

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Time-integrated 3D approach of late Quaternary sedimentdepocenter migration in the Tagus depositional system: From river valley to abyssal plain

Citation for published version:

Vis, G, Kasse, C, Kroon, D, Vandenberghe, J, Jung, S, Lebreiro, SM & Rodrigues, T 2016, 'Time-integrated 3D approach of late Quaternary sediment-depocenter migration in the Tagus depositional system: From river valley to abyssal plain' Earth-Science Reviews, vol. 153, pp. 192-211. DOI: 10.1016/j.earscirev.2015.11.002

Digital Object Identifier (DOI):

10.1016/j.earscirev.2015.11.002

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Earth-Science Reviews

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Lab. Nr.	¹⁴ C age yrs BP ± 1σ	Age cal. BP 2σ	Midpoint	Coordinates (x-y/z) (m)	Sample depth (cm)	Borehole name	Remarks	First published	Calibration curve
GrA-27234	5530 +/- 45	6410-6210	6310	531.812-4342.025/+8	740-741	0401.003/203	-	Vis et al. (2008)	intcal04.14c
GrA-27236	2005 +/- 35	2050-1870	1960	543.112-4350.825/+9	300-310	0401.004/204	-	Vis et al. (2008)	intcal04.14c
GrA-29205	1390 +/- 35	1360-1265	1313	541.501-4362.494/+14.3	366-370	0401.021	loogextract	Vis et al. (2008)	intcal04.14c
GrA-29447	1510 +/- 40	1520-1310	1415	541.501-4362.494/+14.3	366-370	0401.021	residue	Vis et al. (2008)	intcal04.14c
GrA-29214	3850 +/- 40	4410-4150	4280	541.501-4362.494/+14.3	506-508	0401.021	loogextract	Vis et al. (2008)	intcal04.14c
GrA-29215	3610 +/- 60	4090-3720	3905	541.501-4362.494/+14.3	506-508	0401.021	residue	Vis et al. (2008)	intcal04.14c
GrA-29216	4215 +/- 40	4860-4610	4735	541 501-4362 494/+14 3	554-556	0401 021	loogextract	Vis et al. (2008)	intcal04 14c
GrA-29218	3945 +/- 40	4520-4240	4380	541 501-4362 494/+14 3	554-556	0401 021	residue	Vis et al. (2008)	intcal04 14c
GrA-29220	545 +/- 35	650-510	580	544 533-4358 745/+16 63	370-380	0401 013	charcoal (AAA)	Vis et al. (2008)	intcal04 14c
GrA-29221	200 +/- 35	310-0	155	540 649-4352 679/+15 68	370-380	0401 104	charcoal (AAA)	Vis et al. (2008)	inteal04.14c
GrA-29530	930 ±/- 35	930-760	845	542 899-4360 935/+16 23	260-270	0401.002	Sieved at 250 & 125 um	Vis et al. (2008)	intcal04.14c
GrA-29843	65 ±/- 40	270-0	135	541 504-4352 118/+13 22	540-550	0401.002	Sieved at 250 um	Vis et al. (2008)	intcal04.14c
GrA-20535	2400 ±/- 40	2730-2360	2545	541 504-4352 118/+13 22	840-850	0401.015	Sieved at 250 & 125 um	Vis et al. (2008)	inteal04.14c
GrA-29535	245 +/- 35	490-300	2040	540 640-4352 670/+15 68	610-620	0401.013	Sieved at 250 um	Vis et al. (2008)	inteal04.14c
GrA 20520	1005 1/ 25	430-300	1000	541 594 4252 094/116 65	200 210	0401.104	Sieved at 250 g 125 um	Vis et al. (2008)	inteal04.14c
GIA-29559	1095 +/- 35	F200 4070	1000 5125	541.564-4552.064/+10.05	000-010	0401.100	Sieved at 250 & 125 µm	Vis et al. (2008)	inteol04.14c
GIA-30010	4400 +/- 30 6500 +/ 50	7510 7200	7405	542.943-4350.007/+12.73	923-920	0401.302/32	Sieved at 125 µm	Vis et al. (2008)	inteol04.14c
GIA-31005	6360 +/- 50	7510-7300	7405	542.943-4350.007/+12.73	1491-1495	0401.302/32	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GIA-30901	6360 + /- 43	7420-7170	7295	542.943-4350.007/+12.73	1004 4000	0401.302/32	Sieved at 125 µm	Vis et al. (2006)	Intcal04.14c
GrA-30615	5790 +/- 40	6680-6480	6580	540.407-4359.849/+12	1024-1029	0501.029	Sieved at 200 µm	Vis et al. (2008)	Intcal04.14c
GrA-31004	5900 +/- 45	6860-6630	6745	540.407-4359.849/+12	1046-1050	0501.029	Sleved at 200 µm	Vis et al. (2008)	
GrA-30860	325 +/- 30	480-300	390	548.938-4364.435/+25	110-120	-	charcoal	Vis et al. (2009)	Intcal04.14c
GrA-32584	8030 +/- 40	9030-8750	8890	531.088-4346.563/+11.38	2230-2240	0501.016	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32586	2440 +/- 30	2710-2350	2530	531.726-4345.914/+11.07	820-830	0501.013	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GrA-32647	2480 +/- 30	2720-2360	2540	522.094-4335.448/+3.94	240-250	0501.042	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GrA-33637	5640 +/- 45	6510-6300	6405	522.373-4335.353/+4.30	1160-1170	0501.041	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32650	600 +/- 25	660-540	600	524.799-4333.804/+7.60	690-700	0501.030	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GrA-32651	6165 +/- 35	7170-6950	7060	526.038-4333.421/+7.42	770-780	0501.025	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32654	7440 +/- 40	8360-8180	8270	526.038-4333.421/+7.42	1260-1270	0501.025	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32587	2625 +/- 30	2785-2720	2753	514.130-4322.014/+4	860-880	0501.050	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GrA-32644	450 +/- 30	540-470	505	512.824-4323.436/+3	360-370	0501.051	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-33636	101,91 +/- 0,4%	0	0	512.474-4323.832/+3	1590-1610	0501.052	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32645	2555 +/- 30	2760-2500	2630	514.940-4321.160/+4	1440-1450	0501.044	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
GrA-32646	5010 +/- 35	5900-5650	5775	512.474-4323.832/+3	860-870	0501.052	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32656	1765 +/- 30	1820-1570	1695	504.812-4310.535/+2	440-480	0501.071	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
GrA-32655	6265 +/- 35	7270-7020	7145	544.750-4358.375/+17.40	1967-1974	0401.304/S4	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14746	2530 +/- 60	2760-2360	2560	540.407-4359.849/+12	516-520	0501.029	Sieved at 125 µm	Vis et al. (2010b)	intcal04.14c
UtC-14747	3089 +/- 38	3390-3210	3300	540.407-4359.849/+12	604-607	0501.029	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
UtC-14748	4129 +/- 42	4830-4520	4675	540.407-4359.849/+12	711-712	0501.029	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
UtC-14749	1022 +/- 37	1060-790	925	540.407-4359.849/+12	331-334	0501.029	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
UtC-14750	1136 +/- 38	1180-960	1070	540.407-4359.849/+12	331-334	0501.029	Sieved at 125 µm	Vis et al. (2008)	intcal04.14c
UtC-14744	1630 +/- 35	1610-1410	1510	526.420-4333.197/+5	140-150	0601.002	-	Vis et al. (2008)	intcal04.14c
UtC-14745	3849 +/- 47	4420-4100	4260	526.420-4333.197/+5	280-290	0601.002	-	Vis et al. (2008)	intcal04.14c
UtC-14909	4145 +/- 42	4830-4530	4680	523.321-4334.600/+7	1004-1010	0601.301	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14910	6860 +/- 50	7800-7590	7695	523.321-4334.600/+7	1898	0601.301	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14911	8880 +/- 60	10190-9740	9965	523.321-4334.600/+7	2748-2753	0601.301	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14904	3647 +/- 41	4090-3850	3970	505.439-4310.324/+2	1281	0601.302	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14905	6247 +/- 46	7270-7010	7140	505.439-4310.324/+2	2192-2196	0601.302	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14906	8900 +/- 50	10200-9780	9990	505.439-4310.324/+2	2842-2848	0601.302	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14907	9990 +/- 70	11800-11200	11500	505.439-4310.324/+2	3710-3716	0601.302	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-14908	12160 +/- 90	14260-13780	14020	505.439-4310.324/+2	4919-4925	0601.302	Sieved at 63 µm	Vis et al. (2008)	intcal04.14c
UtC-1983	6040 ± 50	7010-6740	6875	536.620-4342.720/+7.5	761-760	Alpiarca III	-	Vis et al. (2010a)	intcal04.14c
UtC-1984	5670 ± 40	6560-6320	6440	536.620-4342.720/+7.5	752-751	Alpiarca III	-	Vis et al. (2010a)	intcal04.14c
UtC-1985	3660 ± 40	4410-3870	4005	536.620-4342.720/+7.5	502-501	Alpiarca III	-	Vis et al. (2010a)	intcal04.14c
UtC-1986	2200 ± 40	2340-2120	2230	536.620-4342.720/+7.5	301-299	Alpiarca III	-	Vis et al. (2010a)	intcal04.14c
-	900 ± 40	?	816	530.589-4347.131/+11.15	103-104	SEV	-	Azevêdo et al. (2006)	intcal04.14c
						-			

-	1987 cal BP	?	?	530.589-4347.131/+11.15	300	SEV	-	Azevêdo et al. (unpublished)	intcal04.14c
-	2930 ± 40	?	3086	530.589-4347.131/+11.15	454-455	SEV	-	Azevêdo et al. (2006)	intcal04.14c
Beta-184659	3320 ± 40	?	3550	530.589-4347.131/+11.15	649-650	SEV	-	Azevêdo et al. (2006)	intcal04.14c
Beta-184660	6090 ± 40	?	6960	530.589-4347.131/+11.15	1074-1075	SEV	-	Azevêdo et al. (2006)	intcal04.14c
-	7290 ± 50	?	8097	530.589-4347.131/+11.15	1230	SEV	-	Azevêdo et al. (2006)	intcal04.14c
-	9800 + 60	?	11219	530 589-4347 131/+11 15	1470	SEV	-	Azevêdo et al. (2006)	intcal04 14c
-	14800 + 80	?	18109	530 589-4347 131/+11 15	1680	SEV	_	Azevêdo et al. (2006)	intcal04 14c
	3530 + 40	2	2	532 600-4342 200/+8	310-311	Goucharia	_	Azevêdo et al. (uppublished)	inteal04.14c
GrN-11838	2590 + 60	2850-2470	2660	535 566-4344 560/+9	320	Alpiarca II	_	Van Leeuwaarden & Janssen (1985)	inteal04.14c
GrN-11839	2000 ± 00 3240 ± 110	3850-3200	3525	535 566-4344 560/+8	440	Alpiarça II	_	Van Leeuwaarden & Janssen (1985)	inteal04.14c
GrN-11840	4580 ± 60	5470-5040	5255	535 566-4344 560/+8	580	Alpiarça II	_	Van Leeuwaarden & Janssen (1985)	inteal04.14c
GrN-11841	4000 ± 00	6200-5550	5875	535.500-4344.500/+8	650	Alpiarça II		Van Leeuwaarden & Janssen (1965)	inteal04.14c
Boto 150252	2400 ± 40	20200-3330	2655	522 090 4224 110/17 40	740	Fonto Polo	-	Pamos Paraira et al. (2002)	inteal04.14c
Boto 150251	2220 + 40	2560 2270	2465	522.900-4334.110/+7.40	270	Fonto Polo	-	Ramos Pereira et al. (2002)	inteal04.14c
Beta 129020	3230 ± 40	1190 900	3405	522.980-4334.110/+7.40	270	Fonte Bela	-	Ramos Pereira et al. (2002)	inteal04.14c
Dela-130920	1090 ± 70	070.40	990	522.960-4334.110/+7.40	70		-	Ramos Pereira et al. (2002)	
-	70 ± 40	270-10	140	522.960-4334.110/+7.40	30		-	Ramos Perena el al. (2002)	
-	4020 ± 40	4790-4410	4000	532.550-4340.950/+0.5	103	Quinta da Boavista	-	Ramos et al. (2002)	
-	3920 ± 40	4520-4230	4375	532.550-4348.950/+6.6	133	Quinta da Boavista	-	Ramos et al. (2002)	
-	3480 ± 40	3850-3640	3745	532.550-4348.950/+6.7	129	Quinta da Boavista	-	Ramos et al. (2002)	
Beta-111010	2220 ± 80	2360-2000	2180	527.995-4329.276/+4.5	94-96	Pit 20	-	Van der Schriek et al. (2007)	Intcal04.14c
Beta-111011	7490 ± 180	8650-7900	8275	527.995-4329.276/+4.5	357-360	Pit 20	-	Van der Schriek et al. (2007)	intcal04.14c
AA-49816	7668 ± 49	8221-7548	7885	526.428-4329.073/+4.0	1073-1076	Core 11	-	Van der Schriek et al. (2007)	marine, Calib Rev. 5.0.2
AA-48977	7263 ± 46	8180-7980	8080	526.428-4329.073/+4.0	1064-1066	Core 12	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48978	7318 ± 44	8200-8010	8105	527.995-4329.276/+4.5	888-890.5	Core 20	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48979	6626 ± 44	7580-7430	7505	527.995-4329.276/+4.5	468-470	Core 21	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48980	4985 ± 73	5900-5600	5750	527.995-4329.276/+4.5	200-202.5	Core 22	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48981	5929 ± 52	6900-6640	6770	527.995-4329.276/+4.5	136.5-138	Core 23	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48982	3006 ± 46	3360-3060	3210	528.993-4328.882/+4.7	598-600	Core 40	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48983	5638 ± 71	6620-6290	6455	530.950-4328.409/+4	556-561	Core 51	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48984	6096 ± 54	7160-6800	6980	532.159-4328.524/+4.5	477-479	Core 64	-	Van der Schriek et al. (2007)	intcal04.14c
SRR-6789	5578 ± 51	6470-6280	6375	532.159-4328.524/+4.5	255-257	Core 64	-	Van der Schriek et al. (2007)	intcal04.14c
SRR-6790	4526 ± 49	5320-4980	5150	532.159-4328.524/+4.5	149-151	Core 64	-	Van der Schriek et al. (2007)	intcal04.14c
AA-48985	176 ± 34	300-0	150	532.159-4328.524/+4.5	97-100	Core 64	-	Van der Schriek et al. (2007)	intcal04.14c
KIA 30888	< 0	0	0	455.895-4275.498/-102	8-12	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 28966	610 ± 35	0	0	455.895-4275.498/-102	51-53	GeoB-8903-1	-	Abrantes et al. (2008)	marine04.14c
KIA 30890	735 ± 55	418-0	209	455.895-4275.498/-102	65-70	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 28967	760 ± 25	423-0	212	455.895-4275.498/-102	139-141	GeoB-8903-1	-	Abrantes et al. (2008)	marine04.14c
KIA 28968	685 ± 30	0	0	455.895-4275.498/-102	171-173	GeoB-8903-1	-	Abrantes et al. (2008)	marine04.14c
KIA27064	760 ± 45	428-0	214	455.895-4275.498/-102	198	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 27065	1035 ± 30	650-0	325	455.895-4275.498/-102	248	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 27066	1660 ± 35	1272-649	961	455.895-4275.498/-102	333	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 27067	2000 ± 40	1661-935	1298	455.895-4275.498/-102	413	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
KIA 27320	2885 ± 40	2724-1913	2319	455.895-4275.498/-102	493	GeoB-8903-1	prepared in Kiel	Abrantes et al. (2008)	marine04.14c
OS- 37706	1960 ±45	1621-898	1260	460.591-4276.521/-87	257	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 27301	2920 ± 35	2744-1944	2344	460.591-4276.521/-87	464	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 29730	3690 ± 30	3688-2854	3271	460.591-4276.521/-87	522	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 27303	6120 ± 55	6652-5894	6273	460.591-4276.521/-87	632	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 29729	8215 ± 45	8891-8049	8470	460.591-4276.521/-87	699	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 27304	10470 ± 70	11876-10688	11282	460.591-4276.521/-87	713	D13882	age reversal/ reworked	This study	marine04.14c
KIA 29728	9735 ± 55	10717-9807	10262	460.591-4276.521/-87	738	D13882	-	Rodrigues et al. (2009)	marine04.14c
KIA 27305	10470 ± 70	11876-10688	11282	460.591-4276.521/-87	759	D13882	instant sed.?/ reworked?/ 14C plateau	This study	marine04.14c
OS- 37707	10450 ± 75	11855-10650	11253	460.591-4276.521/-87	798	D13882	instant sed.?/ reworked?/ 14C plateau	Rodrigues et al. (2010)	marine04.14c
KIA 27307	10490 ± 70	11908-10718	11313	460.591-4276.521/-87	820	D13882	-	Rodrigues et al. (2010)	marine04.14c
OS- 37708	11100 ± 50	12819-11710	12265	460.591-4276.521/-87	975	D13882	-	Rodrigues et al. (2010)	marine04.14c
OS- 37709	11500 ± 70	13147-12325	12736	460.591-4276.521/-87	1140	D13882	-	Rodrigues et al. (2010)	marine04.14c
KIA 27687	790 ± 25	440-0	220	378.451-4233.507/-4602	13-14	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
							1 .1	/	

KIA 29278	4830 ± 35	5263-4357	4810	378.451-4233.507/-4602	125-127	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29279	5935 ± 40	6423-5689	6056	378.451-4233.507/-4602	155-156	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29280	7820 ± 40	8352-7683	8018	378.451-4233.507/-4602	189-191	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29281	10540 ± 50	11951-10795	11373	378.451-4233.507/-4602	260-261	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 27894	11735 ± 55	13285-12793	13039	378.451-4233.507/-4602	340-341	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29282	12240 ± 70	13781-13118	13450	378.451-4233.507/-4602	400-401	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29283	12895 ± 55	14869-13762	14316	378.451-4233.507/-4602	456.5-458.5	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29284	13800 ± 70	16137-15034	15586	378.451-4233.507/-4602	631-633	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
KIA 29285	15840 ± 70	18838-18007	18423	378.451-4233.507/-4602	1184.2-1186.2	MD03-2698	prepared in Kiel	Lebreiro et al. (2009)	marine04.14c
OS-42381	545 ± 25	232-169	201	468.464-4268.040/-96	86-87	PO287-26G	-	Abrantes et al. (2008)	marine04.14c
KIA 23661	1310 ± 25	915-764	840	468.464-4268.040/-96	86-88	PO287-26G	-	Abrantes et al. (2008)	marine04.14c
AAR-8368.2-K	440 ± 25	73-33	53	468.464-4268.040/-96	51-52	PO287-26B	-	Abrantes et al. (2008)	marine04.14c
AAR-7825	492 ± 39	148-12	80	470.762-4267.846/-102	75.4-76.4	D13902	-	Abrantes et al. (2008)	marine04.14c
AAR-7207	1160 ± 45	772-653	713	470.762-4267.846/-102	110.4-111.4	D13902	-	Abrantes et al. (2008)	marine04.14c
AAR-7828	2007 ± 37	1568-1403	1486	470.762-4267.846/-102	151-152	D13902	-	Abrantes et al. (2008)	marine04.14c
AAR-7210	2340 ± 55	1999-1733	1866	470.762-4267.846/-102	199-200	D13902	-	Abrantes et al. (2008)	marine04.14c

	Volum	е	DBD	Mass	Period	Mean stora	ge rate
	(km ³)		(t/m ³)	(t)	(y)	(t/y)	
12-7 ka cal BP					_		
LTV	6.4	Х	1.35* =	8.6x10 ⁹	/ 5000	= 1.7x10⁶	
7-0 ka cal BP						~1.7x	,
LTV	13.9	Х	1 <i>.</i> 48∎ =	2.1x10 ¹⁰	/ 7000	$= 2.9 \times 10^{6}$	2.5
Pr. sub. delta	5.5	Х	1.500 =	8.2x10 ⁹	/ 7000	$= 1.2 \times 10^{6}$	×
Prodelta	0.7	Х	1.15 =	7.8x10 ⁸	/ 7000	$= 0.1 \times 10^6$	
Total	20.2					4.2x10 ⁶	
			Summed	: 3.8x10 ¹⁰ t			
				$32 \times 10^6 t/$	- v (based or	n 12 000 v)	
				¢) (Daeea ei	,000 })	
				0.4 t/ha/y	(based on	a catchment area	of
					8,000,00	0 ha, which is 80,0	00 km²)

Catchment	SDR (%)	Area (km ²)) Remark	Source
Upper Mississippi tributary (USA)	7	-		Trimble, 1983
Middle Yellow River (China)	1-100	-	high drainage density and frequent hyper-concentrated flows	Gong and Xiong, 1980; Mou and Meng, 1980; in Walling, 1999
Upper Yangtze River (China)	0.34-34	-		Dai and Tan, 1996; Liu and Zhang, 1996; in Walling, 1999
Russian Plain	0-89	-	small- and medium-sized	Golosov et al. 1992
agricultural (UK)	14-27	1.5-3.6	low relief, extensive land-use and strong soil erosion	Walling et al. 2002
Various in overview	3-90	-	SDR decreases with greater catchment size and lower average slope	Morgan, 2005
Geul (Netherlands) suspended only, last ky	7	380		De Moor and Verstraeten, 2008
Dijle (Belgium)	17	758		Notebaert et al., 2009
Rhine (Netherlands)	low	185,000	nearly all sediment is stored in Rhine-Meuse delta and does not reach coast	Erkens, 2009

Period	Sediment mass (t)	SDR (%)	Mechanical denudation rate (mm/y)	Sediment production (t/ha/y)
12-0 ka	3,81x10 ¹⁰	15	0.10	2.6
		35	0.04	1.1
12-7 ka	8,56x10 ⁹	15	0.05	1.4
		35	0.02	0.6
7-0 ka	2,95x10 ¹⁰	15	0.13	3.5
		35	0.06	1.5