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PARAMETRISED GRÖBNER-SHIRSHOV BASES

K. Kalorkoti1 and I. Stanciu2

Abstract: We consider the problem of describing Gröbner-Shirshov bases for free associative
algebras in finite terms. To this end we consider parametrised elements of an algebra and
give methods for working with them which under favourable conditions lead to a basis given
by finitely many patterns. On the negative side we show that in general there can be no
algorithm. We relate our study to the problem of verifying that a given set of words in
certain groups yields Bokut’ normal forms (or groups with a standard basis).

Key Words: Normal form, Gröbner-Shirsov bases, free associative algebra, group, HNN ex-
tension.

2000 Mathematics Subject Classification: 20F10; 16Z05; 68W30.

1. Introduction

Gröbner-Shirshov bases are a method for creating normal forms in various mathematical struc-
tures. In their historical survey Bokut’ and Kolesnikov (2003) ascribe their origins to Shirshov
(1962) for Lie polynomials and to Buchberger (1965) for commutative polynomials. In both cases
we are given generators for an ideal and produce a basis that enables us to answer questions such
as membership of the ideal. Although there is a uniformity in the basic ideas there is one sig-
nificant difference between the commutative polynomial case and the non-commutative one. In
the commutative case Hilbert’s Basis Theorem assures us that there is a finite basis for every
ideal and the sought after special basis is also finite (at least if we remove redundant members);
this is not so for the non-commutative case. This difference raises the following questions for the
non-commutative case:

1. How can we describe a Gröbner-Shirshov basis in finite terms?

2. How can we produce a Gröbner-Shirshov basis in finite time?

3. Given a proposed Gröbner-Shirshov basis how can we check if it is one in finite time?

An algorithm for producing a Gröbner-Shirshov basis is a finite description of the basis. However
this is not amenable to algebraic operations on the members of the basis. Our aim is to produce
a description that gives direct access to the format of the elements. In general there is no hope
of answering the preceding questions in a constructive way. In this paper we focus on finitely
generated free associative algebras and describe an approach based on parametrised elements
that goes some way towards addressing the questions at least under favourable conditions. The
methods discussed have a large algorithmic component but we show in §8.3 that they cannot be
algorithmic in general, indeed even under some favourable assumptions (see also Lemma 4.1).

Bokut’ (1966, 1967), see also Bokut’ and Collins (1980), introduced a method for constructing
normal forms for groups (called standard bases) built as a sequence of HNN extensions starting
with a free group. These forms have proved very useful in simplifying the proofs of various
results connected with decision problems in group theory, e.g., see Kalorkoti (1982). It is a
straightforward matter to phrase the membership problem for a normal subgroup of a free group
as a membership problem for an appropriate ideal in a free associative algebra. One motivation for
the approach of this paper comes from an observation by Kalorkoti (2011) where it is shown that
under some mild assumptions Bokut’ normal forms are a Gröbner-Shirshov basis (Lemma 2.6 of
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the paper cited). These have the special form Ui−Vi, for i ∈ I, where each Ui, Vi is a parametrised
word in the generators of the underlying group and their inverses. In many situations I is a finite
set but each Ui, Vi represents infinitely many words determined by the parameters present and
side conditions on them.

The method of Bokut’ provides a way to identify a likely standard basis, it is then necessary
to check certain conditions in order to verify that the proposed set is indeed a basis. The checking
phase can involve quite detailed combinatorial analysis. The result cited above shows that if the
proposed set is a standard basis then (subject to the mild assumptions) it is a Gröbner-Shirshov
basis for the ideal in the corresponding free associative algebra and conversely. This opens the
way to an alternative approach: we use the method of Bokut’ to produce the proposed standard
basis consisting of parametrised words as described above. We then use the method described in
this paper to check if the proposed basis is a Gröbner-Shirshov basis. The methods described in
this paper provide an approach but in general there cannot be an algorithm, as shown in §8.3. Our
framework applies to general parametrised subsets of free associative algebras but our examples
focus on the special case where elements are of the form U − V where U , V are parametrised
words.

2. Gröbner-Shirshov bases

In order to provide a context for the rest of the paper we give here a brief reminder of the key
concepts of Gröbner-Shirshov bases for ideals of a free associative algebra k〈X〉. We use X∗ to
denote the set of words over X and `(W ) to denote the length of a word W . We assume as given
an admissible order3 < on X∗, i.e., a well-order such that if U < V then AUB < AV B for all
A,B,U, V ∈ X∗. Thus every non-zero f ∈ k〈X〉 has a largest word called the leading word and
denoted by lw(f); the leading word of 0 is undefined. For non-zero fixed f, g ∈ k〈X〉 we have
two possible compositions:

1. If W = lw(f) = A lw(g)B for some A,B ∈ X∗ then we define

(f, g)W = f − lc(f)/ lc(g))AgB.

This is called the inclusion composition of f and g w.r.t. W .

2. If W = A lw(f) = lw(g)B for some A,B ∈ X∗ with `(A) < `(lw(g)) and `(B) < `(lw(f))
then we define

(f, g)W = Af/ lc(f)− gB/ lc(g).

This is called the intersection composition of f and g w.r.t. W .

Note that if both compositions apply then lw(f) = lw(g) and the compositions are the same up
to a non-zero constant multiple. For the purposes of building a Gröbner-Shirshov basis non-zero
constant multiples can be discarded and so we need only apply one of the two compositions.

Another important concept in Gröbner-Shirshov bases is that of reducing one element by
another. If f, g ∈ k〈X〉 are such that lw(f) = A lw(g)B for some A,B ∈ X∗ then we write
f →g h where h = f − lc(f)/ lc(g)AgB; i.e., h is the inclusion composition of f , g. The aim is
to see if there is a sequence of reductions by elements of an ideal basis G that results in 0, for
this is then a proof that f belongs to the ideal generated by G. The converse is true provided
that G is a Gröbner-Shirshov basis, indeed this is one of various equivalent defining conditions
for such bases and we will use this in the paper.

It is a simple matter to see that not every basis of an ideal is a Gröbner-Shirshov basis.
Given a subset F of k〈X〉 and an admissible order on X∗ we have a method for building (at

3It is possible to work with other orders, see Chen and Zhong (2008), but this is rather exceptional.

2



least in principle) a Gröbner-Shirshov basis S for the ideal (F ). We start by setting S = F then
consider in turn each possible composition (f, g)W and find a reduced form h for it w.r.t. S; i.e.,
reduce h as far as possible (there are no infinite reduction sequences since < is a well order). If
h 6= 0 we add it to S and iterate (each time considering only compositions that have not been
considered before). Note that we need only find one possible reduced form h for (f, g)W . This is
because once h is added to S we have ensured that (f, g)W is trivial modulo S, i.e., reduces to 0
using members of S. For inclusion compositions the only situation where (f, g)W and (g, f)W
are both defined is when lw(f) = lw(g) and in this case the two compositions are the same up to
a non-zero constant multiple. Thus only one composition needs to be considered, however the
methods we describe in §8 do not use this optimisation for the sake of clearer exposition.

3. Notation

Throughout the paper X is a finite non-empty alphabet whose members are called letters. As
mentioned above, we denote the set of all words over X by X∗ and use `(W ) to denote the length
of a word W . We will be working with parametrised words as defined below. Assume that we
have fixed a subset P of X. Let V be a set of variables ranging over N (we include 0 in N) and F
a set of functions f : Np → N, where the arity p varies with f , and the parameters of f are
variables from V. Consider the first order logic expressions defined by

C := (v1 > v2) | ¬C | (C1 ∧ C2) | (C1 ∨ C2) | ∃xC | ∀xC

where

• v1, v2 are of the form n0 +n1s1 + · · ·+nmsm where ni ∈ Z, for 0 ≤ i ≤ m, and si ∈ V ∪F ,
for 1 ≤ i ≤ m.

• x ∈ V.

Naturally operators such as =, <, ≤, ≥ can be expressed by the basic terms and we will use these
in examples. Note that expressions are closed under negation. We will use Var(C) to denote the
set of free variables that occur in C (i.e., those not under the scope of a quantifier). For example,
Var((s > 1) ∧ ∃u∃s(t = 2s − 3u)) = { s, t }. An expression of the form C ∧v∈Var(C) (v > 0)
will be called a defining condition, we work with such conditions throughout the paper. An
assignment a for C is a set of the form { v1 ← n1, . . . , vm ← nm } where v1, . . . , vm ∈ V with
Var(C) ⊆ { v1, . . . , vm } and n1, . . . , nm strictly positive natural numbers. Such an assignment
satisfies C if after replacing vi with ni, for 1 ≤ i ≤ m, the resulting expression is true (as usual ∧
is conjunction and ∨ is disjunction). We will use V(C) to denote the set of all assignments that
satisfy C and involve only the variables in Var(C). For convenience we will use ttV to denote
∧v∈V (v > 0), where V is a set of variables; thus this condition is satisfied by all assignments
that include its variables. If the set V is of no particular interest we will just write tt. Requiring
each number in an assignment to be strictly positive simplifies the analysis later on, if we want
a variable to be 0 then we treat that as a special case. For a set of variables T the notation
VT (C) denotes all assignments in V(C) but each assignment { v1 ← n1, . . . , vm ← nm } is
replaced with {vi ← ni | 1 ≤ i ≤ n and vi ∈ T}. Let T ⊆ Var(C), { t1, . . . , tr } = Var(C) − T
and define C|T = ∃t1 · · · ∃tr C then it is clear that VT (C) = V(C|T ), assuming that C is a
defining condition.

A generalised word over X is an expression of the form xe11 · · ·xenn where xi ∈ X, for 1 ≤ i ≤ n,
and each ei is either a natural number or a variable from V provided that xi ∈ P . A parametrised
word is an expression JW KC where W is a generalised word and C is a defining condition, where
Var(C) includes all the variables in the exponents of W (we allow the possibility that C has
parameter variables that do not appear in W ). If E = JW KC is a parametrised word and a is an
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assignment then W (a) denotes the word obtained by replacing each variable with the value, if
any, given by the assignment; we say that W is evaluated at a and also use E(a) to denote W (a).
Note that throughout the paper we only use this notation when a contains all the variables that
occur in W and so W (a) ∈ X∗, in principle the definition applies more generally so that only
some of the parameters become fixed. A parametrised word E = JW KC denotes the set of words
{W (a) | a ∈ V(C)} ⊆ X∗. If s is a variable or a function we use s(a) to denote the result of
applying the assignment a to s or its arguments as appropriate. For the sake of convenience we
set n(a) = n, for all n ∈ N.

For example, if X = {x, y } with P = { y } and s, t are variables from V, then Jx2ysxytKC is a
parametrised word of length 3 + s+ t. The condition C can be any valid defining condition (e.g.,
s > 0∧ t > 0); naturally if C has no satisfying assignments then the parametrised word does not
denote any members of X∗. We can put functions from F in exponents with the understanding
that if yf(s1,...,sm) occurs in W then this is shorthand for ys where s is a new variable and we
add (s = f(s1, . . . , sm)) ∧ (s > 0) to the defining condition. For example, x2ys+t+1xy(s+1)2 is a
generalised word of length 4 + s+ t+ (s+ 1)2, assuming that the displayed functions are in F .
A word JW KC is fixed if none of its exponents involves a variable or a function in which case
it denotes the singleton set {W }, if V(C) 6= ∅, and the empty set otherwise. It is at times
convenient to abuse notation and use U to denote the single member of U = JW KC when W is
fixed and V(C) 6= ∅.

We extend the use of the notation J·KC to include tuples of generalised words: JW1, . . . ,WrKC .
This notation denotes the set {(W1(a), . . . ,Wr(a)) | a ∈ V(C)}. The brackets provide a context
that, unless otherwise indicated, delimits the scope of the variables in C. Thus the variable t in
JxtKt>0∧t<3 has no influence on the one in JxtKt>0; the first parametrised word denotes the set
{x, x2 } and the second the set {x, x2, x3, . . . }. By contrast Jxs, xtKs=t+1∧s>0∧t>0 denotes the
set { (x2, x), (x3, x2), . . . }.

We will at times wish to extend the scope of a variable so that it covers more than one
word (or parametrised elements of k〈X〉, see §7). A possible solution is to use the notion of
an environment from computer science with local variables whose scope is delimited by the
environment. In order to avoid excessive notation we will use the more compact J K notation
with the scope of parameter variables, when extended, being indicated by context just as is done
in standard mathematical arguments.

4. Inclusion and intersection of words

We say that two words JUKCU
, JV KCV

are separated if Var(CU ) ∩ Var(CV ) = ∅, clearly this can
always be ensured by using fresh parameter variables for JV KCV

, say. We assume throughout
this section that JUKCU

, JV KCV
are separated.

We will want to solve equations of the form: given JW1KC1
and JW2KC2

find all assignments
a ∈ V(C1), b ∈ V(C2) such that W1(a) = W2(b). Assuming that the words are separated we
have V(C1 ∧ C2) = {a ∪ b | a ∈ V(C1) and b ∈ V(C2)}. We may therefore work with the pair
JW1,W2KC1∧C2 = JW1KC1 × JW2KC2 and consider the single variable equation W1(a) = W2(a).
Since the words JUKCU

, JV KCV
are assumed separated we replace the two defining conditions by

the single one C = CU ∧CV and consider the pair JU, V KC . As discussed in §2, the following two
problems are central to the construction of Gröbner-Shirshov bases:

Inclusion: Return all assignments a and quadruples of words JA,B,U, V KQ such that U(a) =
(AV B)(a).

Intersection: Return all assignments a and quadruples of words JA,B,U, V KQ with `(A(a)) <
`(V (a)) and `(B(a))) < `(U(a))) such that (AU)(a) = (V B)(a).
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By ‘return all . . . ’ we mean return finitely many quadruples of words JA1, B1, U, V KQ1 , . . .
JAq, Bq, U, V KQq

such that all the sought assignments a are members of ∪qi=1V(Qi). Moreover
given any a ∈ V(Qi), with 1 ≤ i ≤ q, then A = Ai and B = Bi is a solution to U(a) = (AV B)(a),
in the case of inclusion, or of (AU)(a) = (V B)(a), in the case of intersection.

Our subsequent analysis will show that this notion does indeed allow for all words to be
characterised, we never need to use infinitely many quadruples or functions other than those
in F . We define

IncJU, V KC = {JAi, Bi, U, V KQi | 1 ≤ i ≤ q and V(Qi) 6= ∅}

where JA1, B1, U, V KQ1
, . . . JAq, Bq, U, V KQq

are the quadruples of words for the inclusion problem
for JU, V KC . Likewise we define

IntJU, V KC = {JCi, Di, U, V KRi
| 1 ≤ i ≤ r and V(Ri) 6= ∅}

where JC1, D1, U, V KR1
, . . . JCr, Dr, U, V KRr

are the quaruples of words for the intersection prob-
lem for JU, V KC .

We have used quadruples JA,B,U, V KC of words because the scope of the variables for JU, V KC
needs to cover the variables occurring in A, B. In the rest of the paper we will drop the final two
words from quadruples of the form JA,B,U, V KC in order to avoid repetition and clutter, but it
must be understood that they are always present.

Note that if U = 1 or V = 1 then the intersection problem has no solutions. For the inclusion
problem, if U = 1 then there is just one solution A = B = 1 provided V = 1 otherwise there is
no solution. If V = 1 then A can be any prefix of U and B the rest of U . From now on we will
assume without further comment that U 6= 1 and V 6= 1.

If U , V are both from X∗ the two problems can clearly be solved algorithmically. We analyse
the situation when at least one word is not from X∗. The quadruples of generalised words
with the corresponding defining conditions can always be obtained. However the corresponding
decision problem is undecidable in general even if the functions in F are computable, i.e., there
is no algorithm to decide if IncJU, V KC is empty and likewise for IntJU, V KC .

Lemma 4.1 There are polynomials M1, M2 with natural number coefficients such that the inclu-
sion problem for words is undecidable with F = {M1,M2 }. Likewise there is a single polynomial
M1, with integer coefficients such that the intersection problem for words is undecidable with
F = {M1 }.

Proof. Let S be a recursively enumerable non-recursive subset of N>0, where N>0 denotes the
strictly positive natural numbers. By Matiyasevich (1970) there is a polynomial M(t; s1, . . . , sp)
with integer coefficients such that n ∈ S if and only if there is a b ∈ Np>0 such that M(n;b) = 0.

For the inclusion problem set M(t; s1, . . . , sp) = M+(t; s1, . . . , sp) −M−(t; s1, . . . , sp) where
M+ and M− have strictly positive coefficients or are 0. Set also X = {x, y, z1, . . . , zp }, P =
{ y, z1, . . . , zp }, F = { 1 +M+, 1 +M− } and

Un = Jxy1+M+(n;s1,...,sp)zs11 · · · zspp xKs1>0∧···∧sp>0,

Vn = Jxy1+M−(n;t1,...,tp)zt11 · · · ztpp xKt1>0∧···∧tp>0.

We claim that Vn is contained in Un if and only if there is a b ∈ N>0 such that M(n;b) = 0. If this
is the case then M+(n;b) = M−(n;b) and so the two words are equal upon setting appropriate
values for the variables. Conversely suppose there exist words An, Bn and an assignment a
such that Un(a) = (AnVnBn)(a). Since Un(a), Vn(a) both start and end with x and have no
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other occurrences of x it follows that An(a) = 1 and Bn(a) = 1. Thus Un(a) = Vn(a) hence
si(a) = ti(a), for 1 ≤ i ≤ p. It now follows easily that there is a b ∈ Np>0 such that M(n;b) = 0.

We now deal with the intersection problem. Set X = {x, y, z }, P = { y }, F = { 1 + M2 }
and

Un = Jxy1+M
2(n;s1,...,sp)zKs1>0∧···∧sp>0,

V = xyz.

We claim that the intersection happens if and only if M(n;b) = 0 for some b ∈ Np>0. Suppose
that there are words An, Bn and an a such that An(a)Un(a) = V (a)Bn(a) with `(An(a)) <
`(V (a)) = 3 and `(Bn(a)) < `(Un(a)) = 3 +M(n, s1 . . . , sp)(a)2. It follows that An(a) is either
1 or x or xy. The second and third possibilities lead to a contradiction and so An(a) = 1. It now
follows that we must have M(n, s1 . . . , sp)(a) = 0 and Bn(a) = 1. Conversely if M(n,b) = 0
then we have an assignment a such that Un(a) = V = xyz and we take An = Bn = 1. �

A syllable is a word of the form xe where x ∈ X and e ∈ N or e ∈ V provided that x ∈ P . A
generalised word U = xe11 . . . xenn is said to be collected if ei 6= 0, for 1 ≤ i ≤ n, and xi 6= xi+1,
for 1 ≤ i ≤ n− 1. By convention the empty word is collected and has 1 as its only syllable. The
first syllable of U is xe11 and the last syllable is xenn . The empty word has 1 as its first and last
syllables. Note that U and U(a) have the same number of syllables, for all assignments a, since
by assumption no exponent evaluates to 0.

Let W be a collected word. The P -partition of W is defined as W0x
u1
1 W1 · · ·Wn−1x

un
n Wn

where each xi ∈ P and each word Wj is free of letters from P . Moreover each ui is either a
variable from V or a strictly positive natural number. The profile of W is defined as

pr(W ) = (xu1
1 , . . . , xun

n )

The length of the profile of W , denoted by lpr(W ), is n. We define pr(W )(a), for an assignment a,
in an analogous way to the definition for parametrised words. The co-profile of W is defined as:

co-pr(W ) = (W0, . . . ,Wn).

We will adopt the convention that an equality W = W0x
u1
1 W1 · · ·Wn−1x

un
n Wn means that the

right hand side is the P -partition of the word W .

Lemma 4.2 Let U = U0x
u1
1 · · ·xum

m Um and V = V0y
v1
1
· · · yvn

n
Vn. We have the following cases.

pr(UV ) =

{
(xu1

1 , . . . , x
um−1

m−1 , x
um+v1
m , yv22 , . . . , y

vn
n ), if Um = V0 = 1 and xm = y1;

(xu1
1 , . . . , xum

m , yv11 , . . . , y
vn
n ), otherwise.

Moreover lpr(UV ) = lpr(U) + lpr(V ) − 1 If Um = V0 = 1 and xm = y1, otherwise lpr(UV ) =
lpr(U) + lpr(V ).

Proof. Apart from the first case the syllables of the profile of UV are either separated by UnV0
or xm 6= y1. The second part follows from the expression for pr(UV ). �

Note that evaluating words at an assignment has no effect on which case holds in the pre-
ceding lemma. We will be applying the lemma to analyse the equations U(a) = (AV B)(a)
and (AU)(a) = (V B)(a) for an assignment a. We can reduce the number of cases to be
considered by observing that the equations can be written as UR(a) = (BRV RAR)(a) and
(URAR)(a) = (BRV R)(a) where WR denotes the reversed version of W .
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Lemma 4.3 Let a be an assignment. Then U(a) = V (a) if and only if pr(U)(a) = pr(V )(a) and
co-pr(U) = co-pr(V ).

Proof. Set U = U0x
u1
1 U1 · · ·Um−1xum

m Um and V = V0y
v1
1
V1 · · ·Vn−1yvnn Vn. Suppose U(a) =

V (a) so that U0x
u1(a)
1 U1 · · ·Um−1xum(a)

m Um = V0y
v1(a)
1 V1 · · ·Vn−1yvn(a)n Vn. By the assumption

on assignments and the definition of a profile ui(a) 6= 0, for 1 ≤ i ≤ m, and vj(a) 6= 0, for
1 ≤ j ≤ n. Moreover each Ui is free of letters from P and likewise for each Vj . It follows that
U0 = V0 and hence x1 = y1 with u1(a) = v1(a). A simple induction completes the proof. The
converse is immediate. �

5. The inclusion problem

Throughout this and the next section we consider the separated words JUKCU
, JV KCV

and set

U = U0x
u1
1 U1 · · ·Um−1xum

m Um,

V = V0y
v1
1
V1 · · ·Vn−1yvnn Vn,

so that lpr(U) = m and lpr(V ) = n. Also

A = A0z
a1
1 A1 · · ·As−1zass As,

B = B0w
b1
1 B1 · · ·Bt−1wbtt Bt.

so that s = lpr(A) and t = lpr(B). We will assume that the variables in A, B are distinct from
each other as well as those in U , V .

In order for U(a) = (AV B)(a) to hold we must have pr(U(a)) = pr((AV B)(a)). It follows
from Lemma 4.2 that m is one of n + s + t, n + s + t − 1 or n + s + t − 2 depending on which
cases of Lemma 4.2 hold for AV and for (AV )B. Once we assume which pair of cases holds
we can determine if the equation for m is at all possible and if so we analyse the equation
U(a) = (AV B)(a). We consider two cases, the rest are similar.

Case I: First assume that the second case of Lemma 4.2 holds for both AU and for (AU)V so
that for an inclusion we must have m = n + s + t. Assume this equality holds. It follows that
pr(A) = (xa11 , . . . , x

as
s ) and pr(B) = (xb1m−t+1, . . . , x

bt
m). Once this choice is made the equation

U(a) = (AV B)(a) becomes

U0x
u1(a)
1 U1 · · ·Um−1xum(a)

m Um =

A0x
a1(a)
1 A1 · · ·xas(a)s AsV0y

v1(a)
1 V1 · · ·Vn−1yvn(a)n VnB0x

b1(a)
m−t+1 · · ·xbt(a)m Bt

By Lemma 4.3 the equation cannot hold unless y1 = xs+1,. . . , yn = xs+n. Assuming this is the
case then it follows from Lemma 4.3 that

Ui =



Ai, for 0 ≤ i ≤ s− 1;

AsV0, for i = s;

Vi−s, for s+ 1 ≤ i ≤ s+ n− 1;

VnB0, for i = s+ n;

Bi−s−n, for s+ n+ 1 ≤ i ≤ m

In addition

ui(a) =


ai(a), for 1 ≤ i ≤ s;
vi−s(a), for s+ 1 ≤ i ≤ s+ n;

bi−s−n(a), for s+ n+ 1 ≤ i ≤ m;
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The equalities for the Ui are easy to check, the only decision part is to check if there are words
As, B0 such that AsV0 = Us and VnB0 = Us+n. Since V0, Vn, Us and Us+n are fixed the problem
is straightforward. Thus this part either shows that the inclusion is not possible or yields unique
values for the subwords U0, . . . , Um and V0, . . . , Vn. For the defining condition, for a choice of s
and t, we use

C ∧
∧

1≤i≤s

(ai = ui)
∧

s+1≤i≤s+n

(vi−s = ui)
∧

s+n+1≤i≤m

(bi−s−n = ui)
∧

1≤i≤s

(ai > 0)
∧

1≤i≤t

(bi > 0).

The last two conjuncts can be omitted since C asserts that ui > 0, for 1 ≤ i ≤ m.

Case II: Assume now that the second and first cases of Lemma 4.2 hold for AV and for (AV )B
respectively so that m = n + s + t − 1. Assume that this equality is possible. Since case 2 of
Lemma 4.2 holds for AV it follows that AsV0 6= 1 or zs 6= y1. Since case 1 holds for (AV )B it
follows that Vn = 1, B0 = 1 and yn = w1. the equation U(a) = (AV B)(a) becomes

U0x
u1(a)
1 U1 · · ·Um−1xum(a)

m Um =

A0z
a1(a)
1 A1 · · ·As−1zas(a)s AsV0y

v1(a)
1 V1y

v2(a)
2 V2 · · ·Vn−1yvn(a)+b1(a)n B1w

b2(a)
2 B2 · · ·Bt−1wbt(a)t Bt.

Once again we obtain equalities for the Ui which can be checked easily as well as for the xi. (If
AsV0 = 1 then we require that xs 6= xs+1.) Assuming these hold we deduce that

ui(a) =


ai(a), for 1 ≤ i ≤ s;
vi−s(a), for s+ 1 ≤ i ≤ n+ s− 1;

vn(a) + b1(a) for i = n+ s;

bi−n−s+1(a), for n+ s+ 1 ≤ i ≤ m.

For the defining condition we use

C∧
∧

1≤i≤s

(ai = ui)
∧

s+1≤i≤n+s−1

(vi−s = ui) ∧ (vn + b1 = un+s)
∧

n+s+1≤i≤m

(bi−n−s+1 = ui)∧
1≤i≤s

(ai > 0)
∧

1≤i≤t

(bi > 0).

As above, the last two conjuncts can be omitted

6. The intersection problem

We continue to use the notation of the previous section for U , V , A and B. In order for (AU)(a) =
(V B)(a) to hold we must have pr((AU)(a)) = pr((UB)(a)). It follows from Lemma 4.2 that
s + m is one of n + t + 1, n + t, or n + t − 1 depending on which cases of Lemma 4.2 hold for
AU and for V B. Once we assume which pair of cases holds we can determine if the equation for
s+m is at all possible and if so we analyse the equation (AU)(a) = (V B)(a).

6.1 Proof that s ≤ n is necessary

We will prove that if s > n then `(A) > `(V ) and so the intersection is not possible. Assume
that s > n in this section. Given that the P -partition of a word W is W0x

u1
1 W1 · · ·Wm−1x

um
m Wm

define its Pi-partition to be W0x
u1
1 W1 · · ·Wi−1x

ui
i Wi, for 1 ≤ i ≤ m. Obviously two words W

and W ′ are equal if and only if their profile lengths are the same and their Pi-partitions are equal
for all i with 1 ≤ i ≤ lpr(W ).
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If AU(a) = V B(a) then the Pn-partition of AU(a) is A0z
a1(a)
1 A1 · · ·An−1zan(a)n An. If the

first case of Lemma 4.2 holds for V B, then its Pn-partition is V0y
v1(a)
1 V1 · · ·Vn−1yvn(a)+b1(a)n B1

otherwise it is V0y
v1(a)
1 V1 · · ·Vn−1yvn(a)n VnB0. Since the Pn-partitions of AU and V B are equal,

we have

1. Vi = Ai for 0 ≤ i ≤ n− 1

2. vi(a) = ai(a) for 0 ≤ i ≤ n− 1

3. vn(a) ≤ an(a)

4. `(Vn) ≤ `(An)

Therefore,

`(V ) =

n∑
i=1

vi(a) +

n∑
i=0

`(Vi)

=

n−1∑
i=1

vi(a) +

n−1∑
i=0

`(Vi) + vn(a) + `(Vn)

=

n−1∑
i=1

ai(a) +

n−1∑
i=0

`(Ai) + vn(a) + `(Vn)

≤
n−1∑
i=1

ai(a) +

n−1∑
i=0

`(Ai) + an(a) + `(An)

= `(A).

This contradicts the requirement that `(A) < `(V ), so the intersection is not possible if s > n.

6.2 Analysis of intersection

Just as for the inclusion problem, we illustrate the intersection problem with two cases, the rest
are similar.

Case I: First assume that the second case of Lemma 4.2 holds for both AU and for V B
so that s + m = n + t. As before, once a choice for s is made this fixes t and the equation
(AU)(a) = (V B)(a) becomes

A0z
a1(a)
1 A1 · · ·As−1zas(a)s AsU0x

u1(a)
1 U1 · · ·Um−1xum(a)

m Um =

V0y
v1(a)
1 V1 · · ·Vn−1yvn(a)n VnB0w

b1(a)
1 B1 · · ·Bt−1wbt(a)t Bt,

It follows from §6.1 that s ≤ n. Note that t = s+m− n ≤ m. If s < n then t < m and we have
the following equations:

1. Ai = Vi, for 0 ≤ i ≤ s− 1.

2. AsU0 = Vs.

3. Ui = Vi+s, for 1 ≤ i ≤ n− s− 1.

4. Un−s = VnB0.

5. Ui = Bi−n+s for n− s+ 1 ≤ i ≤ m.

9



These allow for finitely many solutions giving us finitely many pairs of candidates for A, B. If
s = n then t = m and the equations become:

1. Ai = Vi, for 0 ≤ i ≤ n− 1.

2. AnU0 = VnB0.

3. Ui = Bi, for 1 ≤ i ≤ m.

The equation AnU0 = VnB0 is similar to intersection except that there is no immediate require-
ment for the lengths of An, B0 to be smaller than those of Vn, U0 respectively. Even so an upper
bound on their lengths will follow from the requirement on the lengths of A, B given below, so
again we obtain finitely many pairs of candidates for A, B. Assuming the equations hold we
must then have ai(a) = vi(a), for 1 ≤ i ≤ s, and

ui−s(a) =

{
vi(a), for s+ 1 ≤ i ≤ n;

bi−n(a), for n+ 1 ≤ i ≤ s+m.

We also need to ensure the length conditions on A and B which state

s∑
i=1

ai(a) +

s∑
i=0

`(Ai) <

n∑
i=1

vi(a) +

n∑
i=0

`(Vi),

t∑
i=1

bi(a) +

t∑
i=0

`(Bi) <

m∑
i=1

ui(a) +

n∑
i=0

`(Ui).

If s = n the conditions are equivalent to

`(An) < `(Vn), `(B0) < `(U0),

which give us the claimed bounds for the lengths of An and B0 (in fact we only use one inequality
since AnU0 = VnB0 so that, e.g., `(B0) = `(An) + `(U0) − `(VN ).) If s < n the conditions are
equivalent to

0 <

n∑
i=s+1

vi(a) +

n∑
i=s+1

`(Vi), 0 <

n−s∑
i=1

ui(a) +

n−s∑
i=1

`(Ui).

These hold automatically since all summands are nonnegative and vn(a) > 0, u1(a) > 0. (Recall
that for this case we do not need bounds on `(An) and `(Bn).) We can now write down the
defining condition (which is the same for all pairs) just as before.

Case II: Suppose now, that the first case of Lemma 4.2 holds for both AU and for V B so that
s+m = n+ t. As before, once a choice for s is made this fixes t. As the first case of the lemma
holds this gives the following:

1. As = 1 and U0 = 1

2. Vn = 1 and B0 = 1

3. zs = x1

4. yn = w1
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The equation AU(a) = V B(a) becomes:

A0z
a1(a)
1 A1 · · ·As−1zas(a)+u1(a)

s U1x
u2(a)
2 · · ·Um−1xum(a)

m Um =

V0y
v1(a)
1 V1 · · ·Vn−1yvn(a)+b1(a)n B1w

b2(a)
2 · · ·Bt−1wbt(a)t Bt,

Suppose first that s < n. Then t < m and we have the following equations:

1. Ai = Vi for 0 ≤ i ≤ s− 1.

2. Ui = Vi+s−1 for 1 ≤ i ≤ n− s.

3. Ui = Bi+s−n for n− s+ 1 ≤ i ≤ m.

The equations allow for at most one solution. The equations for the exponents are:

1. ai(a) = vi(a), for 1 ≤ i ≤ s− 1.

2. as(a) + u1(a) = vs(a).

3. ui(a) = vs−1+i(a), for 2 ≤ i ≤ n− s.

4. un−s+1(a) = vn(a) + b1(a).

5. ui(a) = bi−n+s(a). for n− s+ 2 ≤ i ≤ m.

We must also check the equalities for lengths, i.e., `(A) < `(V ) and `(B) < `(U). These reduce
to

as(a) <

n∑
i=s

vi(a) +

n−1∑
i=s

`(Vi), b1(a) <

n−s+1∑
i=1

ui(a) +

n−s∑
i=1

`(Ui),

which follow from the second and fourth equations above.
Suppose now that s = n, so that m = t. Recall that we are trying to solve the equation:

A0z
a1
1 A1 · · ·An−1zan+u1

n U1x
u2
2 · · ·Um−1xum

m Um =

V0y
v1
1 V1 · · ·Vn−1yvn+b1n B1w

b2
2 · · ·Bt−1wbmm Bm,

We obtain the following equations:

1. Ai = Vi for 0 ≤ i ≤ n− 1

2. Ui = Bi for 1 ≤ i ≤ m

These allow for only one solution. The equations for the exponents are given by

1. ai(a) = vi(a) for 1 ≤ 1 ≤ n− 1

2. as(a) + u1(a) = vs(a) + b1(a)

3. ui(a) = bi(a) for 2 ≤ i ≤ m

The inequalities `(A) < `(V ) and `(B) < `(U) reduce to

as(a) < vs(a), b1(a) < u1(a).

The defining condition now follows easily.
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7. Parametrised elements of a free associative algebra

Consider now the free associative algebra k〈X〉 over a field k. A parametrised element4 of k〈X〉
is an expression JfKCf

where f is a k-linear combination of parametrised words over X and Cf
is a defining condition such that Var(Cf ) includes all the variables that occur as exponents in
the words of f . Just as for parametrised words, we allow the possibility that Cf has parameter
variables that do not appear in f . During discussions it is often convenient to use the phrase ‘f
with condition Cf ’ to denote JfKCf

.
For an assignment a ∈ Cf we define f(a) to be the element of k〈X〉 obtained by evaluating

each word of f at a. Just as for parametrised words, JfKCf
denotes the set of elements {f(a) |

a ∈ V(Cf )} ⊆ k〈X〉. If S = {JfiKCi
| i ∈ I} is a set of parametrised elements then it denotes

the subset ∪i∈I{fi(a) | for all a ∈ V(Ci)} of k〈X〉. An element JfKCf
is fixed if f does not

involve any parameter variables. For the sake of uniformity we will regard all elements of k〈X〉
as presented in the form JfKCf

where Cf is any condition with V(Cf ) 6= ∅, e.g. Cf = (s > 0).
For such elements we will regard f and JfKCf

as being the same.
We follow the same convention as for words for a notation such as Jf, gKC . We say that f ,

g are separated if Var(Cf ) ∩ Var(Cg) = ∅. As already observed, this can always be achieved
by using fresh variables for g and Cg, say. Just as before, if JfKCf

, JgKCg
are separated then

we can take a single common defining condition for them, namely Cf ∧ Cg. Let Vf (C) denote
VT (C) for a condition C where T is the set of parameter variables that occur in f . Then we
have Vf (Cf ) = Vf (Cf ∧Cg) provided JfKCf

and JgKCg are separated; so under this assumption
we have {f(a) | a ∈ Vf (Cf )} = {f(a) | a ∈ V(Cf )} = {f(a) | a ∈ V(Cf ∧ Cg)}. In examples
it will be convenient to abuse notation slightly and denote Vf (C) by a first order formula that
defines it. For example, if f = zys − ytz and C = (s = u ∧ s > 0 ∧ t > 0 ∧ u > 0) then we write
Vf (C) = (s > 0 ∧ t > 0) rather than the more cumbersome Vf (C) = {{s ← s1, t ← t1} | s1 >
0 ∧ t1 > 0}.

Recall from §2, that in order to construct a Gröbner-Shirshov basis for a two-sided ideal
of k〈X〉 we assume as given an admissible order < on X∗. We will assume that the order is
such that given two parametrised words U , V we can construct a defining condition CU,V of
equalities and inequalities such that U(a) < V (a) if and only if a ∈ V(CU,V ). It is of course
always possible to construct such a condition EU,V with the property that U(a) = V (a) if
and only if a ∈ V(EU,V ). The assumption is not so restrictive, e.g., the total degree then
lexicographic order has the required property. (In all our examples we will use the total degree
then lexicographic order with letters ordered as in the alphabet, so x < y < z.) For example
consider U = Jxyu1xu2KCU

and V = Jxyv1xv2KCV
then U(a) < V (a) if and only if

1. u1(a) + u2(a) < v1(a) + v2(a), or

2. u1(a) + u2(a) = v1(a) + v2(a) and u1(a) < v1(a).

Thus the required condition is CU ∧ CV ∧ (C1 ∨ C2) where C1 = (u1 + u2 < v1 + v2) and
C2 = (u1 + u2 = v1 + v2) ∧ (u1 < v1). A key problem we must address in building the Gröbner-
Shirshov basis of a set of parametrised elements is how to find the leading word of an element.

Consider a parametrised element JfKC . For each non-empty subset E of the set of words
that occur in f we can create a condition CE with the property that for all a ∈ V(CE) and
words U , V that occur in f we have U(a) = V (a), if U , V are both from E, while U(a) 6= V (a),
if only one of U , V is from E. Choose a representative WE of the subset E and create a condition
Lf,WE

such that for all words V that occur in f but do not belong to E we have W (a) > V (a)

4An alternative name is parametrised non-commutative polynomial but this is somewhat unwieldy.
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if and only if a ∈ V(Lf,W ). Set

fE =
( ∑
U∈E

coeff(U, f)
)
WE +

∑
V 6∈E

coeff(V, f)V,

where coeff(W, f) denotes the coefficient of a word W in f . Clearly f(a) = fE(a), for all
a ∈ V(CE). We define

LWJfKC = {JWE , fEKC∧CE∧LfE,WE
| for all non-empty subsets E of the

words in f s.t. coeff(WE , fE) 6= 0 and

V(C ∧ CE ∧ LfE ,WE
) 6= ∅}.

It follows that for all a ∈ V(C) we have lw(f(a)) = WE(a) if and only if a ∈ V(C∧CE∧LfE ,WE
).

Note that for such an a we have f(a) 6= 0. It is possible to have U(a) = V (a) for distinct words
of fE so long as neither of them is from E. We extend the notation LW to sets of elements in
the obvious way.

We consider now the process of reducing one element by another (see §2). For parametrised
and separated elements Jf ′KCf′ , JgKCg

we try to remove the leading word identified by each
member JU, fKD of LWJf ′KCf′ by using each JV, gKE from LWJgKCg

. For a given JU, fKD and
JV, gKE set C = D ∧ E. If IncJU, V KC = ∅ we discard JV, gKE and move on since no reduction
is possible. Assume now that IncJU, V KC = {JAi, BiKCi

| 1 ≤ i ≤ m } with m ≥ 1 (recall that
each element of IncJU, V KC is a quadruple JA,B,U, V KD but we have adopted the convention
of dropping the last two elements as they are clear from the context). Fix i and set hi =
f − coeff(U, f)/ coeff(V, g)AigBi. It follows that f ′(a) = f(a)→g(a) hi(a) for all a ∈ V(Ci). We
will summarise this by saying that f →g hi with condition Ci. The reduction has shown that
the elements of JhiKCi

are also in the ideal and each has smaller leading word than the element
of JfKCi from which it was obtained by the reduction. Suppose now that f →g hj with condition
Cj for j 6= i. If V(Cj) ⊆ V(Ci) then the second reduction is unnecessary since all fixed elements
that can be reduced by it are already reduced by the first one (possibly to different fixed elements
of course).

The preceding paragraph motivates and justifies the following notion. Assume the elements
of IncJU, V KC have been enumerated in some order as JAi, BiKCi

for 1 ≤ i ≤ m. Consider the
partial order ≺ on IncJU, V KC defined by

JAi, BiKCi
≺ JAj , BjKCj

⇐⇒ V(Ci) ⊂ V(Cj) or (V(Ci) = V(Cj) and i < j).

A few words are necessary to explain the meaning of V(Ci) ⊂ V(Cj): the variables involved
in each of the conditions C1, . . . , Cm are assumed to be the same so that an assignment is of
the form {s1 ← v1, . . . , sn ← vn} and the containment V(Ci) ⊂ V(Cj) makes sense. Let M be
the set of maximal elements under this order and find a subset T of M such that ∪S∈TV(S) =
∪S∈MV(S). In carrying out reductions we need only consider the members of T . Note that if
∪S∈TVf (S) = V(Cf ) then all fixed words defined by f have been reduced. Otherwise those in
V(Cf ) − ∪S∈TVf (S) either cannot be reduced or must be reduced using a different element of
LWJgKCg

. We call S a cover for IncJU, V KC . If M = {JA′i, B′iKC′i) | 1 ≤ i ≤ r} we can take
S = {JA′i, B′iKC′i | 1 ≤ i ≤ s} where s is minimal such that ∪1≤i≤sV(C ′i) = ∪1≤i≤rV(C ′i), this
does not necessarily contain the fewest sets and might include redundant ones. Note, finally,
that this approach is simply a heuristic aimed at avoiding unnecessary extra reductions.

As an example set F = Jxys − xyKs>0 and G = Jxyt − xKt>1. The discussion will be made
clearer by setting f = xys − xy and Cf = (s > 0). As usual, we assume a total degree then
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lexicographic order with x < y so that

LWF = { Jxys, xys − xyKs>1 },
LWG = { Jxyt, xyt − xKt>1 }.

Note that lw(f) is undefined for s = 1 since then the corresponding element is 0. We aim to
reduce F using G (more accurately elements of F by elements of G). Thus we need to solve
xys = AxytB with the condition s > 1 ∧ t > 1, this yields

IncJxys, xytKs>1∧t>1 = { J1, ys−tKs>t∧s>1∧t>1, J1, 1Ks=t∧s>1∧t>1 }.

The second case cannot be included in the first one because we assume that all parameters are
strictly positive. Now

Vf (s > t ∧ s > 1 ∧ t > 1) = (s > 2),

Vf (s = t ∧ s > 1 ∧ t > 1) = (s > 1),

Thus { J1, 1Ks=t∧s>1∧t>1 } is a cover for IncJxys, xytKs>1∧t>1, indeed the only one, and so we
employ the reduction xys − xy →xyt−x −xy + x with the condition s = t ∧ s > 1 ∧ t > 1. Since
Vf (s = t ∧ s > 1 ∧ t > 1) ( V(Cf ) we should check LWG for any other possible elements with
which to reduce f with the condition Cf ∧¬∃t(s = t∧ s > 1∧ t > 1), i.e., s = 1. Since LWG has
no further elements no reduction is possible; the general algorithm would simply add any such
irreducible parametrised element to the basis being constructed. Here we can see that there is
only one element and it is equal to 0 so we can dispense with it.

To sum up, what this has shown is that every element from the set {xy2−xy, xy3−xy, xy4−
xy, . . .} can be reduced to−xy+x by using the corresponding element from the set {xy2−x, xy3−
x, xy4−x, . . .}. In fact all elements except xy2−xy can be reduced to 0 since xys−xy →xyt−x 0
with condition (s > t ∧ s > 1 ∧ t > 1 ∧ t = s− 1). From the perspective of building a Gröbner-
Shirshov basis this is not important as we must account for the exceptional case xy2− xy which
reduces only to −xy + x. Pursuing this we have LWJ−xy + xKtt = { Jxy,−xy + xKtt }. But now
IncJxy, xytKt>1 = ∅ and so no reduction is possible. Thus in order to obtain a Gröbner-Shirshov
basis for the ideal generated by the elements of F we must enlarge the basis to

{Jxys − xyKs>0, Jxyt − xKt>1,−xy + x }.

We must also consider any intersection composition between F and G. Indeed in order to
complete the construction of the Gröbner-Shirshov basis we must also consider all possible com-
positions between the remaining pairs. We will not pursue this here since a complete example
will be given in §8.1.

8. Parametrised Gröbner-Shirshov bases

Given a set G of parametrised words, we construct a Gröbner-Shirshov basis S for the ideal
generated by G by the process in Figure 1 (scope is indicated by indentation). The method is
a direct analogue of the one for fixed elements outlined in §2 however we have to keep track of
the defining condition of each word and, in the relevant parts, of the defining condition for the
leading word. Note that even if G is finite the process does not necessarily terminate, though it
will in favourable cases, but creates a Gröbner-Shirshov basis in the limit provided the method
Reduce terminates (we discuss this in §8.2). In any implementation we would treat the returned
result as a stream. The phrase ‘Separate JV, gKEg

from JU, fKEf
’ simply means that we ensure

that the parameter variables occurring in JV, gKEg are distinct from those in JU, fKEf
by using

fresh ones if necessary. Note that the method Reduce Param of Figure 2 uses the parameter
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GS-Basis(G)
S ← G
Pairs← ∅
for JU, fKEf

∈ LWS do
for JV, gKEg ∈ LWS do

Separate JV, gKEg
from JU, fKEf

. Keep the same names.
Pairs← Pairs ∪ { (JU, fKEf

, JV, gKEg
) }

while Pairs 6= ∅ do
Comps← ∅
for (JU, fKEf

, JV, gKEg ) ∈ Pairs do
for JA,BKQ ∈ IncJU, V KEf∧Eg do . Inclusion compositions.

inc← f − coeff(U, f)/ coeff(V, g)AgB
if inc 6= 0 then

Comps← Comps ∪ { JincKQ }
for JA,BKQ ∈ IntJU, V KEf∧Eg

do . Intersection compositions.
if A 6= 1 and B 6= 1 then . Otherwise essentially the same as an inclusion.

int← Af/ coeff(U, f)− gB/ coeff(V, g)
if int 6= 0 then

Comps← Comps ∪ { JintKQ }
for JhKCh

∈ Comps do
Redns← Reduce(JhKCh

, S)
for JU, fKEf

∈ LWS do
for JV, gKEg

∈ LW Redns do . Add all new pairs to Pairs.
Separate JV, gKEg

from JU, fKEf
. Keep the same names.

Pairs← Pairs ∪ { (JU, fKEf
, JV, gKEg

), (JV, gKEg
, JU, fKEf

) }
for F ∈ Redns do S ← S ∪ {F } . Add (non-zero) reduced elements to basis.

return S

Figure 1: Creating a parametrised Gröbner-Shirshov basis.

variable R to collect the set of all possible non-zero reductions of the parameter element JfKCf
;

if all reductions are 0 then the empty set is returned. In this method we also use ff to stand for
any condition that is not satisfied by any assignment, e.g., (0 = 1). The symbol . is used to
indicate the start of a comment.

A subset S of k〈X〉 is a Gröbner-Shirshov basis for the ideal it generates if and only if every
composition of all pairs of elements form S reduces to 0 with respect to S. We can adapt this to
the parametrised situation to produce the process in Figure 3.

8.1 An example

Suppose F1 = Jf1Ks>0 and F2 = Jf1Kt>0 where

f1 = xys − z,
f2 = ytx− z,

Consider the ideal generated by G = {F1, F2 }, i.e., (xys − z, ytx − z; s, t > 0). As usual in
this paper, we order words by length and then lexicographically with x < y < z. We proceed
to illustrate the method for finding a Gröbner-Shirshov basis (with some obvious shortcuts).
One difference between this example and the methods shown in Figures 1, 2 is that whenever
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Reduce(JfKCf
, S)

if V(Cf ) = ∅ then return ∅
else if f is fixed then

return Reduce Fixed(f, S)
else
R← ∅
Reduce Param(JfKCf

, S,R)
return R

Reduce Fixed(f, S)
if f = 0 then return ∅
else

red← True
h← f
while red do

red← False
U ← lw(h)
for JV, gKEg

∈ LWS do . Look for a way to reduce f .
if IncJU, V KEg 6= ∅ then red← True; exit for loop . Found one.

if red then . Carry out a reduction step when possible.
pick any JA,BKQ from IncJU, V KEg

pick any a from V(Q)
h← h− coeff(U, h)/ coeff(V, g(a))A(a)g(a)B(a)

if h 6= 0 then return {h }
else return ∅

Reduce Param(JfKCf
, S,R)

if f = 0 or V(Cf ) = ∅ then return R
else

for JU, hKDh
∈ LWJfKCf

do
Done← ff
for JV, gKEg

∈ LWS do
if Vh(Done) 6= V(Dh) then . Check if all elements in JhKDh

have been reduced.
if IncJU, V KDh∧Eg 6= ∅ then

choose a cover T for IncJU, V KDh∧Eg

for JA,BKQ ∈ T do
Done← Done ∨Q
inc← h− coeff(U, h)/ coeff(V, g)AgB
Reduce Param(JincKQ, S,R)

if V(Dh∧¬(Done|h) 6= ∅ then . Put into R all irreducible elements from JhKDh
.

R← R ∪ { JhKDh∧¬(Done|h) }
return R

Figure 2: Reducing a parametrised element with respect to a set.
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GS-Basis-Check(S)
Pairs← ∅
for JU, fKEf

∈ LWS do
for JV, gKEg ∈ LWS do

Separate JV, gKEg from JU, fKEf
. Keep the same names.

Pairs← Pairs ∪ { (JU, fKEf
, JV, gKEg

) }
while Pairs 6= ∅ do

Comps← ∅
for (JU, fKEf

, JV, gKEg
) ∈ Pairs do

remove (JU, fKEf
, JV, gKEg ) from Pairs

for JA,BKQ ∈ IncJU, V KEf∧Eg do
inc← f − coeff(U, f)/ coeff(V, g)AgB
if inc 6= 0 then Comps← Comps ∪ { JincKQ }

for JA,BKQ ∈ IntJU, V KEf∧Eg
do

if A 6= 1 or B 6= 1 then
int← Af/ coeff(U, f)− gB/ coeff(V, g)
if int 6= 0 then Comps← Comps ∪ { JintKQ }

for JU, fKEf
∈ Comps do

if Reduce(JfKEf
, S) 6= ∅ then return False

return True

Figure 3: Checking a parametrised set to see if it is a Gröbner-Shirshov basis.

a non-zero element cannot be further reduced we add it to the basis straight away. This is an
optimisation that would be applied to any implementation of the methods, it is not shown in the
figures for the sake of simplicity.

We start by setting S ← G. Thus

LWS = { Jxys, xys − zKs>0, Jytx, ytx− zKt>0 },

and

Pairs = { (Jxys, xys − zKs>0, Jxyt, xyt − zKt>0), (Jxys, xys − zKs>0, Jytx, ytx− zKt>0)

(Jytx, ytx− zKt>0, Jxys, xys − zKs>0), (Jysx, ysx− zKs>0, Jytx, ytx− zKt>0) }.

Considering the first pair, an intersection Axys = xytB with A 6= 1 is not possible so any
intersection is the same as an inclusion (similarly for xysA = Bxyt). For inclusion, let U = xys,
V = xyt then we have two solutions (i) A = 1, B = 1 with condition s = t and (ii) A = 1,
B = ys−t with the condition s > t. For the first case the composition is 0 so it is discarded. For
the second case the result of composing xys − z and xyt − z is zys−t − z with condition s > t.
This new element cannot be reduced by S, so we add it to the basis but we rename s − t as u
and so add f3 = zyu − z for u > 0 to the basis. Hence we now have

S = { Jxys − zKs>0, Jytx− zKt>0, Jzyu − zKu>0 }

At this point the set Pairs is updated by removing the considered pair and including all pairs
formed with f3 as one entry and one of f1, f2, f3 as the other entry but to save space we will not
show this.

Applying the same reasoning to the pairs formed from f2 in both entries, we see that f4 =
yvz − z, for v > 0 is also in the basis. Thus the basis so far is

S = { Jxys − zKs>0, Jytx− zKt>0, Jzyu − zKu>0, Jyvz − zKv>0 }
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We now consider the possible compositions between f1 = xys − z, f2 = ytx − z. Inclusion is
not possible, so we only have to deal with the intersection composition between xys and ytx.
Assume first that that we want to solve Axys = ytxB. The intersection is possible only with
A = yt and B = ys where s, t > 0. The result of the composition is f = Af1 − f2B = zys − ytz.
Now

LWJfKs>0∧t>0 = { Jzys, fKs≥t∧s>0∧t>0, Jytz, fKt>s∧s>0∧t>0}

We can reduce JfKs≥t∧s>0∧t>0 by g1 = zyu − z to obtain

f →g1=

{
z − ytz, with condition Q1 = (s = u ∧ s ≥ t ∧ s > 0 ∧ t > 0 ∧ u > 0);

zys−u − ytz, with condition Q2 = (s > u ∧ s ≥ t ∧ s > 0 ∧ t > 0 ∧ u > 0).

Clearly Vf (Q1) = (s ≥ t ∧ s > 0 ∧ t > 0) and Vf (Q2) = (s ≥ t ∧ s > 1 ∧ t > 0) thus
Vf (Q2) ⊂ Vf (Q1). Therefore, we choose to reduce f to f1 = −ytz + z with t > 0. Now, f1 can
be reduced by g2 = yuz − z to obtain:

f1 →g2=

{
0, with condition Q1 = (t = u ∧ t > 0 ∧ u > 0);

−yt−uz + z, with condition Q2 = (t > u ∧ t > 0 ∧ u > 0).

Here, we have Vf1(Q1) = (s > 0) and Vf1(Q2) = (s > 1) thus Vf1(Q2) ⊂ Vf1(Q1), so we
reduce f1 to 0, i.e., the process works in the same way as intuition.

Now we consider reducing the second element of LWJfKs>0∧t>0, i.e., J−ytz+zysKt>s∧s>0∧t>0.
This reduces to Jzys − zKs>0 via Jyvz − zKv>0 and then to 0 via Jzyu − zKu>0.

To complete the possible inclusions between f1 and f2 we must also solve the equation xysA =
Bytx. First assume that s = t, then we have the solutions A = B = x and A = yax, B = xya

where 0 < a < s− 1. Taking A = B = x the result of the intersection composition is −zx+ xz.
As this cannot be further reduced, we add it to the basis. Now for A = yax, B = xya the
composition is −zyax+xyaz and this reduces to 0 via Jzyu− zKu>0, Jyvz− zKv>0 and −zx+xz.

For s 6= t we have the following possibilities: in general we set A = yax, B = xyb with
0 < a < t − 1, 0 < b < s − 1 and s + a = b + t. For the case s > t we also have the solution
A = x, B = xys−t while for t > s we have A = yt−sx, B = x. For s > t and A = x, B = xys−t

we obtain the composition f = xys−tz − zx. We can rename f to xysz − zx, with the condition
s > 0. Then we reduce f by g1 = ytz − z to obtain

f →g1=

{
−zx+ xz, with condition Q1 = (s = t ∧ t > 0 ∧ s > 0);

xys−tz − zx, with condition Q2 = (s > t ∧ t > 0 ∧ s > 0).

We have Vf (Q1) = (s > 0) and Vf (Q2) = (s > 1) thus Vf (Q2) ⊂ Vf (Q1), so we reduce f to
f1 = −zx + xz. We now call the procedure Reduce Fixed to reduce f1 to 0 as it is already
in the basis. A similar analysis applies when t > s. In the general case A = yax, B = xyb the
composition is Jxybz − zyaxKa>0∧b>0 and this reduces to 0 via Jzyu − zKu>0, Jyvz − zKv>0 and
−zx+ xz. Therefore, Pairs is updated and the basis so far is given by

S = { Jxys − zKs>0, Jytx− zKt>0, Jzyu − zKu>0, Jyvz − zKv>0,−zx+ xz }.

It is worth noting here that the reduction of Jxybz−zyaxKa>0∧b>0 falls into two cases: one where
a < b so that the leading word is xybz and the other where a ≥ b giving zyax as the leading word.
Furthermore if, in the case of b > a we reduce first by Jxys − zKs>0 followed by Jzyu − zKu>0

then we obtain z2− zx which cannot be reduced and would thus be put in the basis (see below).
Similarly if, in the case a ≥ b, we reduce first by Jytx, ytx− zKt>0 followed by Jxys − zKs>0 then
we obtain xz − z2 which reduces to zx− z2 via −zx+ xz.
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Consider now the elements f1 = xys−z and f3 = zyu−z. In this case, neither intersection nor
inclusion is possible so we move on and look at the first and the fourth elements: f1 = xys − z
and f4 = yvz − z. Here inclusion is not possible so we consider intersection. The equation
Axys = yvzB has no solutions, so we move on to the equation xysA = Byvz. If s = v then, as
before, this splits into the special case and A = z, B = x and the general one A = yaz, B = xya

with 0 < a < s − 1. For the case A = z, B = x the composition is f = −z2 + xz which cannot
be further reduced, so it is added to the basis. For the case A = yaz, B = xya the composition
is −zyaz + xyaz and this reduces to −z2 + xz via Jyvz − zKv>0 applied twice.

Suppose now that s 6= v. First, let s > v; we have the special solution A = z, B = xys−v to
obtain f = xys−vz − z2, which we rename f = xysz − z2, with condition s > 0. We can reduce
f by g1 = xyt − z to obtain:

f →g1=

{
0, with condition Q1 = (s = t ∧ t > 0 ∧ s > 0);

zys−tz − z2, with condition Q2 = (s > t ∧ t > 0 ∧ s > 0).

Again, we have Vf (Q2) ⊂ Vf (Q1), so we proceed to reduce f to 0. A similar analysis applies for
the special solution when s < v and the solution A = yv−sz, B = x. We also have the general
solution A = yaz, B = xyb with s+a = v+ b, 0 < a < v− 1 and 0 < b < s− 1. The composition
is Jxybz − zyazKa>0∧b>0 which reduces to 0 via Jyvz − zKv>0 and −z2 + xz. Therefore, Pairs is
updated and the basis so far is given by

S = {Jxys − zKs>0, Jytx− zKt>0, Jzyu − zKu>0, Jyvz − zKv>0,−zx+ xz,−z2 + xz}.

In fact all other compositions reduce to 0 and so this is a Gröbner-Shirshov basis for the ideal
(xys−z, ytx−z; s, t > 0) with words ordered by length and then lexicographically with x < y < z.

8.2 The method Reduce

In the standard situation where we are reducing a fixed element of k〈X〉 reduction is guaranteed
to terminate since each step produces a fixed word by replacing the leading word with one or
more smaller fixed words and the order on words is a well order. However in the parametrised
situation we do not have a guarantee of termination. As an example, consider Jxys − xKs>1 and
Jxy − xKtt . We have the following sequence of reductions:

xys − x→xy−x xy
s−1 − x with condition s > 1

→xy−x xy
s−2 − x with condition s > 2

...

Of course once we give s a value the sequence reaches xy − x after s − 1 steps and goes to 0
in one more step. Moreover it takes exactly this many steps, i.e., there is no upper bound
independent of s. In this simple example it is clear that the sequence will not terminate (with s
an unassigned variable) because Jxys−1 − xKs>1 is just Jxys − xKs>2 and so we are in a cycle
with the lower bound on s increasing each time. Naturally in this case we can detect the
cycle and simply add Jxys − xKs>1 to the basis. However non-termination need not always
be due to such cycles. For example, consider f = Jxs1ys2 − xs2ys2zs2Ks1>0∧s2>0∧s1>2s2 and
g = Jxt1yt2 − xt2yt2zt2xt2yt2Kt1>0∧t2>0∧t1>4t2 . One possible reduction is to set t1 = s1 and
t2 = s2. For the inclusion composition we have xs1ys2 = 1xs1ys2 1, so we obtain

f ′ = Jxs2ys2zs2xs2ys2 − xs2ys2zs2Ks2>0
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Again we can reduce by g. Setting t1 ≤ s2 and t2 ≤ s2 we obtain xs2ys2zs2xs2ys2 = Axt1yt2B
with A = xs2−t1 and B = ys2−t2zs2xs2ys2 . Applying the reduction we obtain

f ′′ = Jxs2+t2−t1yt2zt2xt2ys2zs2xs2ys2 − xs2ys2zs2Ks2>0∧t1>0∧t2>0∧t1≤s2∧t2≤s2∧t1>4t2 .

This process can be carried on indefinitely with the leading word of the new element growing
each time.

8.3 Non-existence of an algorithm for the method Reduce

Let us assume that we have an algorithm for deciding if IncJU, V KC is empty likewise for
IntJU, V KC so that Lemma 4.1 is not a barrier to producing an algorithm for method Reduce.
Nevertheless, the preceding observations suggest that in general we cannot hope to detect non-
termination, this is indeed the case. We will work with Turing machines that, by default, have a
two way infinite tape and quintuples as instructions. We assume that the tape alphabet consists
of 0, 1, . . . ,m − 1 where 0 denotes the blank symbol. The states are 0, 1, . . . , n − 1 where 0 is a
halting state. When denoting configurations we underline the state. For a machine T and con-
figurations C, C ′ we use C ⇒T C

′ (respectively C ⇒∗T C ′) to indicate that T transforms C to C ′

in one move (respectively zero or more moves). Let C = . . . b2b1b0qac0c1c2 . . . be a configuration

(the state is underlined) and set α =
∑∞
i=0 bim

i, β =
∑∞
i=0 cim

i; both sums are finite since
all but finitely many symbols are blank. We encode the configuration as (α, q, a, β). The move
function of T is simply described: if T has no quintuple starting with (q, a) the machine halts,
i.e., the configuration is terminal. Otherwise set α = α′m+ b, β = β′m+ c where 0 ≤ a, b < m
then

(α, q, a, β)⇒T

{
(αm+ a′, q′, c, β′), if (q, a, q′, a′, R) is a quintuple of T ;

(α′, q′, b, βm+ a), if (q, a, q′, a′, L) is a quintuple of T ;

Clearly the encoded version mimics the computation of the given machine faithfully. Moreover,
every quadruple (α, q, a, β) with α, β ∈ N, 0 ≤ q < n and 0 ≤ a < m corresponds to a configura-
tion of T . Consider now the free algebra Q〈w, x, y, z, u, v〉. We could encode the configuration
(α, q, a, β) as wxαyqzauβv but as we do not allow parameter variables to be 0 we use

φ(C) = wx1+αy1+qz1+au1+βv

instead. The reason for the presence of w, v is that for a pair of such words there is a composition
of inclusion or intersection if and only if they are equal, this is critical to the proof of Lemma 8.1
below. The nature of the words we use also ensures the assumption at the start of this section
regarding IncJU, V KC and IntJU, V KC .

Clearly there is a first order logic formula M(s, q, a, t, s′, q′, a′, t′) with the displayed free
variables such that the formula is true if and only if C = (s, q, a, t), C ′ = (s′, q′, a′, t′) are
configurations and C ⇒T C ′. We will denote the formula by M(C,C ′) for brevity. It will be
convenient to work only with certain configurations. We assume that we have identified a set of
configurations that we will call standard with the property that if C ⇒T C

′ then C is standard
if and only if C ′ is standard.

We consider the ideal

I = ({φ(C)− φ(C ′) | C is standard and C ⇒ C ′})

of Q〈w, x, y, z, u, v〉. As usual, we use the total degree then lexicographic order on {w, x, y, z, u, v }∗.
Two configurations C1, C2 are said to conflow if there is a configuration C such that C1 ⇒∗T C
and C2 ⇒∗T C.
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Lemma 8.1 S = {φ(C)−φ(C ′) | C 6= C ′ are standard and conflow} is a Gröbner-Shirshov basis
for I.

Proof. Cleary I ⊆ (S). For the reverse inclusion, assume that C1, C2 are distinct and standard
and C1 ⇒∗T C in s1 steps while C2 ⇒∗T C in s2 steps with s1 + s2 minimal. We use induction
on s1 + s2 to show that φ(C1)− φ(C2) ∈ I. Since C1 6= C2 we have s1 + s2 > 0. If s1 + s2 = 1
then either C1 ⇒T C2 or C2 ⇒T C1 and so either φ(C1) − φ(C2) or φ(C2) − φ(C1) is in the
basis of I. Otherwise we may assume without loss of generality that s1 > 0 and so C1 ⇒T C ′;
hence C ′ is standard and C ′ ⇒∗T C in s1− 1 steps. It follows from the induction hypothesis that
φ(C ′)− φ(C2) ∈ I. By the definition of I, we have φ(C1)− φ(C ′) ∈ I and so φ(C1)− φ(C2) ∈ I
as claimed. Thus (S) ⊆ I and so I = (S).

It remains to show that S is a Gröbner-Shirshov basis, we do this by showing that all com-
positions of members of S reduce to 0 w.r.t. S. Consider φ(C1) − φ(C ′1), φ(C2) − φ(C ′2) ∈ S.
As observed above two words φ(C), φ(C ′) do not have a composition of inclusion or intersection
unless they are equal. It follows that there is a composition (only one type need be considered)
between φ(C1)−φ(C ′1) and φ(C2)−φ(C ′2) if and only if lw(φ(C1)−φ(C ′1)) = lw(φ(C2)−φ(C ′2)).
Suppose that φ(C1) = φ(C2) are the leading words, then the composition is φ(C ′2) − φ(C ′1).
Now C1 and C ′1 conflow and similarly for C2 and C ′2. Since C1 = C2 it follows that C ′1 and C ′2
conflow and so φ(C ′2)− φ(C ′1) ∈ S. The other cases are similar. �

Lemma 8.2 For all distinct configurations C1, C2 we have φ(C1)− φ(C2) ∈ I if and only if C1,
C2 conflow and are both standard.

Proof. Suppose that φ(C1)− φ(C2) ∈ I. Let S be the Gröbner-Shirshov basis for I defined in
Lemma 8.1 so that φ(C1)− φ(C2)→S 0 in s steps (necessarily s > 0). We use induction on s to
show that C1, C2 conflow and are both standard. If s = 1 the claim is immediate by definition
of S. Assume w.l.o.g. that lw(φ(C1) − φ(C2)) = φ(C1) so that φ(C1) − φ(C ′1) ∈ S for some
C ′1. It follows that C1 is standard and φ(C1) − φ(C2) →φ(C1)−φ(C′1) φ(C ′1) − φ(C2) →S 0. By
induction C ′1 and C2 are standard and conflow. But C1 and C ′1 conflow since φ(C1)−φ(C ′1) ∈ S
and so C1 and C2 conflow. For the converse, we have φ(C1)− φ(C2) ∈ S ⊆ I by Lemma 8.1. �

A final set of standard configurations of T is a set F such that:

1. If C ∈ F then C is standard and either C is terminal or C ⇒T C.

2. For all standard configurations C ′ there is a configuration C ∈ F such that C ′ ⇒∗T C.

(There is no guarantee that a final set exists.) For C ∈ F set

[C]T = {C ′ | C ′ ⇒∗T C and C ′ 6∈ F}.

Lemma 8.3 Suppose T has a set F of final configurations and let I be the ideal defined above.
Assume that the admissible order on {w, x, y, z, u, v }∗ is such that whenever C ′ ⇒∗T C with
C ∈ F we have φ(C ′) ≥ φ(C). Then

S =
⋃
C∈F
{φ(C ′)− φ(C) | C ′ ∈ [C]T }

is a Gröbner-Shirshov basis for I.
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Proof. First we note that S ⊆ I by Lemma 8.2. By Lemma 8.1 we need only show that
φ(C1)−φ(C2)→S 0 where C1 6= C2 are standard and conflow. We have C1 ⇒∗T C and C2 ⇒∗T C
for some C ∈ F . Thus φ(C1)− φ(C), φ(C2)− φ(C) ∈ S and the leading words are φ(C1), φ(C2)
respectively. We may assume without loss of generality that lw(φ(C1)− φ(C2)) = φ(C1). Now

φ(C1)− φ(C2)→φ(C1)−φ(C) φ(C)− φ(C2)→φ(C2)−φ(C) 0.

Thus S is a Gröbner-Shirshov basis for I. �

Now let T ′ be any Turing machine with a one way infinite tape (to the right) whose halting
problem on the empty tape is undecidable. We employ the following standard construction to
obtain a two way infinite tape machine T whose overall behaviour is to treat its input word w
as a counter (in unary) and simulate T ′ with an empty tape until the counter reaches 0 or the
simulation halts. If the first case happens we clear the tape and keep moving right forever in
state 1. If the latter happens we clear the tape and enter state 0 (a special halting state).

We give the construction of T in more detail for the sake of readers who are not familiar
with Turing machines. In the description we will use some non-numeric tape symbols since these
are more meaningful, they should be seen as names for some appropriate number in the range
1, . . . ,m − 1 where m is the total number tape symbols (recall that 0 is reserved for the blank
symbol). Similar remarks apply to states. T has an initial start state qI and is always started
with the configuration qIw where w is a sequence of 1’s. We will simulate T ′ in a portion of the
tape of T delimited by the special symbols $ and ]. We ensure that within this portion only a
reserved set Σ of symbols is used. This set includes 0 (the blank symbol) but is otherwise disjoint
from all other symbols used. The behaviour of T is as follows.

1. If the square to the left of the one scanned by qI is blank (i.e., 0) then place a special end
marker symbol [ and move right in a state qb, skipping 1, till the first blank is seen. If any
other symbol is seen during this preparatory phase then enter the state qH and halt.

2. Overwrite the found blank symbol with a new symbol $, enter a state q$. If the next symbol
is blank move right and enter state q$$. If the next symbol is blank then replace it with ],
move left and enter a new state qS ; this initialises the step by step simulation of T ′ on its
empty tape. Otherwise enter the state qH and halt.

3. Simulate T ′ on the part of the tape between $ and ] one step at a time.

(a) If ] is seen during the simulation first check that the next square to the right is blank.
If so, replace ] with a blank (i.e., 0) and print ] one square to the right (i.e., make
space available to continue) then resume the simulation. If the symbol to the right
of ] is not blank then enter the state qH and halt.

(b) After each simulation step, search for the first 1 to the left of $ skipping over any 0
symbols seen. If 1 is found then replace it with 0 and resume the simulation of T ′. If
there is no occurrence of 1 and [ is not found the machine moves to the left forever
staying in a state qL different from 0 and 1. Otherwise delete [ and enter the state
qd which deletes any symbol from Σ ∪ { 1, $ } and moves right seeking ]. If ] is found
then delete it and change to a state 1 which keeps moving right so long as a blank is
seen. If any other symbol is found then enter state qH and halt.

4. If the simulation of T ′ halts before the counter reaches 0 (i.e., the relevant portion of the
tape is all blanks) then seek [. If it is not found then move to the left for ever (the state is
irrelevant but is different from 0 and 1). Otherwise delete [ and all symbols in Σ ∪ { 1, $ }
from here up to ] then enter the halting state 0. If any other symbol is seen then enter
state qH and halt.
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It is clear from the design of T that for a given configuration C we can decide if C → 00 or
C → 10. We take the set of all such configurations to be the standard ones, in particular we can
decide if C is standard. There is thus a total computable function γ from configurations to N
such that

γ(C) =


0, if C ⇒∗ 00;

1, if C ⇒∗ 10;

2, otherwise;

We denote the halting configuration 00, encoded as (0, 0, 0, 0), by H and the non-terminating
configuration 10, encoded as (0, 1, 0, 0), by L. We can test if C = (α, q, a, β) is a configuration
by the first order formula

con(C) = α ≥ 0 ∧ (q ≥ 0 ∧ q < n) ∧ (a ≥ 0 ∧ a < m) ∧ β ≥ 0.

Set
S = { Jφ(C)− φ(H)Kcon(C)∧γ(C)=0, Jφ(C)− φ(L)Kcon(C)∧γ(C)=1 },
J = (S).

The set S can be expressed without the use of γ but at the expense of using infinitely many
parametrised words as follows. We can express the condition that C = (α, q, a, β) is a configura-
tion and C ⇒∗T H in s steps by the first order formula

Hs(C) = con(C) ∧ ∃C1, . . . , Cs

(
C = C1 ∧

∧
0≤i≤s−1

M(Ci, Ci+1) ∧ Cs = H
)
.

Of course it is possible that C ⇒∗T H in fewer or more than s steps as well as exactly s steps.
By replacing H with L in the formula above we obtain a formula Ls for the condition that C is
a configuration and C ⇒∗T L in s steps. Clearly

S = {Jφ(C)− φ(H)KHs(C), Jφ(C)− φ(L)KLs(C) | s ≥ 0}.

Lemma 8.4 I = J and S is a recursive Gröbner-Shirsov basis for I.

Proof. Recall that we order the words of {w, x, y, z, u, v }∗ first by size and then lexicographi-
cally (the order of the letters can be arbitrary). If C ⇒∗T H then necessarily φ(C) ≥ φ(H) since
the entries of C are at least 0 and the entries of H are all equal to 0 (of course in the exponents
of the encoding words we add 1 to everything). Furthermore, if C ⇒∗T L then the state of C
cannot be 0 thus the state is at least 1 while all other entries are at least 0, hence φ(C) ≥ φ(L).
Since {H,L } is a final set of standard configurations for T , it follows from Lemma 8.3 that S is a
Gröbner-Shirsov basis for I and hence I = J . Given a configuration C we have φ(C)−φ(L) ∈ S
if and only if φ(C) − φ(H) 6∈ S. Now φ(C) − φ(H) ∈ S if and only if C ⇒∗T H and this is
decidable. �

Consider the method Reduce where the given basis (i.e., the second parameter S) is a Gröbner-
Shirshov basis for an ideal I. An algorithm for the method is one that terminates on all inputs
and returns 0 when the element JfKCf

to be reduced is in I, i.e., {f(a) | a ∈ V(Cf )} ⊆ I.
Otherwise one or more non-zero parametrised elements JgKCg

are returned such that f →S g
with condition Cg where {g(a) | a ∈ V(Cg)} ∩ I = ∅. In fact the next Lemma shows that there
is no algorithm even for deciding just the first condition that JfKCf

is in I
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Theorem 8.1 There is no algorithm for the method Reduce even when S is a recursive Gröbner-
Shirsov basis.

Proof. Consider configurations C of the Turing machine T that are of the form qI1
∗. In encoded

form these are (0, qI , 0, 0) or (0, qI , 1, (m
s − 1)/(m − 1)) for s ≥ 0 and can be classified by the

first order formula

I(α, q, a, β) =
(
α = 0 ∧ q = qI ∧ ((a = 0 ∧ β = 0) ∨ (a = 1 ∧ ∃s (m− 1)β = ms − 1))

)
Now Jφ(C) − φ(L)KI(C) →S 0 if and only if T does not halt on any such C which is equivalent
to T ′ not halting on the empty tape. If we have an algorithm for Reduce that terminates on all
inputs then we can solve the halting problem for T ′ on the empty tape which is a contradiction.
�

We end this section with two remarks. If, in the definition of S, we allow only first order
formulae without auxiliary functions (i.e., we do not allow the function γ) then S consists of
infinitely many parametrised words; it would be interesting to know if there is an example with
finitely many such words. In our encoding of Turing machines we could have gone further and
encoded configurations as pairs of natural numbers to obtain Modular machines, see Aaanderaa
and Cohen (1980a, 1980b). The gain is that we need only work with the free associative algebra
Q〈w, x, y, v〉 but at the expense of some complications in the construction.

9. Concluding remarks

We have described an approach to working with parametrised sets of words with the aim of
obtaining, at least in some circumstances, a finite description of a Gröbner-Shirshov basis for
the ideal they generate. On the one hand we have shown an example where this works well.
On the other hand we have shown that in general there can be no algorithm for the reduction
process. However, this negative result does not hold if all the parameter variables are bounded
from above as then all reductions must terminate. Thus one possible approach to checking a
proposed Gröbner-Shirshov basis G is to put a bound on the unbounded variables (all other
decision problems in the methods are decidable since we are dealing with a finite domain). Any
compositions that fail to reduce to 0 are either counterexamples to G being a Gröbner-Shirshov
basis or show that we need to increase the bound on the variables. Similar remarks apply to
constructing a basis. This approach does not of course provide an algorithm but a tool to help
investigation.

Furthermore the negative results do not apply in the case of finitely many parametrised
words whose conditions have only finitely many assignments, assuming that these can be found
algorithmically. Thus the methods can be used as algorithms in the case of a large number of
finitely many fixed words that can be described succinctly by patterns.

It would be of interest to have at least a partial characterisation of sets of parametrised
elements for which we can indeed obtain a parametrised Gröbner-Shirshov basis following the
methods discussed here. The discussion in the introduction shows that this remains of interest
in the special case when all elements are of the form U −V where U , V are parametrised words.
Despite a fair amount of effort we only have some very limited success which is not discussed in
this paper.

Finally, in the introduction, we motivated part of our study with reference to applying our
methods to verifying proposed standard bases (or Bokut’ normal forms). We have not at-
tempted to include an example of such a verification as it would be too complicated without
machine assistance, an approach that we hope to pursue in the future. Before this research
was conducted the second author implemented Gröbner-Shirshov bases for fixed words in the
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Axiom computer algebra system (available as open source at http://www.axiom-developer.org
and https://github.com/daly/axiom). He used this system to check bases obtained from Bokut’
normal forms by the first author, Kalorkoti (2011), for particular modular machines. Extending
the system to parametrised words would be a major effort.
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