Results 166 

Optimal delivery measurement 167 

Data relating to percentage of the anticipated total aerosolised salbutamol (assuming 100g per 168 

actuation) deposited within the spacer and the different stages of the NGI are summarised in 169 

Figure 2. The greatest deposition of aerosolised salbutamol was within stage 4 (23% [8-33]) of 170 

the NGI, the spacer (21% [8-32]) and stage 3 (17% [6-31])  of the NGI, followed by stages 5 171 

(6% [3-11]) and 2 (6% [2-10]). 172 

The mean (+ SD) measured output (per single 100g actuation) from the MDI was 75+16g, 173 

with a mean calculated aerosol delivery to the NGI of 53+18g, of which, 48+16g was within 174 

the “fine particle” (<5m) range, equating to a fine particle fraction of 89.6+2.4%. The mass 175 

median aerodynamic diameter (MMAD) of the aerosol, calculated over 16 repetitions (8 from 176 
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Experiments 2 and 3, respectively), was 2.52+0.29m (namely 50% of the total sample mass 177 

was present in particles with aerodynamic diameters <2.5μm, and 50% was present in particles 178 

having an aerodynamic diameter >2.52μm, with a geometric standard deviation of 179 

1.66+0.16m. 180 

 181 

Experiment 1: Effect of shaking the MDI prior to each sequential actuation 182 

There was no significant difference between shaking the MDI at the beginning of 10 actuations 183 

and shaking the MDI prior to each of the 10 actuations with regard to percentage of total 184 

salbutamol delivered to the NGI (43% [20-66] versus 41% [17-60], respectively) or percentage 185 

of total salbutamol delivered to each stage of the NGI (Figure 3). 186 

 187 

Experiment 2: Effect of angulation of the MDI within the spacer 188 

Compared with a horizontal orientation of MDI output nozzle, there was no significant effect 189 

of the other MDI angulations (10° and 20° upward deviation) on percent salbutamol delivered 190 

to the spacer, the NGI or the NGI and spacer combined.  There was a statistically significant, 191 

yet small effect of MDI angulation on the percent salbutamol delivered to stage 8 (P=0.035) of 192 

the NGI, whereby the 10° angulation resulted in significantly (P=0.005) less salbutamol 193 

delivery than the horizontal orientation (0.4% [0-0.7] vs 0.8% [0.4-1.4]; P=0.005); otherwise 194 

there was no significant effect of MDI angulation on salbutamol delivery to any of the NGI 195 

stages (Figure 4).  196 

When considering only the median drug delivery calculated from the 3 experimental 197 

conditions, increasing the MDI angle from a horizontal orientation to a 20° upward deviation 198 

resulted in a 15% reduction in total output to the NGI and a 24% increase in retention within 199 

the spacer. 200 
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Experiment 3: Effect of multiple rapid MDI actuations on salbutamol delivery 201 

Compared with 8 single actuations, there was no significant effect of multiple rapid actuations 202 

(4x2 or 2x4) on percent salbutamol delivered to the spacer, the NGI or the NGI and spacer 203 

combined.  There was a statistically significant, yet small effect of multiple rapid actuations on 204 

the percent salbutamol delivered to stages 1 (P=0.007), 2 (P=0.032) and 8 (P=0.032) of the 205 

NGI (Figure 5). Four x 2 rapid actuations resulted in significantly less salbutamol delivery to 206 

stages 1 (0.7% [0-1.1] vs 1.1% [0.8-1.5]; P=0.021) and 2 (4.9% [2.4-5.7] vs 6.8% [4.4-8.3]; 207 

P=0.01) than 8 x single actuations. Two x 4 rapid actuations resulted in significantly less 208 

salbutamol delivery to stages 1 (0.1% [0-1.1] vs 1.1% [0.8-1.5]; P=0.007) and 8 (0% [0-1.0] vs 209 

0.5% [0-1.0]; P=0.025) than 8 x single actuations and to stage 8 than 4 x 2 rapid actuations (0% 210 

[0-1.0] vs 0.3% [0-1.0]; P=0.021). 211 

When considering only the median drug delivery calculated from the 3 experimental 212 

conditions, 4 sets of double rapid actuations resulted in a 15% reduction in total MDI output, 213 

16% reduction in drug delivery to the NGI and 14% reduction to stages 3 and 4 of the NGI. In 214 

comparison, 2 sets of quadruple rapid actuations resulted in a 21% reduction in total MDI 215 

output, 24% reduction in drug delivery to the NGI and 21% reduction to stages 3 and 4 of the 216 

NGI.  217 

 218 

Discussion 219 

Despite the increasing popularity of inhalation therapy in the horse, the results of this study 220 

highlighted a variety of important considerations with this mode of drug delivery. Importantly, 221 

only half of the anticipated MDI output was detected within the NGI. Although a significant 222 

proportion of the deficit could be explained by drug retention within the spacer, there remained 223 

a proportion which could not be accounted for following sampling from all NGI stages 224 
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(including the throat). Therefore, either the MDI did not always achieve a 100g output during 225 

each actuation or drug was deposited within other components of the system which were not 226 

subsequently sampled or there was a failure to optimally solubilise all precipitated drug within 227 

each NGI component. It is unlikely that significant losses occurred within the tubing between 228 

the spacer and NGI. In contrast, significant drug losses may have occurred around the exit 229 

nozzle of the MDI because a white residue was often visible at this site during cleaning of the 230 

MDI prior to each experiment. Importantly, losses could not be attributed to drug depletion 231 

within the MDI as the number of actuations per MDI device were recorded and the MDI 232 

replaced well in advance of the calculated drug depletion threshold. This is an important 233 

consideration during therapeutic use of such devices as the drug will often become depleted 234 

prior to depletion of the propellant (Rubin & Durotoye, 2004).  235 

Despite significant losses within the spacer, the drug delivered to the NGI had a consistently 236 

high small particle fraction, with almost 90% of particles being less than 5m. Furthermore, 237 

the calculated MMAD of the aerosol consistently approximated 2.5m, indicating that 50% of 238 

the total sample mass was present in particles with aerodynamic diameters less than 2.5m and 239 

50% was present in particles having an aerodynamic diameter greater than 2.5m, with a 240 

geometric standard deviation (GSD) of 1.66+0.16m. This narrow range of particle size 241 

distribution is predicted with an MDI device and contrasts with the more heterodispersed 242 

distribution associated with other methods of drug aerosolisation (e.g. ultrasonic, and mesh 243 

nebulisation). For example, using the same experimental set up, the authors have demonstrated 244 

the generation of an aerosol with a MMAD of 1.4m and a GSD of 3.2m using an active mesh 245 

nebuliser devicei commonly used in equine practice (unpublished observations).  246 

 247 
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Although the MDI-generated particle size distribution was considered to be optimal for drug 248 

delivery to the smaller airways, it should be emphasised that such assumptions, as they relate 249 

to equine inhalation therapy, are largely based on human patient derived data. With regard to 250 

the prediction of the likelihood of an aerosol penetrating each region of the human respiratory 251 

tract, The American Conference of Governmental Industrial Hygienists (ACGIH) describes 252 

three fractions (inhalable, thoracic, respirable) generally defined by the aerodynamic diameter 253 

at which 50% penetration of that fraction occurs (50% cut-point), with the 50% cut-point for 254 

the respirable fraction generally assumed to be 4m. The likelihood of significant differences 255 

between the size-dependent penetration of particles into the equine lung and the human lung 256 

has been proposed (Ivester et al., 2014). Although the obligate nasal breathing strategy of 257 

horses may predominantly influence the deposition of larger particles, other differences may 258 

bring into question the appropriateness of applying human derived data to the horse in relation 259 

to the deposition of smaller particles, such as those generated by a MDI. These include the 260 

considerably greater (10 to 12-fold) resting tidal volume in the horse and its role in determining 261 

linear flow rates within the respiratory tract, with a resultant effect on particle impaction 262 

(Ivester et al., 2014). However, in the absence of experimental data to define equine-specific 263 

particle fractions or detailed anatomic descriptions of airway dimensions which would permit 264 

the construction of predictive models of particle penetration, it is generally assumed that 265 

particles less than 4-5m are likely to reach the lower airways in the horse (Hoffman, 1997; 266 

Lavoie, 2001).  267 

 268 

An airflow of 60L/min was used as it more closely approximated the minute volume of an adult 269 

horse. The calculation of the particle characteristics (e.g. MMAD and fine particle fraction) 270 

was reliant on a constant flow rate through the system and the flow rate applied determines the 271 

region of particle deposition within the NGI. However, this differs markedly from the 272 
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fluctuating inspiratory flow rates associated with tidal breathing at rest which can typically 273 

reach peaks of 120-240L/min. It is likely that the application of a variable flow rate would have 274 

had some influence on the degree of drug delivery to the NGI, although the nature of this 275 

influence is difficult to predict. Peaks in fluctuating airflow may promote particle impaction at 276 

the NGI throat, thus reducing delivery; alternatively, periods of zero flow may facilitate aerosol 277 

suspension within the spacer, thus increasing delivery (Duvivier et al., 1997). In human 278 

respiratory medicine, the generation of a slow inspiratory flow rate immediately following 279 

actuation is recommended to maximise particle delivery to the peripheral airways (Everard et 280 

al., 1995; Wildhaber et al., 1996). 281 

 282 

Even under optimal delivery conditions, this study revealed a significant degree of variation 283 

both in drug retention in the spacer and drug delivery to all stages of the NGI. This variation 284 

could not be attributed to repeated use of the MDI as no association was detected between drug 285 

output during each series of actuations and the total number of previous actuations of the device 286 

(data not shown). Although prior knowledge of the predicted losses prior to aerosol delivery to 287 

the patient (e.g. within the spacer) will permit some degree of compensation (i.e. delivery of a 288 

larger dose), it is not possible to compensate for the unknown delivery achieved with each 289 

actuation or series of actuations. The clinical significance of this variation is greatest in relation 290 

to the sites of greatest particle deposition; namely within the spacer (CoV - 32%) and stages 3 291 

and 4 (CoV – 49 and 41%, respectively). This equated to a 5-fold difference between the lowest 292 

and highest deposition in stages 3 and 4 out of the 16 repetitions performed in the Optimal 293 

Delivery Experiment. Such variation in delivery has previously been reported by Votion et al., 294 

(1997) in relation to both ultrasonic nebulisation and jet aerosol delivery and by Janssens et al., 295 

(1999) in relation to MDI delivery via a spacer device in asthmatic children, whereby 296 

coefficient of variance values ranging from 23 to 37% were reported, depending on the spacers 297 
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used. Such variation will inevitably render any efforts to make accurate dosing 298 

recommendations problematic; consequently, recommended doses should be used only as 299 

guidelines and the drug should ultimately be administered “to effect” Lavoie, 2001).  300 

All the data used for the optimal delivery experiment were derived from experiments 2 and 3, 301 

whereby a constant horizontal orientation of the MDI nozzle was maintained within the spacer. 302 

Therefore the variation in both aerosol delivery to the NGI and retention within the spacer 303 

could not be attributed to the occasional actuation in a suboptimal direction resulting in the 304 

high velocity propulsion of drug directly onto the inner surface of the spacer. Furthermore, the 305 

coefficient of variance of drug delivered to the NGI in experiment 1, whereby the MDI device 306 

was not secured in position, was no greater than that derived from the data included in the 307 

Optimal Delivery Experiment. Indeed, the results of experiment 2 confirmed that a 20° 308 

deviation from the optimal direction of actuation failed to significantly alter the percent 309 

salbutamol delivered to the spacer, the NGI or the NGI and spacer combined. Despite this lack 310 

of statistical significance, which may partly be attributable to the wide variation in drug 311 

delivery between each series of actuations, there was an obvious trend towards a lower drug 312 

delivery to the NGI and a greater drug retention within the spacer with increasing angulation 313 

of the MDI device.  314 

Owner compliance with respect to the correct use of the MDI device constitutes a major factor 315 

in the likelihood of success of inhalation therapy in the horse. Consequently, instructions are 316 

regularly provided by the attending clinician, highlighting the “dos” and “don’ts” of MDI and 317 

spacer use which are largely based on recommendations applied within the medical profession. 318 

These generally involve factors such as shaking the MDI prior to each actuation, exhaling fully 319 

prior to actuation, holding the MDI vertically, coinciding actuation with inspiration, adopting 320 

a slow inspiratory effort, initiating only a single actuation per breath, and subsequent breath 321 

holding for a minimum of 5s (Resnick et al., 1996). However, despite the relative simplicity of 322 
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these steps, several studies have revealed poor knowledge of correct MDI use protocol, 323 

particularly amongst medical professionals (Jones et al., 1995; Resnick et al., 1996; Stelmach 324 

et al., 2007). Furthermore, certain studies have identified particular recommendations to be 325 

inappropriate and potentially detrimental with regard to their potential influence on user 326 

compliance (Everard et al., 1995). Such recommendations are likely to have greater influences 327 

on compliance when they significantly increase the time required for drug administration; 328 

particularly in equine inhalation therapy when multiple actuations are required.  329 

Everard et al., (1995) clearly demonstrated the importance of MDI shaking prior to drug 330 

administration, likely reflecting the importance of mixing the active drug and the propellant 331 

within the MDI device. However, the current study failed to demonstrate any significant benefit 332 

of shaking the MDI device before each actuation in a series of sequential actuations, in relation 333 

to both total and respirable particle delivery to the NGI. This finding likely reflects an 334 

insufficient time period (5s) between each actuation to permit separation of the salbutamol and 335 

the propellant. Everard et al., (1995) also demonstrated a reduction in both total and respirable 336 

particle generation with multiple actuations in rapid succession. Although the current study 337 

failed to identify a statistically significant effect of rapid double and quadruple actuations on 338 

drug delivery to the spacer, NGI or spacer and NGI combined, there was a trend for increased 339 

rapid sequential actuations to reduce drug delivery. However, in light of the small magnitude 340 

of the reduction, this could readily be compensated for by a small increase the number of 341 

actuations; for example, an extra actuation for every 4 rapid consecutive actuations.  342 

In conclusion, this study demonstrates the difficulties in predicting the magnitude of drug 343 

delivery to the peripheral airways using an MDI and equine spacer device. Therefore, when 344 

selecting the most appropriate route of drug administration, this shortcoming must be 345 

considered and weighed up against the advantages of this therapeutic approach, including the 346 

reduced risk of systemic adverse drug effects and relatively lower drug costs. Furthermore, the 347 
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apparent lack of requirement to shake the MDI prior to each actuation and the limited effect of 348 

multiple rapid actuations can significantly reduce the time required to administer the treatment 349 

and therefore have the potential to improve owner compliance with regard to MDI use in the 350 

horse. Finally, it is important to appreciate that any conclusions derived from this study can 351 

only be applied clinically to the use of salbutamol. It remains unknown whether similar results 352 

would be obtained with other drug aerosols generated by an MDI device (e.g. corticosteroids) 353 

as differences in viscosity, density and surface tension have the potential to influence both the 354 

particle size distribution of the aerosol generated as well as the rapidity with which the drug 355 

and propellant separate between actuations. 356 

 357 

Manufacturers 358 

a Next Generation Impactor, Copley Scientific, Colwick Quays Business Park, Private Road No. 2, 359 
Colwick,Nottingham, NG4 2JY, United Kingdom 360 

b Ventolin® Evohaler® 100 micrograms, Glaxo Wellcome UK Limited, Stockley Park, West Uxbridge Middlesex 361 
UB11 1BT 362 

c Equine Haler®, Jørgen Kruuse A/S, Havretoften 4 DK-5550 Langeskov Denmark  363 

d Copley High Capacity Pump, Copley Scientific, Colwick Quays Business Park, Private Road No. 2, 364 
Colwick,Nottingham, NG4 2JY, United Kingdom 365 

e S5013 Sigma-Aldrich Company Ltd. Dorset, England 366 

f Corning® 3675 96 well plates, UV-transparent , Sigma-Aldrich Company Ltd. Dorset, England 367 

g Synergy HT Biotek, BioTek Instruments Inc 2005, Papermakers House, Rivenhall Road, Swindon SN5 7BD, 368 
United Kingdom 369 

h Copley Inhaler Testing Data Analysis software (CITDAS), Copley Scientific, Colwick Quays Business Park, 370 
Private Road No. 2, Colwick,Nottingham, NG4 2JY, United Kingdom 371 

i Flexineb, Nortev, Unit 18, Claregalway Corporate Park, Galway H91 KFX3, Ireland  372 
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Figures 444 

Figure 1 (a-c): Experimental setup. (a) The spacer (S) was fixed to the throat (black arrow) of 445 

the NGI in a horizontal position and the MDI was inserted into the spacer adjacent to the 446 

inspiratory valves (red arrow). (b) The NGI was comprised of a throat (not shown) and a series 447 

of eight stages through which air (containing the generated aerosol) flowed at a constant flow 448 

rate via pore sizes of sequentially decreasing diameter and consisting of eight particle collection 449 

plates (labelled 1-8). (c) For Experiment 2, the orientation of the MDI nozzle relative to the 450 

horizontal position was determined by its attachment to a combination square angle finder 451 

which was fixed to the bench.  452 

 453 

  454 
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Figure 2: Box and whiskers plot depicting the percentage of anticipated total aerosolised 455 

salbutamol (assuming 100g per actuation) deposited within the spacer and the different stages 456 

of the NGI (throat and stages 1 – 8) under perceived optimal conditions. Data were derived 457 

from Experiments 2 and 3 when the MDI nozzle was orientated in a horizontal position with a 458 

5 s delay between actuations. Median (horizontal line), interquartile range (box limits) and 459 

range (whisker limits) derived from 2 x 8 repeats of either 10 (Experiment 2) or 8 (Experiment 460 

3) actuations. 461 

 462 

  463 
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Figure 3: Box and whiskers plot depicting the percentage of anticipated total aerosolised 464 

salbutamol (assuming 100g per actuation) deposited within the different stages of the NGI 465 

(throat and stages 1 – 8) when the MDI was either shaken for 30s prior to the first actuation 466 

and then actuated at 5 s intervals without further shaking (solid boxes) or shaken for 30s prior 467 

to each actuation (open boxes). Median (horizontal line), interquartile range (box limits) and 468 

range (whisker limits) derived from 2 x 8 repeats of 10 actuations. Asterisk = outlier. 469 

 470 

  471 
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Figure 4: Box and whiskers plot depicting the percentage of anticipated total aerosolised 472 

salbutamol (assuming 100g per actuation) deposited within the spacer and the different stages 473 

of the NGI (throat and stages 1 – 8) following actuation of the MDI device when the output 474 

nozzle was horizontal (open boxes) or deviated 10° (hatched boxes) or 20° (solid boxes) above 475 

the horizontal. Median (horizontal line), interquartile range (box limits) and range (whisker 476 

limits) derived from 3 x 8 repeats of 10 actuations. Asterisk = outlier; horizontal bar – limits 477 

depict significantly different data sets (P<0.05). 478 

 479 

  480 
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Figure 5: Box and whiskers plot depicting the percentage of anticipated total aerosolised 481 

salbutamol (assuming 100g per actuation) deposited within the spacer and the different stages 482 

of the NGI (throat and stages 1 – 8) following 8 actuations, either delivered individually at 5s 483 

intervals (open boxes), as 4 x double actuations in rapid succession (hatched boxes) or as 2 x 484 

quadruple actuations in rapid succession (solid boxes). Median (horizontal line), interquartile 485 

range (box limits) and range (whisker limits) derived from 3 x 8 repeats of 8 actuations. 486 

Asterisk = outlier; horizontal bar – limits depict significantly different data sets (P<0.05). 487 

 488 

489 
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Table 1: Summary of experimental designs. Shaded cell indicates the comparisons made for each experiment. Bold text indicates the data used to measure 

aerosol characteristics in the Optimal Delivery Experiment. 

 MDI shake MDI angulation Rapidity of successive actuations 

Experiment 1 
single shake prior to series of 10 actuations 

versus 
shake prior to each actuation 

angle of actuation not standardised  10 x single actuations 

Experiment 2 single shake prior to series of 10 actuations 

horizontal 
versus 

10° upward angulation 
versus 

20° upward angulation 

10 x single actuations 

Experiment 3 single shake prior to series of 8 actuations horizontal 

8 x single actuations 
versus 

4 x double rapid actuations 
versus 

2 x quadruple rapid actuations 

Optimal Delivery 
Experiment  

single shake prior to series of 8 or 10 actuations horizontal 8 or 10 x single actuations 
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