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Abstract 

Therapeutic angiogenesis is a major goal of regenerative medicine, but no clinically approved small 

molecule exists that enhances new blood vessel formation. Here we show, using a phenotype-driven 

high-content imaging screen of an annotated chemical library of 1280 bioactive small molecules, that the 

retinoid agonist Tazarotene, enhances in vitro angiogenesis, promoting branching morphogenesis, and 

tubule remodeling. The pro-angiogenic phenotype is mediated by Retinoic Acid Receptor (RAR) but not 

Retinoic X Receptor (RXR) activation, and is characterized by secretion of the pro-angiogenic factors 

Hepatocyte Growth Factor (HGF), Vascular Endothelial Growth Factor (VEGFA), Plasminogen 

Activator, Urokinase (PLAU) and Placental Growth Factor (PGF), and reduced secretion of the anti-

angiogenic factor Pentraxin-3 (PTX3) from adjacent fibroblasts. In vivo, Tazarotene enhanced the 

growth of mature and functional microvessels in Matrigel implants and wound healing models, and 

increased blood flow. Notably, in ear punch wound healing model, Tazarotene promoted tissue repair 

characterized by rapid ear punch closure with normal-appearing skin containing new hair follicles, and 

maturing collagen fibers. Our study suggests that Tazarotene, an FDA-approved small molecule, could 

be potentially exploited for therapeutic applications in neovascularization and wound healing. 

 

Keywords: High content screening, Tazarotene, Retinoic acid, Endothelial cell, Angiogenesis, Wound 

healing 
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Introduction 

Angiogenesis, the growth of new vessels from pre-existing ones, plays a critical role in tissue renewal 

and repair. Insufficient angiogenic response occurs in diseases, such as ischemic heart disease, 

peripheral arterial disease, Alzheimer’s disease, ulcers, and chronic wound healing causing dysfunction 

of repair and regeneration1-3. Currently no clinically approved small molecule exists that enhances new 

blood vessel formation.  Clinical efforts to develop pro-angiogenic therapies have largely focused on 

administration of single pro-angiogenic growth factors such as VEGF and FGF using recombinant 

protein or gene transfer technologies4,5, but these are currently viewed as being only modestly 

successful6, possibly because therapeutically beneficial levels of growth factor are not achieved7, or that 

the cooperative molecular interactions necessary for the establishment of a functional vascular network 

are not achieved through a single growth factor8, or indeed that such complex molecular interactions and 

therapeutic targets are only partially understood. 

Phenotype-driven approaches can overcome this knowledge gap by minimizing assumptions regarding 

molecular interactions and targets and instead focusing directly on functional aspects of vascular 

network formation9. The unbiased identification of therapeutically active molecules using direct 

phenotypic screens is now possible using high-content microscopy and image analysis algorithms to 

generate quantitative phenotypic data10. Provided an appropriate in vitro model of in vivo angiogenesis is 

used, such phenotype-driven screens could identify pro-angiogenic molecules that could be 

therapeutically translated.   

The growth of new functional blood vessel network is determined by the extent of branching and 

tubulogenesis. The endothelial tube formation assay recapitulates most cellular process involves in the 

assembly of endothelial cells into a primary plexus (e.g. cell-cell, cell-matrix interaction) and has a high 

predictive value for angiogenesis-related cellular morphogenesis such as vascular branching and, 

suggesting that this is an appropriate model for in vivo angiogenesis11,12. We developed a high content 

imaging approach using the endothelial tube formation assay to screen small molecule libraries with aim 
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of identifying novel therapeutic molecules that enhance new blood vessel growth. Here, we identify and 

characterize Tazarotene, a small molecule that promotes endothelial tubulogenesis and branching. We 

also demonstrate that systemic delivery of Tazarotene stimulates functional neovascularization and 

accelerates wound healing. 

 

Results 

High content screen of small molecule library using endothelial tube formation assay  

The endothelial tube formation assay is quantifiable, rapid, and reproducible, and measures key features 

of angiogenesis such as branching and tubulogenesis13 14. We miniaturized the assay to a 384-well plate 

format, and established a Z’ factor (a statistical measure of assay robustness) for total tube length of 

0.33, which is acceptable for high-throughput cell-based screening (Supplementary Fig. 1). To identify 

small molecules capable of enhancing endothelial tube formation, we screened a Library Of 1280 

Pharmacologically Active Compounds (LOPAC) in a 384-well plate format at a final compound 

concentration of 10 µM. Primary screening of the LOPAC library included four 384-well plates with a 

Z’ factor of 0.48 ±0.13 and a hit rate of 1.1% for tube formation enhancers and 6.2% for inhibitors 

(Supplementary Fig. 2a, Fig. 1). As branching points and total tube length were positively correlated 

(Supplementary Fig. 2b), we used total tube length as the parameter for hit selection, using a B-score 

threshold >+2.6 and <-4 for identifying enhancers and inhibitors respectively. The screen resulted in an 

initial active compound list of 79 inhibitors and 15 enhancers (Supplementary Table 1 & 2). One 

enhancer hit was excluded from the list after visual examination of the well images because of a 

technical artifact. We re-assayed the 14 enhancers using three independent five-point dose dependence 

trials (1.25 µM to 20 µM) in 96-well plates using the same image analysis algorithm used in the primary 

screen. Three compounds increased significantly and consistently the total tube length by more that 15% 

over the negative control (Fig. 2a). To re-confirm the results of the screen, we re-examined three active 

lead compounds in an independent organotypic assay for angiogenesis, in which fibroblasts were co-
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cultured with endothelial cells (Fig. 2b). We found that the dopamine re-uptake inhibitor (GBR-12909) 

reduced tubulogenesis and branching whereas the P38 kinase inhibitor (SB202190) modestly increased 

the tubulogenesis and branching. The retinoid agonist Tazarotene showed a robust pro-angiogenic 

activity reflected by around 60% increase in total tube length and branching points compared to controls, 

and was therefore followed-up further. 

 

Tazarotene promotes endothelial tube remodeling and branching 

Tazarotene is a synthetic third generation retinoid that is approved by the US Food and Drug 

Administration for the topical treatment of plaque psoriasis and acne vulgaris15. We measured the EC50 

of Tazarotene (concentration required to enhance the total tube length by 50%) in the organotypic 

angiogenesis assay. The EC50 of Tazarotene (800 nM) in this assay is comparable to the EC50 of other 

retinoids in cell-based phenotypic assays16, suggesting that enhancement of endothelial tube formation 

was unlikely to be an off-target effect (Fig. 2c). We observed a distinctive pattern of the organotypic 

vascular-like network after treatment of Tazarotene, characterized by highly branched, thinner tubes, 

minimal cell clustering, and increased filopodia formation in the lateral sides of outgrowing endothelial 

tubes (Fig. 2d). The increase in branching triggered by Tazarotene was noted from 3 days following 

endothelial cell seeding onto fibroblasts (the early phase of network formation) (Supplementary Fig. 

3a). To evaluate the behavior of the newly forming endothelial tubes following Tazarotene treatment, 

we traced GFP-expressing HUVECs in co-culture by live cell imaging in the initial phase of network 

formation. Control endothelial cells initially form clusters with minimal remodeling and branch 

formation at this stage (Supplementary Fig. 3b). In contrast, with Tazarotene treatment, endothelial 

cells elongated and sprouted, and endothelial tubes remodeled more rapidly than controls, becoming 

thinner with time (Supplementary Fig. 3b). However, Tazarotene did not affect endothelial cell 

motility in single cell culture or in co-culture measured over 24 hours (Supplementary Fig. 4). 

VEGFR2 & VEGFR3 expression is very low or absent in most adult blood vessels, but expression is up-
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regulated in angiogenic endothelial cells and in endothelial tip cells17,18. We therefore investigated 

VEGFR2 & VEGFR3 expression in cultured endothelial cells after Tazarotene treatment, and found that 

it augmented VEGFR3 but not VEGFR2 expression (Fig 2e). Taken together, these findings show that 

Tazarotene induces sprouting behavior of endothelial cells and tubule remodeling. 

 

Tazarotene promotes angiogenesis via retinoic acid receptor activation 

The biologically active form tazarotenic acid is produced by esterase hydrolysis of tazarotene in the 

skin, and binds to three members of the RAR family of retinoid nuclear receptors, with relatively more 

selectivity for RARβ and RARγ19. We therefore investigated whether the observed pro-angiogenic effect 

of tazarotene is mediated via retinoic acid signaling. We used a pharmacological rather than a genetic 

approach here as combinatorial isoform specific siRNA for the many retinoid receptor isoforms is 

technically challenging. To quantify angiogenesis in the experiment set, we measured multiple 

parameters depicting the vascular-like network in the organotypic angiogenesis assay after different 

treatments. We then hierarchically clustered the compounds into distinct angiogenic phenotypes based 

on four angiogenic parameters: total tube length, branching points, tube thickness and total node area. 

All- trans-retinoic-acid (ATRA) exhibited the most similar pro-angiogenic phenotype to Tazarotene, 

suggesting that effects are via the canonical pathway (Fig. 3a). Similar effects were observed using 9-

cis-retinoic acid, which is an intracellular product of ATRA isomerization, confirming the effects of 

Tazarotene through activation of RAR (Fig. 3a). While the selective pan RXR agonist (SR 11237) 

slightly increased total tube length and branching, endothelial tubes were thicker with greater cell 

clustering (nodes), unlike the Tazarotene- or ATRA-induced phenotypes (Fig. 3a). We next examined 

the effect of isoform selective RAR agonists20,21. We found that selectvie RARβ or RARγ agonists 

(CD2314 and BMS961 respectively) reproduced the distinct pro-angiogenic phenotype of Tazarotene. 

The selective RARα agonist (BMS 753) increased overall tube formation to a lesser extent than RARβ 

or RARγ agonists (Fig. 3a). As a complementary approach, we also examined the effect of RAR and 
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RXR blockade on Tazarotene-induced angiogenesis. The addition of the pan-retinoic acid receptor 

inverse agonist (BMS493) attenuated the ability of Tazarotene to enhance the angiogenesis. In contrast, 

the incubation of Tazarotene with an RXR antagonist (UVI3003)22 did not affect the pro-angiogenic 

phenotype of Tazarotene (Fig. 3b). These data clearly indicate that the effect of Tazarotene on the 

branching tubule remodeling is only mediated through RAR binding. We next investigated the effect of 

Liarozole, a retinoic acid metabolic blocking agent that inhibits the cytochrome P450 (CYP26A1)-

dependent catabolism of retinoic acid, thereby increasing intracellular retinoic acid23. Liarozole 

treatment induced the tube formation and increased endothelial branching compared to controls (Fig. 

3c). We next examined the expression of RARRES1, a specific downstream target gene for retinoic 

signaling activation24. Tazarotene induced RARRES1 mRNA expression 6-fold in endothelial cells and 

40-fold in fibroblasts (Fig. 3d). Taken together these data indicate that the pro-angiogenic effect of 

Tazarotene is through the canonical retinoic acid-signaling pathway via RAR and not RXR activation.  

 

Tazarotene enhances the pro-angiogenic paracrine effects of fibroblasts  

Given the known link between cell growth and angiogenesis, we next evaluated cell proliferation 

following Tazarotene treatment. When endothelial cells were cultured alone, their cell numbers (as 

measured by DAPI) were decreased slightly after treatment with Tazarotene doses up to 10 µfgM but the 

decrease was more pronounced at 20 µM. The level of DNA synthesis (as measured by EdU 

incorporation) did not change significantly (Fig. 4a). In the organotypic angiogenesis co-culture 

experiments, endothelial cells were stained with anti-CD31 antibody and subsequently the total cell 

number and percentage of EdU-positive cells were quantified in both endothelial cells (CD31+) and 

fibroblasts (CD31-). We found that Tazarotene treatment did not affect either endothelial or fibroblast 

cell numbers significantly, at doses up to 10 µM, but reduced fibroblast cell numbers at 20 µM. We also 

observed an increase in DNA synthesis of fibroblasts at doses from 1-10 µM (Fig. 4b). Thus there does 
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not appear to be a significant effect of Tazarotene on endothelial cell number or DNA synthesis when 

they are co-cultured with fibroblasts.   

As retinoic acid can induce vascular growth factors such as VEGF and HGF25,26, we next explored the 

effect of Tazarotene on the secretion of angiogenesis-related factors profile from fibroblasts. Using a 

comparative proteome profiler array of 55 different cytokines we found that Tazarotene increased the 

secretion of the vascular growth factors VEGFA, HGF, PGF and PLAU27) whereas the secretion of 

PTX3, an inhibitor of angiogenesis28 was decreased (Fig. 4c). We found that Tazarotene up regulated 

PGF mRNA expression, whereas PTX3 mRNA expression was decreased (Fig. 4d). Furthermore, we 

validated the enhanced secretion of PGF and PTX3 by ELISA (Fig. 4e). These data suggest that the pro-

angiogenic effect of Tazarotene is more pronounced in the co-culture angiogenesis model partly because 

of paracrine effects, which amplify the angiogenic response. 

 

Tazarotene stimulates in vivo functional neovascularization 

To investigate whether systemically administered Tazarotene enhanced in vivo neovascularization, we 

tested its efficacy in Matrigel implants implanted in mice. Intra-peritoneal administration of Tazarotene 

was well tolerated (Supplementary Fig. 5) and resulted in enhanced expression of hepatic RARRES1 (a 

retinoid pathway target22) indicating that Tazarotene was systemically bioactive (Supplementary Fig. 

6). The invasion and the growth of microvessels into the Matrigel implant was quantified by CD31 and 

�-smooth muscle (SM) actin staining of endothelium and mural cells, and was significantly higher 

following systemic Tazarotene. Moreover, the neovessels formed appeared more mature and covered by 

mural cells (α-SM actin positive cells) (Fig. 5b). We quantified neovessel perfusion by perfusing mice 

with Microfil, and imaged dissected plugs using microCT. Microvessels penetrating the Matrigel 

implant are more abundant in the Tazarotene treated group (7-folds versus control) and invading 

neovessels penetrate deeper into the gel (Fig. 5c). To visualize the structure and perfusion of 

microvasculature at a cellular level, we perfused mice with biotinylated-isolectinB4. Thick section 
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preparations of Matrigel revealed that Tazarotene increased the formation of microvessels with an 

enhanced capacity to receive flow whereas fewer microvessels could be identified in control mice (Fig. 

5d). 

 

Tazarotene enhances wound vascularization and healing  

Angiogenesis is a critical part of the normal healing process. New blood vessels deliver oxygen, 

nutrients, and essential growth factors to injured tissues29. To assess its effect on wound angiogenesis, 

first we used an ear punch wound model. The ear punch model is an established model of wound healing 

model and has been widely used to study wound healing, tissue regeneration, innervation and 

neovascularization 30, 31, 32, 33. In particular, quantitative analysis of new vessel formation and wound 

morphometry is feasible in this model. Tazarotene was injected intra-peritoneallly for six days following 

injury. The group treated with Tazarotene showed a remarkable acceleration of wound closure measured 

after 12 days (Fig. 6a). Blood flow and tissue perfusion was measured by contrast speckle laser imaging 

at 6 and 12 days following injury and was significantly enhanced in the regenerating area of the 

Tazarotene-treated group (Fig. 6b). Histologically, a major difference in ear hole size with neogenesis of 

hair follicles (Fig. 6c, Supplementary Fig. 7) was apparent at the wound margins by day 14 after 

Tazarotene. The re-differentiation events such as hair follicle growth are considered later morphogenetic 

events in the regenerative healing process34. Collagen is a major extracellular matrix component of skin 

and essential for the mechanical properties of the wounded region. We assessed the collagen fiber 

networks using staining with picrosirius red (a dye for collagen fiber maturity35). The new and mature 

collagen levels were increased in the regenerated area in the Tazarotene-treated group compared to the 

control group. Collagen fiber morphology and organization was close to that observed in the normal skin 

in the Tazarotene treated group (Fig. 6c). Proliferating cells were more abundant in regenerating area of 

the Tazarotene-treated group. The majority of the proliferating cells were epithelial (K14 positive) cells). 

Fewer proliferating cells were detected in the vessels or myofibroblasts (α-smooth muscle cell positive 
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cells) (Fig. 6d). Blood vessel densities in the regenerated ear margin of Tazarotene-treated mice were 

4.5-folds greater than that seen in Vehicle-treated mice (Fig. 6e). Confocal microscopy of ear whole 

mount revealed an augmented neovessel growth in the regenerated tissue of the Tazarotene-treated 

group at 14 days after injury. Notable, a significant increase of sprouting vessels towards the wound 

edge is detected as early as 4 days after injury (Fig 6f,g). The ear punch model provides cartilage as the 

wound bed. To further explore the therapeutic potential of Tazarotene in a model that does not involve 

cartilage, we have used a dermal excisional wound model. In agreement with our previous findings in 

the ear punch wound model, we found that animals treated with Tazarotene showed an acceleration of 

wound healing (Fig 7a). Histological analysis revealed that Tazarotene increased wound 

epithelialization (Fig 7b) and enhanced new microvessel growth (Fig 7c) in the wound bed compared to 

the control group. Together, these data show that Tazarotene induces wound tissue repair associated 

with increased neovascularization of the wound bed. 

 

Discussion 

In the present study, we used high content imaging techniques and a combination of two phenotypic 

angiogenesis assays to screen a small molecule library with well-defined targets.  This resulted in the 

identification of Tazarotene, a third generation retinoid agonist, as a pro-angiogenic small molecule. We 

showed that Tazarotene promotes blood vessel growth and functional neovascularization in several in 

vitro and in vivo systems that model angiogenesis.  

At a cellular level, we show that Tazarotene increases the generation of endothelial cell filopodial 

protrusions and tubule remodeling, resulting in a highly branched vascular network. The vascular 

network can be grown through elongation or branching of adjacent endothelial cells. When endothelial 

cells are seeded onto fibroblasts, they initially form clusters, which remodel later and sprout to form a 

vascular-like network36. Notably, Tazarotene predominantly accelerates this process of remodeling, by 

enhancing the differentiation of endothelial cells towards an elongated phenotype with increased 
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filopodia formation. Confirming this, Tazarotene enhances VEGFR3 transcription in endothelial cells. 

Importantly, VEGFR3 is increased in sprouting endothelial cells during the growth of new vessels17, and 

blockade of VEGFR3 signaling results in decreased sprouting, vascular density, vessel branching and 

endothelial cell proliferation37. By following tubule formation in co-cultures by time-lapse microscopy, 

it appears that Tazarotene enhances tubule remodeling rather than cell migration.  

Retinoids act via RARs and RXRs, nuclear transcription factors, which form homo and heterodimers 

that bind the enhancers of retinoid-responsive genes38. Using a pharmacological approach, we showed 

that the angiogenic phenotype induced by Tazarotene is dependent on the specific activation of RARs 

but not RXRs. The resemblance of the RARβ and RARγ dependent pro-angiogenic phenotypes in vitro 

is consistent with the binding of the active form of Tazarotene to all three RARs with increased 

selectivity for RARβ and RARγ, The induction of RARRES1 – a gene that is up regulated by RAR but 

not RXR specific synthetic retinoids24 – by Tazarotene in both endothelial cells and fibroblasts also 

supports the idea that RARs are instrumental in driving the Tazarotene-generated angiogenic phenotype. 

This is a novel supporting evidence that Retinoic acid can have angiogenesis-promoting activity 39. 

We showed that blockade of retinoic acid degradation, which leads to increase the intracellular level of 

retinoic acid, induces the sprouting angiogenic behavior of endothelial cells similar to Tazarotene. The 

intracellular level of retinoic acid is maintained by the balance between its synthesis and degradation 

into inactive products, and is regulated by an enzymatic network in which retinol dehydrogenases 

(RDH) and retinaldehyde dehydrogenases (RALDHs) synthesize, while cytochrome the P450 CYP26 

degrades retinoic acid40. This generates gradients of retinoic acid signaling activity that are distributed in 

a dynamic spatiotemporal manner to create important control mechanisms during organ 

development41,42. We speculate that such gradients may similarly program the sprouting and remodeling 

process during new vessel formation. The regulation of intracellular retinoic acid availability could thus 

be an important factor in controlling the different cellular events of angiogenesis. 
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In our study, an important observation is that the pro-angiogenic effect of Tazarotene is magnified when 

endothelial cells are co-cultured with fibroblasts, suggesting a role for paracrine secretions from 

fibroblasts in mediating this effect. We observed around 60% enhancement of tube formation when 

Tazarotene was added to endothelial cell/fibroblast co-culture. This is in contrast to around 18% 

enhancement of tube formation when Tazarotene was applied to endothelial cell culture. Consistent with 

this, we demonstrate that Tazarotene induces the secretion of the pro-angiogenic factors VEGFA, HGF, 

PGF43 and PLAU from fibroblasts. Moreover, Tazarotene decreases the secretion of PTX3, an inhibitor 

of angiogenesis 44. 

Our results indicate that in endothelial cell/fibroblast co-culture, Tazarotene enhances human fibroblast 

DNA synthesis. However Ogawa et al 45 reported a reduction in fibroblast DNA synthesis with 

Tazarotene when cultured in isolation.  We speculate that this difference may be due to the experimental 

conditions, the most important being that we used a co-culture with endothelial cells. 

The pro-angiogenic properties of Tazarotene, identified in our cell-based studies, were confirmed in 

relevant in vivo models – Matrigel implant and wound healing. In both models, angiogenesis is preceded 

by fibroblast growth and invasion. In the Matrigel plug model, we show that Tazarotene enhanced the 

formation of an anatomically mature neovessel network that was physiologically functional and able to 

receive blood flow. Moreover, we found that Tazarotene induced sprouting angiogenesis and capillary 

growth from an early stage of the healing process. Capillary growth into the wound allows delivery of 

nutrients, cells, and cytokines that mediate the healing response, and is necessary for metabolite 

removal. Insufficient angiogenesis thus impairs wound healing46. In our study, the induction of 

angiogenesis by Tazarotene was accompanied with histological signs of rapid repair in ear punch 

wounds as evidenced by increased regenerating tissue, establishment of organized mature collagen fiber 

network, increased proliferative activity in wound edges and hair follicle neogenesis. While retinoic acid 

can induce regeneration in a number of different organ systems in vertebrate such as the urodele 

amphibian limb 47, our data show that Tazarotene enhances both functional neovascularization and skin 
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tissue repair in adult mice, which are both essential components of the efficient repair process following 

injury.  

In summary, we demonstrate that Tazarotene promotes neovascularization and tissue repair through its 

action on retinoic acid signaling. At least in part, this is driven by a Tazarotene-induced pro-angiogenic 

paracrine signaling from fibroblasts. Tazarotene is a small molecule with a defined mechanism of action, 

and is approved for topical use by the FDA15. Oral Tazarotene does not appear to be associated with 

adverse events that are typical of oral retinoids, including hypertriglyceridemia and 

hypercholesterolemia48. Thus, re-purposing of Tazarotene could be explored for treatment of 

pathological conditions where circulatory insufficiency is a significant factor for instance in delayed 

wound healing 49.  

 

Materials and Methods  

Chemical compounds 

The LOPAC1280 library (Sigma) is a collection of 1280 pharmacologically active compounds from 56 

pharmacological classes with well-characterized properties. Compounds were dissolved in DMSO and 

transferred to 384-well plates and stored at -20°C. Upon hit identification, all selected enhancer 

compounds including Tazarotene were purchased as powders from Sigma. All compounds were 

dissolved and aliquoted in DMSO at 10mM. RARα selective agonist (BMS753), selective RARβ agonist 

(CD2314), selective RARγ agonist (BMS961), RXR agonist (SR 11237), pan-RAR inverse agonist 

(BMS493), pan RXR antagonist (UVI30003) and Liarozole hydrochloride were purchased from 

TOCRIS. All-trans-Retinoic Acid and 9-cis-Retinoic Acid were purchased from Sigma. 
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Development and miniaturization of endothelial tube formation assay for high throughput 

screenings 

Primary Human Umbilical Endothelial cells “HUVEC” were purchased from Lonza. Cells were 

maintained in endothelial cell Medium (EGM-2™, Lonza). Low passage cells (<5) were used for all 

experiments. The in vitro tube formation assay was performed as previously described for a 96-well 

microplate format13. In our study, we also adapted the assay for 384-well microplate format. Briefly, 

HUVEC were seeded at 15,000 cells per well for 96-well plate or 4,500 cells per well for 384-well plate 

on top of Matrigel (ref.354248, BD Bioscience) after adding compounds and incubated at 37°C, %5 CO2 

for eight hours. HUVEC formed capillary-like vascular structures "tubes" in the presence of the 

Matrigel. The tubes were fixed and stained with Alexa568-conjugated phalloidin (Invitrogen), HCS 

CellMask™ Green (Invitrogen) and DAPI (Invitrogen). Assays were performed in black-walled, clear-

bottom, 96-well and 384-well microplates (Perkin Elmer) suitable for automated fluorescent imaging. 

Images were acquired using a high-content imaging system (Operetta, Perkin Elmer). The raw (.tiff) 

images were then segmented and analyzed to extract the morphological features of vascular-like network 

using fully-automated Metamorph image analysis software (Molecular Devices). The Z’ factor was used 

to measure the robustness of the cell-based assay. It is defined by the following equation: 

 

 

 

Assays with Z>0.3 are considered highly suitable for conducting a high-throughput screening of assays 

with complex cellular systems such as capillary-like network formation50. We found that the most robust 

morphological parameter is total tube length (Z’ factor=0.33). For the actual screen, several other 

parameters depicting the network morphometric were also measured including branching points, average 

tube thickness, total tube area, total node area, tube length per set and segment number. 
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High content screening for regulators of angiogenesis  

Cooled Matrigel (16µl) was dispensed into black 384-well plates (F-bottomed, Cell carrier, Perkin 

Elmer) using liquid handling robotics (JANUS, Perkin Elmer) and incubated for one hour at 37°C. Next, 

library compounds (in 16µl media) were added to a final concentration of 10µM for further 30 min at 

room temperature. Suramin (inhibitor of angiogenesis)44 was added as positive control and 0.5% DMSO 

(Vehicle) was added as negative control. HUVEC (pooled donor, C2519A, Lonza, passage 4) were 

grown in EGM™-2 Media (Lonza). Cells were split using Accutase® (Sigma). Cells were then seeded in 

the prepared plates with compounds and Matrigel at density of 4,500 cells per well in 16µfgl with cell 

dispenser (FlexDrop PLUS) and liquid handling robotics (JANUS). Microplates were incubated for eight 

hours at 37°C, %5 CO2 until endothelial cells form capillary-like vascular structures "tubes". The screen 

was performed in duplicate. 

Endothelial tubes were fixed with paraformaldehyde 4% overnight at 4°C. After washing with PBS, 

cells were permeabilised with 0.1% Triton X-100 in PBS for 10 min. Cells were stained with alexa 

fluor-568 phalliodin (Invitrogen), 1:200 and HCS CellMask™ Green (Invitrogen), 1:5000 for 45 min at 

room temperature. Wells were washed three times with 0.05% TWEEN-20 in PBS.  Next, the plates 

were imaged with a 2x objective using a high-content microcopy system (Operetta, Perkin Elmer). A 

single field which covers the whole well was acquired at two wavelengths to image cell body (CellMask 

green) staining and actin phalloidin staining at exposure times of 50 and 400 milliseconds, respectively. 

The actin-phalloidin images (16-bit depth) were cropped using imageJ (NIH) to extract the region-of-

interest from the row images and to remove the out-of-focus objects in the border area of the well. Each 

resulting well image had a dimension of 400x400 pixels, which covers 45% of the total area of the well. 

Next, the processed images were segmented and analyzed to extract the morphological features of the 

vascular-like network using fully-automated Metamorph image analysis software (Molecular Devices). 

A pixel intensity threshold was set to distinguish actin-labeled endothelial tubes from local background 

along with a minimum and maximum tube width and applied for analysis of all images. 
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The total tube length and branching points reading values were normalized using the B-score method in 

the WebCellHTS2 package51. The hit selection threshold was set at +2.6 for enhancers and at -4.0 for 

inhibitors. R2 correlation between replicates was =0.7. The Z’ factor was used to assess the quality 

control of the screen plates, and was >0.3 in all plates (Supplementary Fig. 2a). The screen data and 

plate QC assessment were visualized and analyzed using Excel (Microsoft), Spotfire (TIBCO, Perkin 

Elmer) and Prism (GraphPad) software.   

 

Co-culture angiogenesis assay 

Adult human dermal fibroblasts (HDF, Lonza) were seeded at density 15,000 cells per well. Next day, 

HUVEC were plated at density 4,000 cells per well on the confluent fibroblast monolayer in 96-well 

plate as described previously52. The interaction of these two cell types gives rise to three-dimensional 

tubules over a period of 5-7 days. The drug is added one hour after plating of HUVEC to avoid potential 

secondary effect of the drug on cell adhesion. The co-cultures were fed with a full-growth factor 

supplemented medium consisting of a 1:1 mixture of medium-106 (Invitrogen): EGM-2 medium. 

Endothelial formed tubes were assessed by immunofluorescence using a mouse anti-human CD31 

monoclonal antibody (ref. BBA7, R&D systems) at 1:100 dilution and goat alexa 568-conjugated anti-

mouse IgG secondary antibody (Invitrogen) at 1:400 dilution. Nuclei were visualized by DAPI staining. 

The endothelial tubes were imaged automatically at 10x magnification using the high-content imaging 

system (Operetta). Typically, nine identically positioned fields were acquired from each well in each 

experiment. Quantification of the angiogenic parameters of formed endothelial network was performed 

automatically using Metamorph software.  

 

Heat map clustering and analysis for phenotypic profiling of compounds 

Prior to hierarchical clustering, data were scaled by performing Z score normalization for each 

angiogenic parameter. Z score–transformed values were then clustered using an unsupervised 
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agglomerative clustering method with an average linkage and a Euclidian distance measurement53. 

Hierarchical clustering of the compound phenotype profiles was carried out using TIBCO Spotfire 

software and data were visualized using the dendrogram for compounds with heat map for angiogenic 

parameter values.  

 

Cell proliferation assay  

Cell proliferation was assessed using Click-iT® EdU Alexa Fluor® 488 HCS kit (ref. C10350, 

Invitrogen) according to the manufacturer’s protocol. Briefly, HUVEC were seeded alone or on HDF 

monolayer in 96-well plates at 7.5×103 cells per well and treated with Tazarotene or Vehicle for 48 h. 

EdU labeling medium (10 µM final concentration) was added to the cell culture and incubated for 6 

hours before fixation. Next, the cultured cells were fixed with 4% paraformaldehyde for 10 min and 

treated with 0.1% Triton X-100 for 15 min at room temperature. After washing with PBS, the samples 

were stained with Click-iT® reaction cocktail working solution at room temperature for 30 min. The 

cells were stained with DAPI at room temperature for 20 min. In co-culture experiments, endothelial 

cells were stained with mouse anti-human CD31 antibody (R&D systems) and subsequent incubation 

with alexa568-conjugated goat anti-mouse IgG secondary antibody (Invitrogen). The plates were imaged 

and quantified using high-content fluorescent microscopy (Operetta). The total cell number and 

percentage of EdU-positive cells was calculated from 9 fields per well using a 10x objective (Harmony 

software, Perkin Elmer). The image analysis software (Harmony) has the required algorithms to be able 

to distinguish the nuclei in stained endothelial tubes from the ones of fibroblasts. 

 

Time-lapse live cell imaging and cell motility assessment  

HUVEC stably expressing eGFP were obtained by transduction of eGFP-puro-lentiviral vector 

(GeneCopoeia). HUVEC expressing eGFP were seeded in 96-well plate as single cells or were co-

cultured with fibroblasts in presence of Tazarotene (7 µM) or Vehicle. Time-lapse live imaging was 
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performed in a humidified, heated and CO2-controlled and integrated chamber within the high-content 

imaging system (Operetta). For cell motility assessments, images were captured with 10x objective at 15 

min intervals for a total period of 24 hours. Individual cells were identified and tracked automatically 

within the field image using Harmony image analysis software. For observing tubulogenesis, images 

were captured with 10x objective at 15 min interval for a total period of 48 hours.   

 

Proteome profiler array for angiogenic factors 

The Proteome Profiler Human angiogenesis-related cytokines Array Kit (R&D Systems, Catalog # 

ARY007) was used to analyze secretory changes in the conditioned medium of fibroblasts following 

Tazarotene or Vehicle treatments for 48 hours essentially according to the manufacturer's instructions, 

but using IRDye® 800CW streptavidin. Visualization and quantitation of the detected spots were 

performed using the LI-COR Odyssey scanner and Odyssey 3.0 analytical software (LI-COR 

Biosciences). Pixel density values in dot blots were corrected by normalizing to the highest average 

control and subtracting the average pixel density values of negative controls. The map array of cytokines 

is illustrated in (supplementary Fig. 5). 

 

Quantitative RT-PCR 

Total RNA was isolated from cultured cells using the Qiagen RNeasy Micro Kit and from the mouse 

liver using the Qiagen RNeasy Mini Kit according to the manufacturer’s protocol. cDNA was prepared 

with QuantiTect Reverse Transcription Kit (Qiagen). SYBR green qPCR was carried out with the 

following QuantiTect Primer Assay assays: Human FLT4, Hs_FLT4_1_SG (QT00063637), Human 

KDR, Hs_KDR_1_SG (QT00069818), Human RARRES1, Hs_RARRES1_2_SG, (QT01666469)   

Human PGF, Hs_PGF_1_SG (QT00030688), Human PTX3, Hs_PTX3_1_SG (QT00093261) and 

mouse RARRES1, Hs_RARRES1_2_SG, (QT01666469) . The data were normalized to the 

endogenous controls HPRT1, Hs_HPRT1_1_SG, (QT00059066) for cells and 18S ribosomal RNA, 
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Mm_Rn18s_3_SG, (QT02448075) for murine samples. Fold changes were calculated using comparative 

ddCT (threshold cycle) method (BioRad). 

 

ELISA 

We used commercially available enzyme-linked immunosorbent assay (ELISA) kits (DuoSet, R&D 

systems) to measure thuman Placental Growth factor (PGF) and Pentatraxin 3 (PTX3) levels in cell 

culture supernatants. 

 

In vivo Matrigel implant angiogenesis assay 

Experiments involving mice were covered by project and personal licenses issued by the UK Home 

Office and they were performed in accordance with the Guide for the Care and Use of Laboratory 

Animals (the Institute of Laboratory Animal Resources, 1996). Eight-week old female CD1 mice 

(Harlan Laboratories) were injected subcutaneously into both abdominal flanks with 400µl growth 

factor-reduced Matrigel (BD Bioscience) supplemented with FGF2 (250ng/ml, R&D systems), under 

anesthesia induced by isoflurane inhalation. Mice were daily injected intra-peritoneally (i.p.) with either 

Tazarotene (10mg/kg) or 2.5% DMSO in PBS (Vehicle) starting from the day of Matrigel implantation 

for 6 days. Twelve days later, the mice were killed and Matrigel implants were removed, photographed 

and fixed in 4% paraformaldehyde at 4°C overnight. Implant paraffin sections of 7µm thickness were 

incubated with the rat anti-mouse CD31 antibody (1:100, BD Biosciences, 550274) overnight at 4ºC. 

Sections were then incubated with alexa488 conjugated goat anti-rat IgG secondary antibody 

(Invitrogen) and cy3-conjugated anti–α-smooth muscle actin antibody (Sigma). Nuclei were 

counterstained with DAPI. Mounted sections were imaged with 20x objective by Operetta imaging 

system (Perkin Elmer). Microvessel density was quantified in 30-40 fields covering the whole cross-

section of the Matrigel plug at each of three 1-mm spaced sectioning planes of implants. CD31 positive 
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neovessel area covered with α-smooth muscle actin positive cells inside implants and total implant area 

were quantified using Image J software (NIH). 

To visualize microvessel perfusion, terminally anesthetized mice were injected intracardially with 

3mg/kg of biotinylated GS-IsolectinB4 (invitrogen). After 5 min, mice were euthanized and perfused 

with 4% neutral buffered paraformaldyhede under physiological pressure. Implants were dissected and 

stored in PFA 4% overnight. Following an incubation in 30% (w/v) sucrose solution, the plugs were 

embedded in OCT compound and were snap frozen. Implants were cut into thick sections (200µm) and 

labeled for injected lectin by incubating with alexa647-conjugated streptavidin. Co-staining is applied to 

visualize the total vessels by incubating with anti-CD31 antibody as described above. Fluorescence 

images of stained slices were taken with a confocal laser-scanning microscope (Zeiss 510 Metahead). 

Around 50 z-stacks of raw images (xy) were required for 3D reconstruction. 

 

MicroCT angiogram 

Mice were euthanized, and the thoracic cavity was opened. The right atrium was cut, and the heart (left 

ventricular) flushed with PBS containing heparin (1000 IU/L) for 5 min. 4% neutral buffered 

paraformaldyhede was perfused under physiological pressure for an additional 5 min. A contrast agent, 

radiopaque silicone rubber compound (Microfil, MV-112, Flow Tech Inc.), was injected into the heart 

for 5 min as described previously54. Obvious perfusion in the eyes and tail served as a reliable marker 

for systemic perfusion of the blood circulation. The mice were left at room temperature for 30 min to 

allow polymerization of the agent. Matrigel implants including the overlying skin were generously 

dissected, placed into 4% neutral buffered paraformaldehyde and maintained at 4°C until scanning. The 

skin over the implants was served for the sample orientation. The samples were embedded in agarose gel 

and imaged using a SkyScan 1172 microCT scanner (Bruker). The 3D micro-CT scans of each Matrigel 

implant were visualized using Imaris image analysis software (Bitplane). The raw images were 3D 
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reconstructed, segmented and quantified using Amira 5.5.3 image analysis software (FEI Visualization 

Sciences Group). 

 

Ear punch wound healing model 

Eight-week old female CD1 mice (Harlan Laboratories) were used for an ear wounding procedure as 

described previously55. All procedures were carried out according to UK Home Office regulations and 

under appropriate licences. Briefly, mice were wounded with a 2-mm full-thickness hole punched 

through the lateral third of each ear using a sterile metal biopsy punch (Harvard Apparatus). The wound 

was disinfected with ethanol swabs to prevent infection. Mice were daily injected intra-peritoneally with 

either Tazarotene (10mg/kg body weight) or DMSO 2.6% in PBS (Vehicle) starting from the day of 

wounding for 6 days. Wounds were photographed with a digital camera immediately after wounding and 

at day 12. Mice were killed after 12 days or 14 days of wounding, ears were harvested and fixed in 4% 

neutral buffered paraformaldehyde. A coverslip was laid on top of the ear tissue for flattening. Ear 

wound images were captured and processed by using stereomicroscope linked to digital camera. Ear 

hole area (in mm2) was quantified by using ImageJ image analysis software. Tissue from wounded ears 

was fixed with PFA 4% at 4°C overnight, embedded in paraffin and 7-µm thick sections cut. Before 

histological staining, slides were dewaxed and rehydrated. Slides were stained with Hematoxylin and 

Eosin (H&E) or a Picro-Sirius Red stain kit (Sigma). The slides were washed, rehydrated, cleared and 

mounted. Staining was visualized using Nikon microscope in bright field for Hematoxylin and Eosin 

(H&E) and under polarized light for Picro-Sirius Red. The Picro-Sirius Red signal was measured in the 

marginal area of wounds and quantified using Image J software. For labeling of proliferating cells, mice 

were injected i.p. with 3 mg/kg of EdU (Invitrogen) 24 hours before euthanasia. Ear wound paraffin 

sections were stained for EdU using Click-iT chemistry following the manufacturer’s instructions 

(Invitrogen). For vascular phenotypic analysis, whole mount preparations of dissected ear skins or 

paraffin cross-sections were double immunostained. Briefly, after blocking with 5% goat serum in PBST 
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(0.3% TWEEN-20 in PBS), samples were incubated with anti-mouse CD31 antibody (BD Biosciences). 

Samples were incubated for with alexa488-conjugated goat anti-rat IgG secondary antibody (Invitrogen) 

and Cy3-conjugated anti-�-SM actin antibody (Sigma). Nuclei were counterstained with DAPI 

(Invitrogen). CD31-positive blood vessel area was quantified in the marginal area of wounds using 

Image J software. Fluorescent images from flat-mounted ear skins were visualized using a Leica SP8 

SMD X Confocal Microscope. Around 60 z-stacks of raw images (xy) were typically acquired for 3D 

reconstruction. 

 

Laser speckle contrast imaging of blood flow 

Blood flow in the ear wounds was monitored using a Speckle Contrast Imager - FLPI-2 (Moor 

Instruments, UK) as described previously56. The FLPI measurements were made in a warm (24 °C) and 

quiet environment. The CCD camera was positioned 30 cm above the ear internal surface. The contrast 

images were processed to produce a color-coded live flux image (red denoted high perfusion, blue 

signified low perfusion) using the moorFLPI-2 measurement module (Moor Instruments). Measurements 

were made postoperatively in the periphery area of wounds at 6 and 12 days using the moorFLPI-2 

review module (Moor Instruments). 

 

Excisional dorsal wound healing model 

Eleven-week old female CD1 mice (Harlan Laboratories) were used for cutaneous wounding procedure 

as described previously57. All procedures were carried out according to UK Home Office regulations and 

under appropriate license. Mice were anesthetized, and their dorsal skin was shaved and wiped with 70% 

ethanol. Full-thickness excisional wounds were made by picking up a fold of skin and using a sterile, 

disposable 5-mm biopsy punch, resulting in generation of one wound on each side of the midline. Mice 

were daily injected intra-peritoneally with either Tazarotene (10mg/kg body weight) or DMSO 2.6% in 

PBS (Vehicle) starting from the day of wounding for 6 days. The areas of open wounds were measured 0 
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and 8 days after wounding. Mice were killed after 8 days of wounding, wounds were harvested with a 5-

mm rim of unwounded skin tissue and fixed in 4% neutral buffered paraformaldehyde. For 

immunostaining, paraffin sections were incubated with a rat monoclonal specific for endothelial cells 

(CD31, BD Bioscience), Cy3-conjugated anti-α-SM actin antibody (Sigma) for smooth muscle cells and 

myofibroblasts and K14 for keratinocytes (GeneTex). CD31-positive blood vessel area was quantified in 

the wound edges using Image J software. 

 

Statistics 

All statistical analysis was carried out using Prism GraphPad. Two treatment groups were compared by 

unpaired-t-test. Multiple group comparisons were analyzed by one-way or two-way ANOVA with post 

hoc Bonferroni’s test. A p value of less than 0.05 was considered to be statistically significant. Several 

independent experiments were performed to guarantee reproducibility of findings.  
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Figure Legends 

 

Figure 1 Phenotypic screen for angiogenic activity of LOPAC1280 small molecule library. a) Left: 

Screening workflow. Primary Human Umbilical Vein Endothelial Cells (HUVEC) were seeded onto 

Matrigel coated 384-well plates and incubated with LOPAC1280 compounds at a concentration of 10 µM. 

Right: Plate design. The position of negative controls (Vehicle (DMSO) alone, blue), positive controls 

(Suramin, 10µM, red) and LOPAC1280 small molecules (green) is indicated. b) Image analysis 

workflow: Top: Endothelial tubes were stained for F-actin using phalloidin and CellMask Green and 

then imaged using an Operetta high content microcopy system. The region-of-interest (ROI, middle 

panel) is created on 16-bit red channel images and is followed by automated image segmentation 

(bottom panel) to identify tubes (white mask), nodes (green), and branching points (red dots) using 

Metamorph image analysis software (Molecular Devices). Scale bar 1 mm. c) Left: Scatter-plot 

distribution showing the results of high content screening. The total tube length was normalized using 

the B-score method in WebCellHTS2. Inhibitors and enhancers (B-Score ≤-4 and ≥+2.6 respectively) 

are indicated below and above the orange lines. Negative controls (are shown in blue positive controls in 

red and LOPAC1280 library molecules in green. Right, Representative microscopic images from negative 

(Vehicle alone) and positive (suramin) control wells, Scale bar 400 µm.  

 

Figure 2 Validation of active lead compounds. a) Selected enhancer hits were re-tested manually using 

the endothelial tube formation assay in 96-well format. The tubes were imaged and quantified as 

described in Figure 1. Left: Representative images of active lead compounds at 10µM. Scale bar 500µm.  

Right, the chemical structure, the molecular weight, the primary target of the compound and its effect on 

the total tube length (normalized to Vehicle %100), n=3 each concentration. Data are expressed as 

mean±s.e.m, one-way ANOVA followed by Bonferroni's post hoc test, **p<0.01; ***p<0.001 compared 

to Vehicle. b) The effect of active lead compounds was tested in an organotypic angiogenesis assay 
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where HUVECs are plated on to a confluent human dermal fibroblast (HDF) layer. The medium 

containing the compound (7µM) was refreshed at 3 and 5 days following plating of endothelial cells. 

Co-cultures were stained with an antibody against CD31 and imaged 7 days after endothelial cell 

plating. Nine fields were quantified for each well (n=6 wells per group). Error bars, mean±s.e.m, one-

way ANOVA followed by Bonferroni's post hoc test, *p<0.05; ***p<0.001 compared to Vehicle. Scale 

bar 1mm. c) Dose-response curve showing the effect of Tazarotene on total tube length using the 

organotypic angiogenesis assay. Data are shown as mean±s.e.m. The curve was fitted using Prism 

GraphPad, and EC50 calculated as 0.8µM. Scale bar 200 µm. d) High-power image of Vehicle and 

tazarotene treated endothelial tubes, demonstrating lateral filopodia protrusions (arrows). Scale bar 50 

µm e) Effect of Tazarotene (3 µM) on expression of FLT4 (VEGFR3) and KDR (VEGFR2) in cultured 

endothelial cells estimated using RT-qPCR. Error bars, mean±s.e.m., *P=0.02 compared to Vehicle, 

(n=3 replicates derived from 3 independent experiments, analysed using unpaired t-test). 

 

Figure 3 Tazarotene induces angiogenesis through RAR activation. HUVEC were seeded on to 

confluent human dermal fibroblast (HDF) cells. Medium containing the compound (3 µM) was 

refreshed 3 days following plating of endothelial cells. Co-cultures were stained with anti-CD31 and 

imaged 5 days after endothelial cell plating. Angiogenic phenotype parameters (total tube length, 

branching points, tube thickness, and total node area) of the formed network were measured using 

Metamorph image analysis software. Nine fields were quantified for each well as described in the 

methods. a) Effect of natural retinoic acids (all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid), 

RAR isoform agonists (RARα (BMS753), RARβ (CD2314) and RARγ(BMS961)) and RXR agonist (SR 

11237) on angiogenic phenotype, compared to the Tazarotene-induced phenotype (n=3 wells per 

condition). Error bars, mean±s.e.m, one-way ANOVA followed by Bonferroni's post hoc test, **p<0.01; 

***p<0.001 compared to Vehicle. Scale bar 200 µm. Right, Heatmap of z-score scaled data from the 

four angiogenic parameters, followed by hierarchical clustering of compounds to create the dendrogram 
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generated by Spotfire software58. Compounds clustering together, exhibit similar phenotypic profiles58. 

b) Effect of the pan-RXR antagonist (UVI 3003), pan-RAR antagonist (BMS5493) and Tazarotene on 

angiogenic phenotype (n=3 wells per conditions). Error bars, mean±s.e.m, one-way ANOVA followed 

by Bonferroni's post hoc test, ***p<0.001. Scale bar 200 µm. Right, compound phenotypic profiling 

using hierarchical cluster analysis as described above. c) Effect of Liarozole (3 µM), a retinoic acid 

metabolism inhibitor, on angiogenic phenotype, n=6 wells per conditions. Data are expressed as 

mean±s.e.m. Unpaired-t-test, **p<0.01; ***p<0.001 compared to Vehicle. Scale bar 200µm. d) 

RARRES1 mRNA abundance in Tazarotene-treated HUVEC and HDF assessed by quantitative RT-

PCR (n=3 replicates derived from 3 independent experiments). Unpaired-t-test, **p<0.01 compared to 

Vehicle. 

 

Figure 4 Tazarotene enhances the pro-angiogenic paracrine effects of fibroblasts.  a) Left, representative 

images showing the effect of Tazarotene (7 µM) on cell number and DNA synthesis in isolated 

HUVECs. HUVEC were cultured as single cells in presence of Tazarotene or Vehicle for 48 hours. EdU 

(10µM) was added 6 hours before fixation. Cells were stained for EdU (green) and DAPI (blue). Scale 

bar 200µm. b) Left, representative images showing the effect of Tazarotene (7 µM) on cell number and 

DNA synthesis in HUVEC/HDF co-culture at presence of Tazarotene or Vehicle for 48 hours. Cells 

were stained for EdU (green) and CD31 (red). Scale bar 200µm. Right panels of a) and b), quantitative 

data for total cell number and the proportion of EdU positive nuclei. Cell counts and EdU positive cells 

were normalised to the Vehicle control, which was set at 100%.  Data from 4 wells for each 

concentration, and nine fields per well were analysed, and are expressed as mean±s.e.m. One-way 

ANOVA followed by Bonferroni's post hoc test, *p<0.05; **p<0.01; ***p<0.001 compared to Vehicle. 

c) Effect of 5µM , representative images showing the effect of Tazarotene ted secreted proteins from 

HDF cells using Proteome Profiler ArrayTM. The inset shows the raw images from the array membrane 

for Vehicle (top) and Tazarotene (below), with letters corresponding to those on the bar-graph. 
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Fluorescence intensity of each dot was normalized to the Vehicle control and presented as fold change 

(y-axis) on the bar graph. d) Effect of 3 µM Tazarotene PGF and PTX3 mRNA expression estimated by 

quantitative RT-PCR. Error bars, mean±s.e.m. n=3. Unpaired-t-test, **p<0.01 compared to Vehicle. (e) 

Effect of Tazarotene on secreted PGF and PTX3 assayed by ELISA. n=3 per treatment condition, error 

bars, mean±s.e.m. One-way ANOVA followed by Bonferroni's post hoc test, *p<0.05; **p<0.01; 

***p<0.001 compared to Vehicle. 

 

Figure 5 Tazarotene promotes functional neovascularization in Matrigel implants. Mice were 

injected subcutaneously with Matrigel supplemented with FGF-2 (250 ng/ml). Tazarotene (10 mg/kg) or 

Vehicle (DMSO) was injected intra-peritoneally (i.p.) daily for 6 days. a) Representative photographs of 

implants from Vehicle control and Tazarotene treated mice. b) Effect of Tazarotene on neovessel 

formation. Top: Histological sections of Matrigel implants double immunostained for CD31 (endothelial 

marker, green) and α-smooth muscle actin (α-SM actin, smooth muscle cell marker, red). The dotted line 

shows the edge of Matrigel implant. Scale bar 120µm. Bottom: Mature neovessel area (y-axis) in the 

Matrigel plug was quantified by measuring CD31-positive neovessel invested by α- smooth muscle 

actin–positive cells stained areas in three sections (with a 1-mm interval between sections) for each 

implant and divided by total implant area, n=6 animals per treatment group, 2 implants per animal were 

studied. Data are presented as box plots, with maximum, minimum, and quartile range. Two-way 

ANOVA (****p<0.0001) followed by Bonferroni's multiple comparisons test, *p<0.05, ***p<0.001 

compared to Vehicle group. c) Effect of Tazarotene on microvessel perfusion using microCT 

angiography. Top, microCT angiogram of Matrigel implants. Mice were infused with Microfil 12 days 

after Matrigel implantation and the harvested implant analysed by 3D microCT imaging to visualize the 

microvasculature (orange). Middle: 3D-reconstruction of microCT images of Matrigel implants 

including the perfused microvessels: vessels inside Matrigel (green), vessels surrounding Matrigel (red) 

and the Matrigel implant (transparent grey). Bottom: The vessel volume inside the Matrigel was 
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quantified using Amira image analysis software. Data are expressed as % (vessel volume/Matrigel 

implant volume) by box plots, with maximum, minimum, and quartile range, n=6 mice, 2 implants per 

treatment group.  Unpaired-t-test,  *p<0.05 compared to Vehicle group. Scale bar 2mm. d) Effect of 

Tazarotene on microvessel perfusion using confocal microscopy. Representative Z-stack confocal 

images of thick sections of Matrigel implants (n=3 mice, 2 implants per treatment).  To visualize vessel 

perfusion, terminally anaesthetised mice were injected with biotinylated IsolectinB4 12 days after 

implantation, implants harvested and sections immunolabeled for CD31 (green, endothelial cells), α-SM 

actin (red, smooth muscle cells), DAPI (Blue, Nuclei), and for injected lectin by using streptavidin-

Alexa 647 (purple, perfused vessels). The dotted line shows the edge of Matrigel implant. Scale bar 

120µm. 

 

Figure 6 Tazarotene promotes ear punch wound healing and neovascularization after injury. a) 

Effect of Tazarotene on ear punch closure. Left: Representative images of ears from mice treated with 

Vehicle or Tazarotene.  Tazarotene (10 mg/kg, i.p.) was administered daily for 6 days following the ear-

punch. Wound size was measured after 12 days. Right: Quantification of the punch area (n=6 animals 

per group). Data are presented as box plots, with maximum, minimum, and quartile range, unpaired-t-

test, ***p<0.001 compared to Vehicle group. b) Left: Effect of Tazarotene on blood flow following ear-

punch injury. Representative images showing blood flow measured in the wound area using speckle 

contrast laser imaging at 6 and 12 days after injury (n=5 animals per group). The dotted circle denotes 

the region-of-interest.  Right: Mean flow (flux) in the region-of interest was quantified using moorFLPI-

2 software, and data expressed as mean ± s.e.m. Two-way ANOVA (**p<0.01) followed by 

Bonferroni's multiple comparisons test, *p<0.05 compared to Vehicle. c) Effect of Tazarotene on wound 

histology at 14 days after injury. Left: Hematoxylin and eosin stained cross-sections with the 2-mm area 

of the original hole indicated. Arrows indicate the initial wound site identified by the cartilage cut. 

Middle: Enlargement of the boxed section in the previous panel. Arrow-heads indicate new hair follicles 
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in the wound bed. Right: Picrosirius red stained cross-sections. Birefringence of picrosirius differentiates 

thick, mature collagen fibers (red/yellow) from thin, new collagen (green). Quantification of collagen 

density, data expressed as % (stained collagen area/regenerated area), n=6 animals per group. Unpaired-

t-test, *p<0.05 compared to Vehicle. Dotted line shows the initial cut position. Scale bar 90µm. d) Effect 

of Tazarotene on cell proliferation in the wound area. Left: Representative confocal images of ear wound 

at 6 days after injury stained with upper panel, CD31 (green), α-SM actin (red), DAPI (blue) and EdU 

(white); lower panel, stained with EdU (green), Keratin 14 “K14” (red) and DAPI (blue). The arrow 

indicates the initial wound site. Scale bar 90 µm. Right: EdU positive cells were quantified and 

normalized to the total cell number inside the regenerated area which is identified by the cartilage cut, 

n=4 animals per treatment condition. Data are expressed as mean±s.e.m. Unpaired-t-test, ***p<0.001 

compared to vehicle group. e) Effect of Tazarotene on wound neovascularization at 14 days after injury. 

Left: Cross sections of ear punches were stained with CD31 (green), α-SM actin (red) and DAPI 

(nuclei). Arrows indicate the initial wound site. Scale bar 90 µm.  Right: CD31-positive microvessel area 

was quantified as a percentage of the regenerated area, n=6 animals per group. Unpaired-t-test, 

***p<0.001 compared to Vehicle groupf, g) Effect of Tazarotene on new vessel formation in the 

regenerating zone. Z-stack confocal images of flat mounted ears at day 4 (f) and day 14 (g) after injury. 

The dotted line indicates the wound site, the arrows shows new hair follicles, and the asterisk indicates 

the ear hole. CD31 (green, endothelium) and �-SM actin (red, smooth muscle cell and myofibroblasts).  

Insets in (g) show a global view of the wound at low magnification. Scale bar 90 µm. 

 

Figure 7. Tazarotene enhances excisional dorsal wound healing and wound bed vascularization. a) 

Effect of Tazarotene on wound closure. Left: Representative images of skin from mice treated with 

Vehicle or Tazarotene. Scale bar 5mm Right: Quantification of the wound closure (n=6 animals per 

group). Data are presented as box plots, with maximum, minimum, and quartile range, unpaired-t-test, 

*p<0.05 compared to Vehicle group. b) Effect of Tazarotene on wound epithialization. Left: 

Accepted m
anuscrip

t



ACCEPTED ARTICLE PREVIEW 

© 2016 The American Society of Gene & Cell Therapy. All rights reserved 

Haematoxylin and eosin stained cross-sections of wound centre. Scale bar 500 µM Arrows indicate the 

wound edges. Middle: Enlargement of the boxed section in the previous panel. Arrow-heads indicate 

new hair follicles in the wound bed. Scale bar 500 µM Right: Cross sections of wound centre were 

stained with Keratin 14 (green), α-SM actin (red) and DAPI (nuclei). Arrows indicate the initial wound 

site. Scale bar 90 µm. c) Effect of Tazarotene on new vessel formation in wound bed. Left, Cross 

sections of wounds were stained with CD31 (green), α-SM actin (red) and DAPI (nuclei). Scale bar 50 

µm. Right: CD31-positive microvessel area was quantified as a percentage of the wound bed area, n=6 

animals per group. Arrows indicate the wound edges. Unpaired-t-test, *p<0.05 compared to Vehicle 

group. 
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