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We found the article by Singh et al. [1] extremely interesting since it introduces and 

showcases the utility of machine learning for high throughput data-driven plant phenotyping. 

With this letter we want to emphasize the role that image analysis and processing have in the 

phenotyping pipeline beyond what [1] suggests, both in analyzing phenotyping data (e.g., to 

measure growth) but also when providing effective feature extraction to be used by machine 

learning. Key recent reviews have shown that it is image analysis itself (what the authors of [1] 

consider as part of pre-processing) that has brought a renaissance in phenotyping [2]. At the same 

time, the lack of robust methods to analyze these images is now the new bottleneck [3-5]. And 

this bottleneck is not easy to overcome. As the following aims to illustrate, it is coupled to the 

imaging system and the environment but also to the analysis task at hand and requires new skills 

to help deal with the challenges introduced. 

A successful high-throughput image-based phenotyping system starts with the imaging 

approach itself. The choices are to image many plants simultaneously or one plant at a time, 

http://tsaftaris.com/
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requiring movable systems to bring the plant to the camera or vice versa. These systems add cost 

but have the benefit of isolating the object of interest. In turn this simplifies its processing, for 

example facilitating object segmentation, i.e. the image analysis process isolating the plant from 

background (e.g., soil) as Figure 1(A) shows. [There are many image processing tasks related to 

how we perceive and analyze an object of interest, such as segmentation, detection, tracking, and 

many others.]  

When this is not the case, plant segmentation can be extremely complex because here the 

objects of interest may touch and overlap each other (known as occlusion), as in Figure 1(B). In 

the open field [6] this becomes exceedingly more complex: light variations, plant movements due 

to wind, and other factors are introduced, and background (e.g., other plants) may look like the 

subject of interest, as Figure 1(C) illustrates. Thus, the process of extracting information from 

image data is directly linked with the setup and the environment. 

In some cases, the actual analysis task becomes hard just by the information to be sought-

after, as a recent article describes in depth [3]. To offer an example, Figure 1(D) illustrates the 

task of segmenting individual plant leaves [7] for estimating per-leaf growth (when this task is 

repeated in a longitudinal fashion [8]). Here occlusion and lack of discernible boundaries (edges) 

between leaves make the segmentation task difficult and additional information (e.g., depth) may 

be required. 

While image analysis may help us identify plant parts and extract relevant traits, typically it is 

their agglomeration across a study that could provide suitable input for machine learning. There 

is a need for mechanisms to represent the image data in a way that machine learning algorithms 

can use, and this process is known as feature extraction (another component bundled under pre-

processing in [1]). At present, features need to be designed and extracted carefully by expert 

supervision requiring specific domain knowledge (a process known as feature engineering), the 

translation of which to image analysis protocols and image filters (e.g., edge detectors) does 

require significant image processing expertise and skills. For example, in drought tolerance 

studies one can rely on the overall amount of green or yellow pixels as potential features. 

However, this simple approach may not always let us discriminate between stressed and not 

stressed plants. It is well known in machine learning that finding good features for the application 

at hand is intrinsic to an effective use of learning approaches (even sophisticated ones). Thus, 

image processing is key to obtaining accurate and reliable phenotypic results. 
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Solving the phenotyping bottleneck requires machine learning, but also good image 

processing and good features, significantly broadening the required skill-set from a practitioner’s 

perspective. The last few years have brought significant progress towards bringing the image 

analysis experts closer to plant biology using a variety of targeted actions to help diffuse skills 

and know-how. There exist both isolated workshops aimed at training biologists in image 

analysis (e.g., IAMPS1), but also new workshop series that run in conjunction with major 

computer vision conferences2,3 to help introduce new scientists into this exciting application area 

of image analysis (e.g., ‘Computer Vision Problems in Plant Phenotyping’). A recent special 

issue on Computer Vision and Image Analysis in Plant Phenotyping provided a good summary of 

the advances that occurred based on these efforts [9]. These workshops also served as the hosting 

venue to image-based phenotyping challenges4, which led to a summarizing collation study [7].  

However, we should not dismiss the recent potential to actually devise intelligent algorithms 

that can start from raw images to arrive directly to a phenotyping decision or trait. After all, this 

is the promise of deep learning that is making waves in the news when a significant amount of 

annotated data to learn from is available. These algorithms find optimal features from the raw 

data (the images) –in a process known as representation learning– which are then used to train 

supervised counterparts. We are not there yet, but some early findings have appeared in the 

context of phenotyping, e.g., to count leaves for phenotyping purposes [10].  

The promise of deep learning (and machine learning in general) cannot be materialized 

without the availability of annotated data. Thus, recent efforts to lower the entry barrier and 

accelerate this process were aimed at releasing open access data together with suitable 

performance evaluation protocols (see [11, 12] and http://www.plant-phenotyping.org/datasets). 

 

1 International Workshop on Image Analysis Methods for the Plant Sciences  

(IAMPS 2016, https://iamps2016.sciencesconf.org/). 

2 CVPPP 2014 in conjunction with ECCV 2014  

(http://www.plant-phenotyping.org/CVPPP2014). 

3 CVPPP 2015 in conjunction with BMVC 2015  

(http://www.plant-phenotyping.org/CVPPP2015). 

4 Leaf Segmentation and Counting Challenges  

(http://www.plant-phenotyping.org/CVPPP2015-challenge). 

http://www.plant-phenotyping.org/datasets
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The diffusion and adoption of such datasets as benchmarks will allow for the parallel growth of 

methods and the fair comparison of approaches across the years to come. In addition, in the field, 

where experimental design is poorer due to reduced control over confounding variables and the 

imaging setup is less than ideal, it is the combination of machine learning and computer vision 

that can make a significant contribution in meeting phenotyping challenges in this challenging 

domain. Again here the availability of data will be critical and efforts such as the one described 

in [7] are a good start towards this goal. 

To conclude, to make leaps towards addressing future issues of agricultural demand, 

phenotyping will certainly play a key role and will be aided by innovations in machine learning 

and computer vision and the multidisciplinary collaboration among the biological, engineering, 

and computer sciences. 
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Figure 1: The process of segmentation (delineation of plant from background or leaves from each 

other) changes in complexity according to the imaging conditions and task at hand. A: Plant 

segmentation of isolated plants. B: Tray with overlapping plants. C: Image from the field (adapted 

from the dataset presented in [6] reproduced according to the Creative Commons Attribution 4.0 

International License, http://creativecommons.org/licenses/by/4.0/). D: Leaf segmentation of 

isolated plants. When plants are isolated (A or C, right), reliable segmentation procedures exist. 

However, when we image many plants together in the lab (B), or in the field (C, left) segmentat ion 

becomes much harder when plants touch each other and overlap. The process is inherently hard 

when objects cannot be isolated before segmentation, e.g., when we want to delineate each leaf 

within a single plant (D). Before machine learning can be used for phenotyping, the process of 

segmentation is more often than not necessary in order to design good features. 

 

(A)	 (B)	

(C)	 (D)	


