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Abstract. We consider a three-dimensional three-time-scale system that was first proposed in
[9] under the additional assumption that two singular perturbation parameters are present in the
equations. While the presence of three scales was shown to give rise to canard-induced periodic
mixed-mode oscillations (MMOs) [3] in the parameter regime studied in [9], we additionally observe
mixed-mode patterns that display delayed-Hopf-type behaviour [12]. We present analytical and
numerical evidence for the occurrence of stable periodic dynamics that realises both mechanisms,
and we discuss the transition between them. To the best of our knowledge, the resulting mixed
sector-delayed-Hopf-type MMO trajectories represent a novel class of mixed-mode dynamics in
singularly perturbed systems of ordinary differential equations.

1. Introduction

In the present article, we consider a modification of a prototypical three-time-scale system of
ordinary differential equations that was proposed in [9] as a canonical model for ‘slow passage
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through a classical canard explosion’ [10],

εv̇ = −z + f2v
2 + f3v

3,(1a)

ż = v − w,(1b)

ẇ = δ(µ− g1z),(1c)

where f2 and g1 are taken to be positive, while f3 is negative, and the overdot denotes differentiation
with respect to the ‘slow’ time variable τ . (For the numerical simulations presented in the article,
we chose f2 = 1.5, g1 = 0.5, and f3 = −1 throughout.) Moreover, all three of these parameters
are assumed to be Θ(1), while both ε and δ are ‘small’ (singular) perturbation parameters, which
implies the presence of one fast variable (v), one slow variable (z), and one ‘super-slow’ variable
(w) in Equation (1). (Here and in the following, the notation f(x) = Θ(g(x)) indicates that f is
asymptotically bounded from above and from below by a multiple of g(x) in the asymptotic limit
as (ε, δ)→ (0, 0).) Finally, no a priori restriction is made on the order of the parameter µ; however,
µ is not assumed to be asymptotically small in either ε or δ. The mathematical theory of singularly
perturbed differential equations in which the dynamics varies on more than two distinct scales is
not well-developed to date [8, 9]; nevertheless, such systems have attracted widespread interest in
modelling applications, in particular in the life sciences. Recent examples include the mammalian
dopaminergic neuron [7], intracellular calcium flow [5], and glycolytic oscillation [13], to name but
a few.

While Equation (1) possesses an underlying three-time-scale structure, it can also be inter-
preted as a standard fast-slow system with one singular perturbation parameter ε for which a two-
dimensional critical manifold S0 is obtained by taking ε = 0: {z = f(v)}, with f(v) = f2v

2 + f3v
3.

Under the above assumptions on fj (j = 2, 3), the manifold S0 is cubic-shaped, with two attracting
sheets Sa−0 and Sa+

0 and one repelling sheet Sr0 in between. The three sheets are separated by two
fold lines `− and `+, which are determined by the additional condition that f ′(v) = 0; the resulting
geometry is illustrated schematically in Figure 1. Fenichel’s geometric singular perturbation theory
[4, 6] guarantees that, for ε positive and small, Sa−0 , Sr0 , and Sa+

0 perturb to corresponding sheets
Sa−ε , Srε , and Sa+

ε of a slow manifold Sε, provided one stays away from the fold lines `± at which
there is a loss of normal hyperbolicity in (1). (We may use the same notation as in [9, Section 2.1]
here, i.e., we need not interpret Equation (1) as a two-parameter singular perturbation problem, as
we will assume an interdependence between ε and δ in the following; in particular, we will consider
δ = Θ(

√
ε).)

The case where δ = ε in Equation (1) was studied in detail in [9]; specifically, the existence
and stability of mixed-mode trajectories was proven which consist of both SAOs (small-amplitude
oscillations) and LAOs (large-amplitude oscillations) in alternation. The resulting mixed-mode
oscillations (MMOs) were described in terms of their so-called Farey sequences Ls11 L

s2
2 . . . , which

encode the signatures of admissible oscillatory patterns therein. (Thus, the segment L
sj
j represents

Lj LAOs, followed by sj SAOs, in the mixed-mode trajectory.) Moreover, µ was identified as
the natural bifurcation parameter for unfolding the mixed-mode dynamics of Equation (1), in the
sense that a cascade of MMOs with varying Farey sequences is observed as µ is varied. Finally,
asymptotic estimates were given for the relevant µ-intervals that correspond to the Farey signatures
realised in that unfolding.

Most importantly for our purposes, the occurrence of mixed-mode dynamics in Equation (1)
was shown to be due to the presence of a ‘folded saddle-node of type II’ at the origin provided
µ is sufficiently small; the former is defined as a saddle-node equilibrium of (1) on `− which,
additionally, constitutes an equilibrium for an appropriately defined desingularisation of (1) about
`−. (The reader is referred to [3, 9] for details and references on the theory of canard-induced
MMOs in general, and on the terminology used here in particular. For completeness, we emphasise
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that, for µ ‘large’, the corresponding equilibrium will be a ‘folded saddle-node of type I’ [11].) For
ε sufficiently small, the super-slow variable w was interpreted as a slowly varying parameter in
[9]. The system was then seen to undergo slow passage through a classical ‘canard explosion’ in
the planar (v, z)-subsystem in (1). The resulting near-integrable structure close to the origin in
(v, z, w)-space allowed for a precise asymptotic description of the SAO dynamics there. Specifically,
the latter was shown to be induced by the passage of trajectories through a sequence of ‘sectors of
rotation’, which can be visualised loosely as a partition of the w-axis close to the ‘strong canard’
Γ0
ε in the system, cf. Figure 1, with each SAO corresponding to one such sector. As is common in

the context of fast-slow systems of the standard form in (1), the LAO component of the resulting
mixed-mode trajectories then arises due to a global return mechanism that is typical of relaxation
oscillators with cubic-shaped slow manifold. In sum, the mixed-mode dynamics of Equation (1)
hence originates from a subtle interplay between a local passage through a neighbourhood of the fold
line `− in (1) and the global return mechanism which re-injects the flow into that neighbourhood
after relaxation.

Under the key restriction that w = Θ(ε) in Equation (1), it was shown in [9] that the flow will
always return sufficiently close to the so-called strong canard, thus resulting in periodic, ‘sector-
type’ mixed-mode dynamics. In the parameter regime considered in [9], with δ = ε, that restriction
is generically met. However, when δ > ε, which is the scenario studied in this article, the global
relaxation mechanism may be sufficiently strong to allow for a return further away from the strong
canard. In that case, a different type of mixed-mode dynamics is observed, which will be termed
the ‘delayed-Hopf type’ in the following.

Delayed passage through a Hopf bifurcation in a neighbourhood of a folded saddle-node of type
II was investigated in [11]. Specifically, a canonical system of the form

ẋ = y − (µ+ 1)z +O[x, ε, (y + z)2],(2a)

ẏ =
1

2
µ+ a1 y + a2 z +O[x, ε, (y + z)2],(2b)

εż = x+ z2 +O[z3, xz2, xyz, ε(x+ y + z), ε2](2c)

was studied under the condition that a1 + a2 < 0. (The condition guarantees, in particular, that
(2) admits a stable node on Sa−0 for µ > 0 and a saddle on Sr0 for µ < 0 sufficiently small; the
reader is referred to [11] for details.) It was shown that the local behaviour of Equation (2) is not
determined by passage past a fold anymore, but, rather, past a curve that can be interpreted as a
one-dimensional ε-family of critical manifolds after an appropriate rescaling; cf. Section 2 below for
a more complete discussion. Since the amplitude of SAOs generated in a delayed passage through
a Hopf bifurcation is typically so small that their number cannot be detected, we will denote such
segments with the signature Ld, in which L LAOs are followed by some unspecified number d of
SAOs.

Even for δ = ε in Equation (1), we may observe the existence of delayed-Hopf-type mixed-
mode segments if the system is initially forced away from the strong canard. In Figure 2, we
present one example of such a segment that was obtained with ε = 0.01 = δ, µ = 0.02, and the
initial condition (v, z, w) = (0.1, 0, 0). The signature 1d18 is seen in the resulting time series of v,
whereby a delayed-Hopf-type segment (dashed red) is followed by one of sector type (solid blue);
cf. Figure 2(a). Figure 2(b) illustrates the corresponding orbit in phase space: the initial value of w
is far enough from the strong canard to allow for delayed passage through a Hopf bifurcation, shown
in red; upon relaxation, the orbit returns sufficiently close to the strong canard to be attracted to
the stable (sector-type) canard-induced MMO depicted in blue, as predicted in [9].
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Remark 1. Throughout, numerical simulations have been performed in Maple on the basis of
the fast system that is obtained from Equation (1) after introduction of the rescaled time variable
t = τ

ε . �

While Equation (1) can be transformed into (2) locally about its folded-saddle node at the origin,
the results of [11] do not hold for the resulting system, as a1 +a2 = 0 in our case. (That degeneracy
underlies, in particular, the three-time-scale structure of (1), whereby the passage of an equilibrium
along S0 in Equation (2) is replaced with a slow drift in the w-variable in (1).) However, as will
become clear in the following, standard results on delayed passage through a Hopf bifurcation [12]
can be applied to describe delay effects for δ > ε in (1) that are very similar to those found in [11].
Here, we will investigate some of the mixed-mode dynamics which emerges in Equation (1) in that
scenario via a combination of non-rigorous asymptotics and numerical heuristics. In particular,
by changing the hierarchy of scales to a sufficient degree, we will construct periodic orbits of
‘mixed sector-delayed-Hopf type’ for (1) in which segments of sector type alternate with those
of delayed-Hopf type, and which thus realise both mechanisms. In light of the above discussion,
the presence of both sector-type and delayed-Hopf-type dynamics in Equation (1) is hence due to
different unfoldings of a higher-codimension singularity – as either slow passage through a canard
explosion [9] or dynamic Hopf bifurcation in the presence of an equilibrium [11]. The resulting
MMOs possibly represent a novel type of stable periodic solution trajectories to three-time-scale
systems of the type in (1).

This article is organised as follows. In Section 2, we discuss the local dynamics of Equation (1),
both in the sector-type and the delayed-Hopf-type regimes: we derive a local (‘zoomed’) formulation
for (1) in which the potential for the two types of dynamics becomes apparent, and we provide
a brief analysis of both regimes. In Section 3, we consider the global dynamics of Equation (1):
following [9], we approximate the global return mechanism to leading order, and we conceptualise
a reduced (one-dimensional) Poincaré map that is based on the discussion in the preceding section.
In Section 4, we provide numerical evidence for the existence of stable periodic MMO trajectories
of mixed sector-delayed-Hopf type in the regime where δ = Θ(

√
ε), and we explicitly perform a

simplistic asymptotic reduction for the Poincaré map corresponding to these trajectories. Finally,
in Section 5, we discuss the results of our study, and we provide pointers for future research.

2. Local dynamics

In this section, we describe the dynamics of Equation (1) in a neighbourhood of the origin in
(v, z, w)-space, where we now assume that δ > ε. We motivate the existence of solution trajectories
in that scenario which incorporate both sector-type and delayed-Hopf-type segments; then, we
perform a local analysis of (3) to show how these two types of segment can be constructed. While
much of the asymptotics derived in [9] for the specific case of δ = ε in Equation (1) is not valid
anymore, the general picture is mostly preserved: near the origin, the flow of (1) is still described by
a near-integrable system; however, different scalings for w are now required in order to distinguish
between sector-type and delayed-Hopf-type dynamics.

2.1. Motivation. Following the procedure in [9, Section 2.2], we perform a ‘zoom’ onto a neigh-
bourhood of the origin in (1), making the change of coordinates

v =
√
εv̄, z = εz̄, w =

√
εw̄, and t =

√
εt̄;

thus, we obtain the following system of equations:

˙̄v = −z̄ + f2v̄
2 +
√
εf3v̄

3,(3a)

˙̄z = v̄ − w̄,(3b)

˙̄w = δ(µ− εg1z̄).(3c)
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(Here, the overdot now denotes differentiation with respect to the rescaled time t̄.) The first two
equations in (3) can be interpreted as a planar system with parameter w̄: for w̄ fixed, there is a
stationary point at (v̄, z̄) = (w̄, f2w̄

2 +
√
εf3w̄

3) in the (v̄, z̄)-subsystem in (3); the corresponding
eigenvalues are easily calculated as

λ± =
(
f2 +

3

2

√
εf3w̄

)
w̄ ±

√(
f2 +

3

2

√
εf3w̄

)2
w̄2 − 1.(4)

Since we assume f2 to be positive and Θ(1), while an a posteriori estimate as in [9] shows that w̄
is certainly O(1), we find a stable focus for w̄ < 0 and an unstable focus for w̄ > 0, with a Hopf
bifurcation occurring at w̄ = 0 provided ε ∈ [0, ε0], with ε0 > 0 sufficiently small; in particular, for
ε = 0 = w̄, the (v̄, z̄)-subsystem in Equation (3) becomes integrable.

When w̄ is non-zero, but small, (3) can hence be interpreted as a perturbation off an integrable
system, as was done in [9]. Alternatively, one may note that, for w̄ in some fixed interval and ε
sufficiently small, Equation (3) admits a one-dimensional ε-family of critical manifolds

Mε :=
{

(v̄, z̄, w̄)
∣∣ v̄ = w̄, z̄ = f2w̄

2 +
√
εf3w̄

3, w̄ ∈ [−w̄0, w̄0]
}
,(5)

where w̄0 > 0 is suitably chosen. Hence, Equation (3) represents an example of a dynamic Hopf
bifurcation along a slow manifold [12]. Intuitively speaking, the following picture emerges; see again
Figure 2 for an illustration: for sufficiently small initial values of w̄, the analysis in [9] applies, i.e.,
the corresponding orbit (solid blue) passes through a number of ‘sectors of rotation’ before being
ejected from the fold region, as shown in Figure 2(b). If, on the other hand, w̄ is sufficiently
large in absolute value for the orbit to be attracted to Mε before it reaches the fold, one observes
delayed-Hopf-type behaviour [12]: the orbit (dashed red) crosses the fold region following Mε and
is then repelled away, as illustrated in Figure 2(b). (For reference, the fold curve `− – which is
given by the w-axis in our case – is superimposed in purple; since `− is indistinguishable from Mε

on the scale of Figure 2(b), a zoom onto the fold region is shown in Figure 2(c).) In both cases, the
corresponding orbit undergoes a number of SAOs during its local passage, the amplitude of which
will be clearly discernible in the sector regime, whereas it may be indiscernible in the delayed-Hopf
regime; recall Figure 2(a).

In combination with an appropriately defined global return mechanism – which is determined
by Equation (1c), cf. Section 3.1 below – it hence seems plausible that time-series of mixed sector-
delayed-Hopf type can emerge. The precise nature of the resulting dynamics will depend, in a
subtle fashion, on the interplay between the local and the global dynamics of Equation (3) and, in
particular, on the relative magnitudes of the parameters ε, δ, and µ. While a fully rigorous analysis
is beyond the scope of this study, some intuition is provided in the following subsection.

2.2. Analysis. In this subsection, we analyse in turn the local dynamics of Equation (1) – i.e., of
the rescaled Equation (3) – in the sector-type and the delayed-Hopf-type regimes. The aim of our
analysis is the derivation of a reduced, one-dimensional Poincaré map for (1) that will be a function
of the super-slow variable w only, as in [9]. In the following, we may hence restrict ourselves to
approximating the evolution of the variable w̄ under the flow of Equation (3) in the two regimes.

2.2.1. Sector-type dynamics. We recall Equation (3), as well as the fact that the only difference
to the corresponding system in [9, Section 2.2] is due to ε having been replaced with δ in (3c).
Moreover, and again as in [9], we introduce the section ∆ : {v = 0} and its rescaled counterpart
∆ : {v̄ = 0}, as well as the ‘half-section’ ∆− := ∆ ∩ {z̄ < 0}. Finally, we note that the singular
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system which is obtained from (3) for ε = 0 = δ agrees with Equation (2.4) in [9]:

˙̄v = −z̄ + f2v̄
2,(6a)

˙̄z = v̄ − w̄,(6b)

˙̄w = 0.(6c)

For w̄ = 0, Equation (6) admits the constant of motion H(v̄, z̄) = 1
2e−2f2z̄

(
− v̄2 + z̄

f2
+ 1

2f22

)
[9,

Equation (2.5)]; the corresponding level curves, which are defined by H(v̄, z̄) = h, are closed when
h > 0 and open when h < 0. (The curve obtained for h = 0 is special, as it separates these two
families of curves; see Figure 3(a) for an illustration.) As indicated above, we are only interested
in describing the w̄-component of the transition map Π

sec
: ∆− → ∆− that is induced by the flow

of Equation (3):

Lemma 1. To leading order in ε and δ, the map Πsec : ∆− → ∆− is given by

Πsec(w) = w + 2
√

2µδ
√
ε
√
− ln ε+O(δ

√
ε) for w = Θ(ε),(7)

provided ε ∈ [0, ε0].

Proof. Following the proof of [9, Proposition 2.2], we approximate (3c) with the truncated equation
˙̄w = δµ, which we then integrate to find Π

sec
(w̄) = w̄ + δµT h(w̄) + O(δ2); here, T h(w̄) denotes

the return time of solutions to ∆−, as illustrated in Figure 3(b). Since that time is determined
by perturbing off the integrable dynamics of (6), it follows as in [9] that T h(w̄) ∼ T h(0) = 2T h,

where T h =
√

2(− lnh)
1
2 + O(1) [9, Lemma A.2]. (Here and in the following, the tilde denotes

the leading-order asymptotic approximation of some given expression in the singular perturbation
parameters ε or δ, as appropriate.) Practically speaking, it suffices to assume that h = Θ(ε), as was
also done in [9, Section 3.3]; in terms of the original w-variable, one then obtains the leading-order
approximation for Πsec in Equation (7), which is valid as long as w = Θ(ε) holds, in accordance
with the scaling assumed in the present sector-type regime. �

We note that the above a posteriori estimate w̄ = O(1) implies w = O(
√
ε), which is weaker than

the condition imposed in Lemma 1. In the subsequent subsection, we will consider a complementary
regime, with w̄ = Θ(εα) for 0 < α < 1

2 .

Remark 2. For completeness, we remark that to any 0 ≤ h ≤ (4f2
2 )−1, there corresponds precisely

one value of z̄ in ∆− [9, Proposition 2.1]. Hence, the z̄-component of Π
sec

can be described in terms
of h by perturbation off the singular system, Equation (6), as was also done in [9, Section 2.2]. �

Finally, Figure 3 illustrates the formation of sector-type SAO dynamics in Equation (3): given
a fixed, positive value of h, one return to ∆− under the corresponding flow represents one such
oscillation; recall Figure 3(b). For ε and δ sufficiently small, the resulting SAO is close to the
singular ‘template’ that is obtained from the level curve ofH with that same h-value when ε = 0 = δ,
as shown in Figure 3(a).

2.2.2. Delayed-Hopf-type dynamics. Throughout this subsection, we will disregard any relation
between δ and ε in Equation (3), considering δ as the singular parameter for arbitrary ε ∈ [0, ε0],
with ε0 sufficiently small. (Parameter regimes where δ = Θ(ε) or δ = Θ(

√
ε) are hence sub-scenarios

of the scenario studied here.) We will again restrict our analysis to a region in phase space where
w̄ = O(1); more specifically, we will assume w̄ = Θ(εα) for some 0 < α < 1

2 . That restriction will
allow us to describe the local return from the section ∆− to itself in a complementary w-regime to
the one considered in the previous subsection.
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For δ = 0 and ε ∈ [0, ε0], Equation (3) reduces to

˙̄v = −z̄ + f2v̄
2 +
√
εf3v̄

3,(8a)

˙̄z = v̄ − w̄,(8b)

˙̄w = 0,(8c)

with a curve of singularities given by the manifold Mε about which the linearisation of the vector
field has the eigenvalues λ± = f2w̄ ±

√
(f2w̄)2 − 1 + O(1) for ε→ 0; recall Equations (4) and (5).

Under the restriction on w̄ imposed in the present subsection, these two eigenvalues are complex
conjugates, which implies that all points on Mε are foci (or centres). More importantly, we thus
avoid the region in phase space where transitions from focus to node or vice versa may arise. (That
more general, and far more delicate, case has been studied in detail in [1, 11].)

At w̄ = 0 in (8), a Hopf bifurcation occurs, with w̄ as the bifurcation parameter; hence, for
δ > 0 small, Equation (3) experiences slow passage through a Hopf bifurcation during which one
can expect to encounter the phenomenon of bifurcation delay. While orbits are drifting along Mε,
they are rotating with some rotation speed that is Θ(1). Thus, a drift of magnitude ∆W in the
w̄-direction yields ∆W ·Θ(δ−1) rotations. Since our focus is on a window in phase space that is of
width Θ(εα) in w̄, the corresponding orbits will undergo Θ(εαδ−1) rotations.

Hence, we conclude that the true singular perturbation parameter in that window is δ
εα ; it

therefore makes sense to apply the rescaling

w̄ = εαw̃ and δ = εαδ̃

to Equation (3), which gives

˙̄v = −z̄ + f2v̄
2 +
√
εf3v̄

3,(9a)

˙̄z = v̄ − εαw̃,(9b)

˙̃w = δ̃(µ− εg1z̄).(9c)

(In particular, it follows that w = ε
1
2

+αw̃, by the above scaling.) Under the assumption that δ̃ =
O(1), Equation (9) exhibits delayed-Hopf-type dynamics: an orbit starting in a point (v̄, z̄, w̃), with

w̃ < 0, will take some time to become O(δ̃)-close toMε, whereby w̃ will only change infinitesimally.
Thus, the value of w̃ marks the entry point of the orbit, or the ‘way in’. Along Mε, the orbit will
rotate while w̃ increases slowly; at the same time, the stability of Mε will change, from attracting
to repelling. Hence, one can define an exit point (the ‘way out’) for the orbit; mathematically

speaking, the former is determined such that orbits stay O(δ̃)-close toMε as δ̃ → 0 before reaching
the exit point, whereas they will lie close to a fibre of the fast system corresponding to Equation (8)

beyond that point. We emphasise that the exit point itself is only defined in the limit as δ̃ → 0;
in fact, the restriction to w̄ = Θ(εα), with 0 < α < 1

2 , ensures that δ̃ remains small even in the
sub-scenario when δ =

√
ε, considered below.

It is a classical result [12] that the relation between the entry value w̃in of w̃ and the exit value
w̃out, which is known as the ‘entry-exit relation’ or the ‘way in-way out relation’, is determined by
balancing the amount of attraction and the amount of repulsion during the drift of orbits along
Mε: ∫ w̃out

w̃in

<
(
λ±|w̄=εαw̃

)
dw̃ = 0,(10)

with λ± the eigenvalues of the linearisation of Equation (8) about Mε, as above. Equation (10)
is valid for (w̃in, w̃out) in some neighbourhood of the Hopf bifurcation point at w̃ = 0, but loses
validity at an appropriately defined ‘buffer point’ beyond which a different relation holds. In our
case, it can be shown that this buffer point is Θ(ε−α)-bounded away from w̃ = 0; in other words, the
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relation in (10) is valid for any pair (w̃in, w̃out), provided ε is sufficiently small. (The non-analyticity
of (9) with respect to ε is not relevant in the present context.)

Remark 3. While Equation (3) also exhibits delayed-Hopf-type dynamics, the scaled system in (9)
has the advantage that eigenvalues of the corresponding fast subsystem have non-zero imaginary
part due to our restriction of the phase space to w̄ = Θ(εα), which facilitates the evaluation of
the entry-exit relation in (10). We also note that the equilibrium present in Equation (9) satisfies

w̃ = Θ(
√
µε−

1
2
−α). In the parameter regime considered here, with µ = O(ε), that equilibrium hence

does not play a significant role for the dynamics, whereas its effect would be pronounced in an
unscaled coordinate frame. �

Evaluating the integral in (10) explicitly and solving for balance, we find the expression w̃out =

−w̃in for the exit point when δ̃ is close to 0. In terms of the original w̄-variable, it then follows that
w̄out = −w̄in, which implies the following leading-order approximation for the transition map ΠdH

in the delayed-Hopf regime:

Proposition 1. To leading order in ε and δ, the map ΠdH : ∆− → ∆− is given by

ΠdH(w) = −w +O(δ
√
ε) for w = Θ(ε

1
2

+α)(11)

with 0 < α < 1
2 , provided

√
ε ∈ [0,

√
ε0] and δ = O(εα).

Strictly speaking, the map ΠdH does not have ∆− as its domain for non-zero ε; however, the
error incurred by the projection onto that section which is, for simplicity, assumed in Proposition 1
is negligible to the order considered here. Finally, ΠdH is hence given by the negative identity – i.e.,
by a reflection about the (v, z)-plane – to leading order. By contrast, its sector-type counterpart
Πsec was seen to correspond to a near-identity transformation in Section 2.2.1; recall Equation (7).

Remark 4. We note that both sector-type SAOs and those of delayed-Hopf type share a common
axis of rotation: the former oscillate (locally) about the ‘weak canard’ [11] of the singularity at the
origin in Equation (1); however, that canard agrees with the manifold Mε which constitutes the
axis of rotation for delayed-Hopf-type SAOs, as discussed in the present subsection. �

3. Global dynamics

When δ = ε, a geometric explanation for how Equation (1) can generate MMO dynamics was
given in [9]; for future reference, we briefly restate their reasoning here. Let C−ε and C+

ε be defined
as the curves of intersection of Sa−ε and Srε , respectively, with the section ∆; see Figure 4(a).
The critical w-value wc

0 at which C−ε and C+
ε intersect corresponds to the strong canard Γ0

ε, which
organises the flow in a neighbourhood of `−. Trajectories starting sufficiently close to Sa−ε , but
away from `−, are exponentially attracted to the former; once they reach the curve C−ε , they will
undergo an SAO if their w-coordinate thereon satisfies w < wc

0, i.e., if they lie above the curve C+
ε ,

and return to Sa−ε near `−. If, on the other hand, they lie below C+
ε , with w > wc

0, they will relax
and leave the fold region, as illustrated schematically in Figure 4(a); the resulting mixed-mode
pattern is shown in Figure 4(b). During the global return, w is reset, and the process can start
anew, leading to closed MMO trajectories; in fact, it is clear from Equation (1c) that w increases
in an SAO phase, whereas it decreases during relaxation. In particular, the number k of SAOs
in any such trajectory then corresponds to a subinterval of the w-axis, which is called the kth
sector of rotation RSk; cf. Figure 4(c). (Hence, the trajectory undergoes relaxation once it reaches
the zeroth sector of rotation, RS0.) Finally, the boundaries between these sectors are marked by
bifurcating ‘secondary canards’, the first of which (Γ1

ε) is sketched in Figure 1; the reader is referred
to [9] for a detailed discussion.
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3.1. Return mechanism. While we needed to distinguish locally between the two regimes of
sector behaviour and delayed-Hopf-type dynamics, the global mechanism of re-injection into the
fold region after relaxation is largely regime-independent.

For simplicity, we approximate that mechanism by a map Πret which is defined on the section ∆
under the additional restriction that w > wc

0; in other words, we neglect the fast (‘layer’) dynamics
of Equation (1). Moreover, following [9, Section 2.5], we assume that Πret returns trajectories to
the fold line `−, instead of to some neighbourhood thereof, i.e., we interpret Πret as a map from `−

to itself. (The exponential contraction towards Sa0 , to leading order, ensures that the image of any
point in ∆ under Πret will, in fact, lie O(ε)-close to `−.)

Lemma 2. To leading order in ε and δ, the map Πret : ∆→ ∆ is given by

Πret(w) ∼ w + δ
[
G(v0, vmax, µ) + G(v∗max, 0, µ)

]
= w + δ

(
g1

18

f5
2

f3
3

− µf
2
2

f3

)
(12)

for w > wc
0. (Here, G(v−, v+, µ) =

∫ v+
v−

[µ− g1f(σ)]f
′(σ)
σ dσ.)

Proof. As in [9], we consider the projection of the reduced flow corresponding to Equation (1) onto
the critical manifold S0: noting that z = f(v) implies ż = f ′(v)v̇ and desingularising the resulting
flow by multiplication with a factor of −f ′(v), which is positive on the attracting portion Sa±0 of
S0, we find

v̇ = −v + w,

ẇ = −δf ′(v)[µ− g1f(v)].

Since w = O(1), by assumption, we may write dw
dv ∼ δ

f ′(v)
v [µ−g1f(v)], which we integrate to obtain

the leading-order approximation for the global return of trajectories from ∆ to itself under the
singular flow of (1):

Πret(w) ∼ w + δ

{∫ vmax

v0

[µ− g1f(σ)]
f ′(σ)

σ
dσ +

∫ 0

v∗max

[µ− g1f(σ)]
f ′(σ)

σ
dσ

}
≡ w + δ

[
G(v0, vmax, µ) + G(v∗max, 0, µ)

]
.

Here, vmax is the v-value at which the function f assumes its local maximum, v0 denotes the
rightmost zero of f , and v∗max 6= vmax is defined by the requirement that f(v∗max) = f(vmax); see
Figure 5 for an illustration. Evaluation of the above expression gives Equation (12), as claimed. �

We emphasise that the distance between the ‘jump-off’ point w ∈ ∆ and the point Πret(w)
of re-entry into the fold region only depends on δ and µ, to the order considered here, as well
as that Equation (12) is equivalent to [9, Equation (2.54)], with ε there replaced with δ here.
Finally, we note that the critical µ-value µc beyond which pure relaxation dynamics is observed is

δ-independent, as it is found by solving G(v0, vmax, µ) + G(v∗max, 0, µ) = 0 for µ: µc = g1
18
f32
f23

; cf. [9,

Equation (2.56)].

3.2. Reduced Poincaré map. In this subsection, we indicate how a reduced (one-dimensional)
Poincaré map can be constructed for Equation (1). As in [9], that map will be a function of w or,
equivalently, of its rescaled counterpart w̄, and will incorporate both the local dynamics of (1) in a
neighbourhood of the origin in (v, z, w)-space and the global flow on the slow manifold – or rather,
on the two attracting sheets Sa±ε thereof – away from (v, z, w) = (0, 0, 0).

We discuss the sector regime first, recalling that the analysis in [9] was restricted to the case where
the number of SAOs is not ‘too large’ – in the single digits, practically speaking – as the asymptotics

9



may become inconsistent otherwise, leading to an accumulation of error. (Consequently, one has to
assume that any initial values for Equation (1) are sufficiently close to the strong canard Γ0

ε in that
regime. As we will initialise the flow of (1) in the section ∆ throughout the following discussion,
that assumption translates to closeness to the origin initially.) Under the above restriction, the
reduced return map Π : ∆ → ∆ is, in essence, described by the local map Πsec, Equation (7),
whenever w < wc

0 with w = Θ(ε) for the corresponding trajectory, i.e., whenever that trajectory
undergoes another SAO; cf. Section 2.2.1. Similarly, it is to a first approximation given by the
global return Πret, Equation (12), if w > wc

0, that is, once the trajectory leaves the fold region to
undergo relaxation. (A simplification is achieved by neglecting the repulsion from ∆ pre-relaxation,
as well as the attraction towards ∆ post-relaxation, i.e., after the trajectory has returned to the
fold region, which were labelled the ‘entry’ and ‘exit’ maps, respectively, in [9].)

If, on the other hand, the trajectory is far enough from the origin initially (in ∆) to be attracted

to the ε-family of critical manifoldsMε, i.e., if w < wc
0 with w = Θ(ε

1
2

+α) for some 0 < α < 1
2 , the

delayed-Hopf regime is realised locally. In that case, results from [12] can be applied to approximate
the return map for Equation (1). In particular, the local component of that map will be defined as in
Equation (11), recall Section 2.2.2, whereas the global return will still be described by Equation (12).
(For simplicity, we consider neither the fast repulsion fromMε pre-relaxation, nor the fast attraction
towards Mε post-relaxation here.)

The question remains of how to distinguish between the two regimes; in other words, we need to
determine some critical initial w-value w∗ which separates sector-type dynamics from delayed-Hopf-
type behaviour. (While Lemma 1 and Proposition 1 approximate the return from the section ∆−
to itself in the two regimes, with w = Θ(ε) and w = Θ(ε

1
2

+α), respectively, the transition between
the former and the latter was not considered in Section 2.2.) Specifically, let w∗ be defined such
that, if w0 > w∗ initially in ∆, the corresponding trajectory is repelled away from the attracting
slow manifold Sa−ε as soon as it satisfies w > wc

0, i.e., once it reaches the zeroth sector of rotation.
For illustration, let us consider the example presented in Figure 6, with ε = 0.01, δ = 0.1, and

µ = 0.04. In Figure 6(a), several orbits with initial conditions close to Sa−ε are shown. The dashed
red orbit is a realisation of the delayed-Hopf mechanism: it is near-symmetric about the origin and
incorporates a substantial number of SAOs which first decrease and then increase in amplitude.
(In particular, the attracting character of the ε-family of critical manifoldsMε is evident from the
figure.) The solid blue orbit, on the other hand, realises the sector mechanism, whereby a small
number of SAOs of moderate and increasing amplitude is observed. Experimenting with initial w-
values that lie between those corresponding to these two orbits, one can estimate w∗ numerically:
thus, the solid grey orbit in Figure 6 is still of sector type; moreover, the w-value at which it jumps
off Sa−ε is almost equal to that found for the blue orbit. By contrast, the dashed grey orbit, obtained
by increasing |w0| further, undergoes an additional SAO in RS0. A numerical sweep of w0-values
(dotted grey) in between those corresponding to the solid and dashed grey orbits reveals that the
latter yields the highest initial value for which such an SAO occurs; see Figure 6(b). Hence, it
follows that w∗ ≈ −0.005, which is consistent with the above scaling regimes.

4. Sector-delayed-Hopf-type dynamics

The construction performed in Section 3.2 can aid in elucidating the mechanism whereby tra-
jectories of Equation (1) display mixed sector-delayed-Hopf-type behaviour. We are not aware of
previous reports of such patterns in the published literature, and hence believe them to represent
a novel class of complex oscillatory dynamics in singularly perturbed fast-slow systems of the type
in Equation (1).
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As discussed towards the beginning of Section 2, stable mixed-mode dynamics will be observed
for δ = ε in (1), provided the flow remains sufficiently close to the strong canard Γ0

ε in (v, z, w)-
space. However, trajectories that are initialised far away from the origin in ∆ – with w0 < w∗, in
the notation of the previous section – will be attracted to the one-dimensional ε-family of critical
manifolds Mε of the ‘zoomed’ system, Equation (3), instead. The flow thus bypasses the fold
region entirely in such cases before being repelled away from Mε, in accordance with a delayed-
Hopf mechanism. Furthermore, the value of w attained at that point will no longer correspond to
a sector of rotation; in particular, orbits will not necessarily relax once they reach RS0, as was
already evident in Figure 6. Finally, since Equation (12) implies that the strength of the global

return mechanism in (1) increases with δ, i.e., that ∂Πret

∂δ = G1 + G2 < 0 for µ < µc, Πret(w) < w∗

may again hold after relaxation; hence, the flow may return toMε. In other words, the return point
will no longer necessarily be close to the strong canard, as was the case in Section 2.2.1 [9]; rather,
it will correspond to the ‘way in’ for the delayed-Hopf-type dynamics discussed in Section 2.2.2,
in accordance with Equation (10). In fact, the larger |w0 − w∗| is, the stronger the attraction to
Mε during a delayed-Hopf-type segment, leading to an increase in the duration of that segment.
Correspondingly, Equation (1) may display stable MMO-type dynamics for δ > ε in which SAOs
are based on the delayed-Hopf phenomenon; see Figure 7 for an example, where we chose ε = 0.05,
δ = 0.4, µ = 0.02, and (v0, z0, w0) = (0, 0,−0.01).

Much more unexpected is the fact that we have also found periodic solution trajectories in which
both sector-type and delayed-Hopf-type segments are present. Such behaviour can be observed
if the flow is alternately re-injected close to the strong canard and far away from it, leading to
patterns in which sector-type SAOs alternate with those of delayed-Hopf type.

We have tested the above conceptual argument numerically, as illustrated in Figures 8 through
10. (Throughout, we take ε = 0.01, δ = 0.1, and µ = 0.04, as before; moreover, we assume that
(v0, z0) = (0, 0), i.e., that the initial conditions for Equation (1) are chosen in ∆, as indicated
previously.) Figure 8 shows a periodic pattern with signature 121d, where the initial condition was
taken as w0 = −0.01: we observe delayed passage through a Hopf bifurcation followed by relaxation,
two sector-type SAOs in sequence, and then again relaxation, at which point the process repeats
periodically; cf. Figure 8(a). The signature of the delayed-Hopf segment in the time series becomes
visible after a zoom onto its SAO component, giving d = 11; see Figure 8(b). Similarly, in Figure 9,
a periodic 131d-type pattern is presented, with initial condition w0 = −0.00845; finally, in Figure 10,
we observe a periodic pattern with signature 141d, where we chose w0 = −0.00723 initially.

A leading-order approximation for the reduced return map corresponding to mixed sector-
delayed-Hopf-type trajectories with Farey signature 1k1d can be defined as follows: w0 7→ Π(w0) :=(
Πret ◦ΠdH ◦Πret ◦ (Πsec)k

)
(w0), for some k ∈ N. Concatenating the asymptotics of Πsec, ΠdH, and

Πret, as given in Equations (7), (11), and (12), we thus have

Π(w0) ∼ −w0 + 2δ

(
g1

18

f5
2

f3
3

− µf
2
2

f3
+ k
√

2µ
√
ε
√
− ln ε

)
,(13)

to leading order in ε and δ.
Evaluating Equation (13) for k = 2, 3, and 4 – i.e., in the three parameter regimes illustrated

in Figures 8 through 10 – we find that throughout, the discrepancy between w0 and Π(w0) is well
within the O(δ

√
ε)-error predicted analytically. Correspondingly, the phase portraits shown in

Figures 9(b) and 10(b) confirm visually that the orbits obtained for the above (empirical) choices
of w0 are periodic.

5. Discussion

In the present article, we have considered a modification of a three-time-scale system that was
proposed in [9] as a canonical model for ‘slow passage through a classical canard explosion’. We have
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shown that, by changing the hierarchy of scales therein to a sufficient degree, we can construct orbits
which contain segments of both sector type and delayed-Hopf type; while the former are generated
by a local passage through a neighbourhood of a folded saddle-node of type II in Equation (1),
the latter arise from a dynamic Hopf bifurcation along an appropriately defined ε-family of critical
manifolds thereof. Furthermore, we have adapted the construction of the reduced (one-dimensional)
Poincaré map presented in [9, Section 3] to incorporate delayed-Hopf-type dynamics. A general
reduction of the a priori two-dimensional Poincaré map for Equation (1) to one dimension seems
to be a challenging task; however, following [9] and [12] and making a number of simplifying
assumptions, we have achieved an asymptotic approximation which seems to be sufficiently accurate
for our purposes, as evidenced in Section 4. That approximation, Equation (13), reflects the delicate
interplay between local and global aspects of the flow of Equation (1) in generating sector-delayed-
Hopf-type mixed-mode dynamics therein.

In the process, a number of qualitative differences have emerged between the scenario considered
in [9], with δ = ε in Equation (1), and the one studied here, where δ > ε is assumed. In particular,
the periodic mixed-mode patterns that were observed in the original model are not generic anymore
in our case; rather, they tend to occur in isolation. An example is provided in Figure 11, where an
O(ε2)-decrease in µ – from µ = 0.04 to µ = 0.0399 – results in a transition between the signatures
13110 and 1617. (Here, we have specified the number of Hopf-type SAOs for ease of comparison, in
contrast to our usual practice of leaving it unspecified, as d.)

Moreover, we emphasise that, while the mixed sector-delayed-Hopf-type patterns described in
Section 4 appear periodic and stable, they do not seem to be globally stable: the signatures 131d and
141d, for instance, are obtained for identical values of ε, δ, and µ, but different values of w0, and must
hence possess disjoint basins of attraction (in w); recall Figures 9 and 10. Preliminary numerical
results suggest a complicated topology of these basins, as patterns with given signature 1k1d do
not seem to correspond to connected w0-intervals but, rather, to unions of such intervals. (Roughly
speaking, the latter seem to be interleaved with the basins of attraction of ‘adjacent’ patterns with
signatures 1k−11d and 1k+11d.) By contrast, the ‘pure’ MMO patterns that were described in [9] for
δ = ε in Equation (1) were globally stable. Overall, the dynamics of the generalised Equation (1)
thus seems less robust when δ > ε, as compared to the scenario considered in [9].

However, we have also identified a number of similarities between the two scenarios. Thus, the
onset of relaxation oscillation will coincide, at least to leading order, since the critical µ-value µc

is independent of both ε and δ, as can be seen in Figure 12. (Here, µ = 0.1 is chosen larger than,
but close to, µc ≈ 0.09375.) Hence, the dynamics of Equation (1) will be similar to that found in
[9] whenever |µ − µc| is small: the return will be close to the strong canard Γ0

ε, recall Section 3,
resulting in MMO-like patterns with a low number of SAOs; examples can be seen in Figures 13
(µ = 0.08) and 14 (µ = 0.075). (Intuitively speaking, the G-dependent term in Equation (12)
can compensate for an increase in δ for sufficiently small |µ − µc|.) For larger values of µ, the
global return mechanism will ultimately push w below its critical value w∗, thus ruining the regular
Farey-like bifurcation structure that was observed in [9].

Correspondingly, the transition between sector dynamics and delayed-Hopf-type behaviour in
Equation (1) is not ‘hard’: the two types of dynamics may, in fact, be interpreted as extreme
realisations of the same mechanism. The separation between those will, in reality, not be abrupt,
as is suggested by our definition of the critical w-value w∗; in other words, an intermediate regime
will exist in which orbits will gradually transition between the two extremes, as can be seen from
the 1617-type pattern in Figure 11, for instance. Finally, as δ → ε, one should observe a regular
transition to the sector regime considered in [9]: in fact, even in the scenario considered there,
orbits appear increasingly ‘Hopf-like’ with increasing number of SAOs, in the sense that a decrease
in amplitude is followed by a corresponding increase before relaxation.
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Our discussion of the mixed sector-delayed-Hopf-type dynamics that is observed numerically for
δ = Θ(

√
ε) in Equation (1) has been largely informal. We have constructed an approximate reduced

Poincaré map in that scenario; however, we have neglected the entry into, and the exit from, a
neighbourhood of the origin in phase space in our analysis. While the resulting approximation
seems reasonable in some parameter regimes, as was seen in Section 4, it may fail in others. Thus,
our reduced map will not apply in an intermediate regime – with w close to its critical value w∗

– in which the number of SAOs in the trajectory is too large to allow for an application of the
results obtained in [9], while the structure required by the delayed Hopf bifurcation is not fully
present yet. A rigorous treatment of Equation (1) with δ > ε seems indispensable if some of the
more quantitative insights from [9] are to be reproduced in the present context; two examples
concern estimates for the relevant parameter intervals and the study of the stability properties of
the resulting reduced Poincaré map, both of which were crucial to elucidating the unfolding of the
complex bifurcation structure of Equation (1) in [9].

We end our discussion with several preliminary observations to that effect: our approximation
for the map Πsec in the sector regime, Equation (7), implies

∆w ∼ −2
√

2µδ
√
ε
√
− ln ε(14)

for the width of the k-th sector of rotation RSk, at least to leading order in ε and for sufficiently
low values of k; cf. [9, Proposition 3.3]. However, ∆w also seems to give a good estimate for
the frequency of delayed-Hopf-type oscillations in the ‘mixed-type’ trajectories described in this
article; see Figure 15 for an example, with ε = 0.01 = δ and µ = 0.02: Figure 15(b) confirms that
the frequency of the sector-type SAO shown in Figure 15(a) (solid blue) agrees with that of the
corresponding delayed-Hopf-type SAO (dashed red) in that parameter regime. (Here, the initial
w-value w0 is chosen sufficiently close to the origin for the attraction to the ε-family of critical
manifolds Mε not to be too strong, which makes it possible to discern small oscillations in the
delayed-Hopf regime.)

Remark 5. The estimate in Equation (14) can be viewed as a refinement of the corresponding,
well-known result that was obtained in [2], in the context of the folded node: there, the width of

RSk was shown to be of the order Θ(ε
1−ψ
2 ), with ψ denoting the ratio of the weak to the strong

eigenvalue of the linearisation of the desingularised reduced flow about a folded node. (We note
that, in Equation (1), one has ψ = Θ(δ).) �

One obstacle to a rigorous treatment of Equation (1) is the lack of analytical estimates for
the critical w-value w∗ which marks the transition between sector-type and delayed-Hopf-type
behaviour. To that end, a refined approximation seems to be required for wc

0, the value of w
corresponding to the strong canard Γ0

ε in (1); recall Figure 1. Thus, the first-order asymptotics

quoted in [9, Equation (2.16)] would imply wc
0 ∼ −3

8
f3
f32
ε ≈ 0.0011 for ε = 0.01, which is of the same

order as the corresponding O(ε
√
ε)-error term. However, when δ =

√
ε, additional contributions

will result in the expansion for wc
0: while the near-integrable structure of Equation (3) will persist,

the approximate solution w̄ ∼ w̄0 +
√
εµt to Equation (3c) will now be comparable in order to the

first-order correction – i.e., to the
√
εf3v̄

3-term – in (3a). The resulting contributions can be derived
as in [9, Section 3.3], where the near-integrability of Equation (3) is exploited to approximate the
return map Π via a Melnikov-type calculation which relies on successive derivatives of the constant
of motion H defined in Section 2.2.1. That same approach may lead to an improved quantitative
picture of the sector geometry in the scenario considered here.

In sum, there hence seems to be the prospect of adapting some of the results obtained in [9]
towards a more complete, analytical understanding of the mixed-sector-delayed-Hopf-type dynamics
observed in Equation (1).
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[9] M. Krupa, N. Popović, and N. Kopell, Mixed-mode oscillations in three time-scale systems–a prototypical example,
SIAM J. Appl. Dyn. Syst. 7(2), 361–420, 2008.

[10] M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations 174(2), 312–
368, 2001.

[11] M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity, J. Differential Equations
248(12), 2841–2888, 2010.
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Γ0
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ε

Figure 1. Fast-slow geometry of (1). The sheets Sa−0 , Sr0 , and Sa+
0 of S0 are

separated by fold lines `∓ at which normal hyperbolicity is lost; the strong canard
Γ0
ε (solid green) and the first secondary canard Γ1

ε (solid turquoise) are superimposed.

15



(a) Time series of v. (b) Orbit in (v, z, w)-space.

(c) Zoom onto fold region.

Figure 2. Mixed sector-delayed-Hopf-type pattern for δ = ε in (1) (1d18; ε =
0.01 = δ, µ = 0.02). For reference, the strong canard Γ0

ε (solid green), the fold line
`− (solid purple), and the critical manifold S0 (shaded) are included in panel 2(b).
The zoom onto the fold region in panel 2(c) reveals the manifold Mε (solid black),
which is indistinguishable from `− on the scale of 2(b).
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z̄

v̄

∆−

{h > 0}
{h = 0}

{h < 0}

(a) ε = 0 = δ.

z̄

v̄

∆−

{h > 0}

(b) 0 < ε < δ.

Figure 3. Near-integrable geometry of (3). Panel 3(a) illustrates the level curves
of the constant of motion H with varying h; in panel 3(b), the perturbation off one
such curve is sketched for h > 0.
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(a) Cartoon generating mechanism.
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(b) Resulting MMO pattern.

0

w̄
RS0RS1RS2RSk

w̄c
1 w̄c

0w̄c
2w̄c

k−1w̄c
k

(c) Sectors of rotation.

Figure 4. Generation of mixed-mode dynamics for δ = ε in (1). Trajectories
initialised above C+

ε in ∆ undergo an SAO, while those below relax, as seen in
panel 4(a); the corresponding mixed-mode pattern is shown in panel 4(b). Panel 4(c)
illustrates schematically the geometry of the sectors of rotation RSk.
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v

z

vmax v00v∗max

S0 : {z = f(v)}

∆ : {v = 0}

Figure 5. Global return mechanism for (1). The map Πret is approximated by the
reduced dynamics on S0 to the order considered here, whereas the layer flow is
neglected.

(a) Representative orbits in (v, w)-plane. (b) Zoom onto origin.

Figure 6. Transition between sector-type and delayed-Hopf-type dynamics for δ =√
ε in (1) (ε = 0.01, δ = 0.1, µ = 0.04). The corresponding critical w-value w∗ in

panel 6(a) may be estimated via a numerical sweep of initial values w0; cf. panel 6(b).
For reference, the strong canard Γ0

ε (solid green), the fold line `− (solid purple), and
the manifold Mε (solid black) are superimposed.
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(a) Time series of v. (b) Orbit in (v, z, w)-space.

Figure 7. Delayed-Hopf-type MMO dynamics for δ =
√
ε in (1) (1d11d2 ; ε = 0.05,

δ = 0.4, µ = 0.02). For reference, the strong canard Γ0
ε (solid green), the fold line `−

(solid purple), the manifoldMε (solid black), and the critical manifold S0 (shaded)
are included in panel 7(b).

(a) Time series of v. (b) Zoom onto SAO component.

Figure 8. Mixed sector-delayed-Hopf-type dynamics for δ =
√
ε in (1) (121d; ε =

0.01, δ = 0.1, µ = 0.04).
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(a) Time series of v. (b) Orbit in (v, z, w)-space.

Figure 9. Mixed sector-delayed-Hopf-type dynamics for δ =
√
ε in (1) (131d; ε =

0.01, δ = 0.1, µ = 0.04). For reference, the strong canard Γ0
ε (solid green), the fold

line `− (solid purple), and the critical manifold S0 (shaded) are included in
panel 9(b).

(a) Time series of v. (b) Orbit in (v, z, w)-space.

Figure 10. Mixed sector-delayed-Hopf-type dynamics for δ =
√
ε in (1) (141d;

ε = 0.01, δ = 0.1, µ = 0.04). For reference, the strong canard Γ0
ε (solid green), the

fold line `− (solid purple), and the critical manifold S0 (shaded) are included in
panel 10(b).
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(a) Time series of v. (b) Orbit in (v, w)-plane.

Figure 11. Mixed sector-delayed-Hopf-type dynamics for δ =
√
ε in (1) (dashed

red: 13110, µ = 0.04; solid blue: 1617, µ = 0.0399; ε = 0.01, δ = 0.1). For reference,
the fold line `− (solid purple) and the manifold Mε (solid black) are included in
panel 11(b).

(a) Time series of v. (b) Orbit in (v, w)-plane.

Figure 12. Relaxation-type dynamics for δ =
√
ε in (1) (10; ε = 0.01, δ = 0.1,

µ = 0.1). For reference, the fold line `− (solid purple) is included in panel 12(b).
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(a) Time series of v. (b) Orbit in (v, w)-plane.

Figure 13. Sector-type MMO dynamics for δ =
√
ε in (1) (22; ε = 0.01, δ = 0.1,

µ = 0.08). For reference, the fold line `− (solid purple) is included in panel 13(b).

(a) Time series of v. (b) Orbit in (v, w)-plane.

Figure 14. Sector-type MMO dynamics for δ =
√
ε in (1) ((11)212; ε = 0.01,

δ = 0.1, µ = 0.075). For reference, the fold line `− (solid purple) is included in
panel 14(b).
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(a) Phase space geometry. (b) Zoom onto SAO component.

Figure 15. Mixed-sector-delayed-Hopf-type dynamics for δ = ε in (1). Panel 15(b)
indicates agreement between the frequencies of the SAOs of sector type and delayed-
Hopf type shown in panel 15(a). For reference, the fold line `− (solid purple) and
the manifold Mε (solid black) are superimposed.
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