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Joint Uncertainty Decoding for Noise Robust
Subspace Gaussian Mixture Models

Liang Lu Student Member, IEEE, KK Chin, Arnab Ghoshal Member, IEEE, and Steve Renals Senior
Member, IEEE

Abstract—Joint uncertainty decoding (JUD) is a model-based
noise compensation technique for conventional Gaussian Mixture
Model (GMM) based speech recognition systems. Unlike vector
Taylor series (VTS) compensation which operates on the individ-
ual Gaussian components in an acoustic model, JUD clusters
the Gaussian components into a smaller number of classes,
sharing the compensation parameters for the set of Gaussians in
a given class. This significantly reduces the computational cost.
In this paper, we investigate noise compensation for subspace
Gaussian mixture model (SGMM) based speech recognition
systems using JUD. The total number of Gaussian components in
an SGMM is typically very large. Therefore direct compensation
of the individual Gaussian components, as performed by VTS,
is computationally expensive. In this paper we show that JUD-
based noise compensation can be successfully applied to SGMMs
in a computationally efficient way. We evaluate the JUD/SGMM
technique on the standard Aurora 4 corpus. Our experimental
results indicate that the JUD/SGMM system results in lower
word error rates compared with a conventional GMM system
with either VTS-based or JUD-based noise compensation.

Index Terms—subspace Gaussian mixture model, vector Taylor
series, joint uncertainty decoding, noise robust ASR, Aurora 4

I. INTRODUCTION

Speech recognition accuracy is significantly degraded in the
noisy environments that are characteristic of many real world
applications. There is an extensive literature on methods to
compensate for the mismatch between the speech recognition
model and noise-corrupted data [1]. There are two broad
categories of techniques for noise robust speech recognition:
compensation in the feature domain, and compensation in the
model domain. In the feature domain, feature enhancement
or de-noising approaches aim to estimate the unobserved
clean speech features given the observed noisy features. Many
feature domain approaches have been proposed including
spectral subtraction, cepstral mean and variance normalization
(CMN/CVN), cepstral maximum mean square error estimation
[2], SPLICE [3], ALGONQUIN [4] and feature space vector
Taylor series (VTS) compensation [5]. Conventional feature
domain methods provide a point estimate of the hidden clean
speech features, which is then used as an observation vector
for a speech recognition system. A number of approaches have
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moved beyond point estimation of clean speech features and
have considered the observation uncertainties [6]–[9]. Such
approaches have been shown to be more effective at improving
recognition accuracy in noisy environments.

In contrast, model domain techniques adapt the model
parameters in order to better explain the noisy observa-
tions. Purely data-driven model domain techniques include ap-
proaches in the maximum likelihood linear regression (MLLR)
family [10], such as noisy constrained MLLR (NCMLLR)
[11]. These approaches are not affected by the parameteri-
sation of the acoustic features, since they use a generic com-
pensation scheme—typically an affine transform—instead of
an explicit model of the distortion caused by the noise. Hence,
they may be combined with other feature-space compensation
techniques. However, their performance is normally limited
by the sparsity of adaptation data. Knowledge-based model
domain approaches can overcome this limitation by estimating
a mismatch function between the clean and noise-corrupted
speech features in order to estimate the compensation param-
eters [12]. Examples of such techniques include model space
VTS [13] and joint uncertainty decoding (JUD) [14], parallel
model combination (PMC) [15] and a linear spline interpola-
tion model [16]. These approaches can achieve good results
without requiring a large amount of adaptation data, but are
limited to only spectral or cepstral features, and combination
with other feature space techniques is challenging.

In this paper, we present a model-based noise compensation
scheme for subspace Gaussian mixture models (SGMMs)
[17]. The SGMM is a recently proposed acoustic model-
ing technique that, similar to conventional models, uses a
Gaussian mixture model (GMM) for the output density of a
hidden Markov model (HMM). However, in an SGMM the
parameters of each Gaussian component are derived from a
low dimensional model subspace. This allows a much larger
number of Gaussian components to be used by each HMM
state while the total number of parameters to be estimated
is typically smaller compared to conventional GMM-based
acoustic models. Recent research has indicated that an SGMM
acoustic model may result in more accurate speech recognition
compared with its GMM counterpart, in both monolingual
and multilingual settings [17]–[21]. However, in noisy envi-
ronments uncompensated SGMMs suffer similar problems to
conventional GMMs.

There are many more component Gaussians in a typical
SGMM compared with a conventional GMM. Model-based
compensation schemes which explicitly compensate the pa-
rameters of each component Gaussian, such as standard VTS
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compensation, will be computationally expensive if applied
directly to SGMMs. Direct compensation of the individual
Gaussian components in an SGMM is also inelegant, since
it does not take account of the structure of the model. JUD
can address this problem, since the entire set of Gaussian
components in the model is clustered into a small number
of classes, typically using a regression tree [22]. The mapping
between a clean speech model and a noise-corrupted speech
model is assumed to be common to all the Gaussians belonging
to the same regression class. Moreover, JUD compensates the
model using a feature space transformation (together with a
bias term for the covariances), which is compatible with the
compact model structure of an SGMM.

In this paper we have developed model domain noise com-
pensation for SGMMs, and report on a number of experiments
using the Aurora 4 corpus. These experiments indicate that,
by using a smaller regression model, the computational cost
is relatively low while the accuracy is significantly improved
in noise mismatched conditions. In addition, the SGMM
system is more accurate than similar GMM systems using
either VTS-based or JUD-based noise compensation. We have
recently presented preliminary results for an SGMM system
using JUD noise compensation [23]. In this paper, we present
further experiments, more detailed experimental analysis, and
a derivation of JUD for SGMM acoustic models, including
noise model estimation, the use of phase factors to model
speech and noise correlations, and unsupervised noise model
estimation to further reduce the computational cost.

The rest of the paper is organized as follows. Section II
reviews the mismatch function used for many knowledge-
based noise compensation approaches including JUD/SGMM.
Section III and IV present an overview of JUD, and in Section
V, we discuss the application of JUD to SGMMs including the
configuration of the regression model, noise model estimation,
and implementation details. Experiments on the Aurora 4
corpus are reported and analysed in Section VI, followed by
a discussion and conclusions in Section VII.

II. MISMATCH FUNCTION

In discrete time domain, the relationship between noise-
corrupted speech y(t), clean speech x(t), additive noise n(t)
and the channel’s impulse response h(t) can be formulated as

y(t) = x(t) ∗ h(t) + n(t). (1)

where t is the time frame index. Applying the discrete Fourier
transform (DFT) to both sides, the equivalent relationship in
the frequency domain, for the k-th frequency bin is

ykt = xkthkt + nkt (2)
≈ xkthk + nkt. (3)

The channel distortion is assumed to be time invariant1, so the
subscript t may be dropped from hkt. The power spectrum of
the noisy speech can then be obtained as

|ykt|2 ≈ |xkthk + nkt|2

= |xkt|2|hk|2 + |nkt|2 + 2|xkt||hk||nkt| cos θkt (4)

1This is a safe assumption since the noise compensation is applied on a
per-utterance basis.

where θkt denotes the (random) angle between the two com-
plex variables (xkthk) and nkt. By applying a set of Mel-
scale filters, taking logarithm and multiplying by the truncated
discrete cosine transform (DCT) matrix C on both sides, the
distortion function in cepstral domain can be expressed as

yt = f(xt,h,nt,αααt)

= xt + h + C log
[
1 + exp

(
C−1 (nt − xt − h)

)
+ 2αααt • exp

(
C−1(nt − xt − h)/2

) ]
, (5)

where xt,yt,nt, and h are the vector-valued clean and noise-
corrupted speech, additive noise, and channel noise, respec-
tively, at time frame t; C−1 is the pseudoinverse of the trun-
cated DCT matrix C and 1 is the unit vector; log(·), exp(·),
and • denote the element-wise logarithm, exponentiation, and
multiplication, respectively. αααt is a random variable that may
be interpreted as a factor making the mismatch function
sensitive to the phase between the clean speech and noise
[24], [25]. The interpretation of αααt as a phase factor suggests
that the possible range of values for each dimension of αααt

is [−1.0, 1.0] [24]. In many noise compensation applications,
αααt is often assumed to be zero. However, experimental results
in [25] indicate that lower word error rates (WER) may be
obtained by empirically tuning the value of αααt, and the lowest
WER may be obtained for an αααt that is outside the range
suggested by the phase-sensitive theory. This is what we
observe in our work as well, and a more detailed discussion
of the phase factor is presented in the experimental section.

Following [25], we make a simplifying assumption that the
value of αααt does not depend on t, and rewrite the mismatch
function as

yt = f(xt,h,nt,ααα)

= xt + h + C log
[
1 + exp

(
C−1 (nt − xt − h)

)
+ 2ααα • exp

(
C−1(nt − xt − h)/2

) ]
. (6)

Note that ααα = 0 corresponds to compensation in power
domain, while ααα = 1 corresponds to magnitude domain com-
pensation [26]. In subsequent sections, we drop the subscript
t from the vectors xt,yt and nt, in order to simplify the no-
tation, wherever the dependence on the time index is obvious.
Note that while the mismatch function is valid for Mel cepstra
(static features), it is customary to append the first and second
order temporal derivatives (delta and acceleration features)
to obtain the complete observation vector. These dynamic
coefficients are derived using a continuous-time approximation
[27]. For example, the delta coefficients are given by:

∆∆∆yt ≈
∂y
∂t
|t =

∂y
∂x

∂x
∂t
|t +

∂y
∂n

∂n
∂t
|t

≈ ∂y
∂x

∆∆∆xt +
∂y
∂n

∆∆∆nt, (7)

and the acceleration coefficients, ∆∆∆2yt, are derived similarly.
By taking the expectation of these coefficients, the compen-
sated dynamic mean and covariance parameters are obtained
for model-based compensation (cf. Section IV).
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In most noise compensation schemes, the additive noise is
assumed to be Gaussian distributed, while the constant channel
noise is represented by its “mean” for notational symmetry:

nt ∼ N (µµµn,ΣΣΣn), h = µµµh. (8)

The clean speech xt is normally assumed to be Gaussian
distributed, and the noise-corrupted speech yt is still approx-
imated by a Gaussian distribution in order to be compatible
with GMM-based recognizers, although its “true” distribution
may be very complex. Under this Gaussianity assumption,
the aim of noise adaptation is to estimate the mean µµµy and
covariance ΣΣΣy of the noise-corrupted speech. However, as the
mismatch function (6) is highly nonlinear, no closed-form
solution is available. A solution may be obtained either by
using sampling techniques, such as data-driven parallel model
combination (DPMC) [15], unscented transform (UT) (e.g.
[28]–[31]), or by using a polynomial approximation such as
vector Taylor series (VTS) [5]. Sampling techniques draw
samples from a noise model and a clean speech model to
synthesise the corresponding noisy speech samples using the
mismatch function (6). They can achieve very good results
with a sufficiently large number of samples, but this comes at
a higher computational cost, thus limiting their applicability.

VTS approximates the nonlinear mismatch function by a
truncated vector Taylor series expansion, by which a closed-
form solution can be obtained for the noisy speech model.
First order VTS is typically used, although recent results show
that improvements can be obtained by a second or higher
order VTS expansion [32], [33]. Compared to sampling, VTS
compensation is relatively effective and efficient. However,
since the parameters for each Gaussian component in the
acoustic model are individually compensated in this approach,
it is still computationally demanding, especially when the
number of Gaussians is large. Joint uncertainty decoding
(JUD) [9] provides a more efficient way of performing noise
compensation, by clustering the Gaussian components into a
relatively small number of classes, and sharing the compen-
sation parameters among the Gaussians in each class. This
significantly reduces the computational cost without a large
sacrifice in accuracy.

III. OVERVIEW OF JOINT UNCERTAINTY DECODING

In a standard acoustic model, the HMM observation vectors,
used for computing HMM likelihoods and posterior proba-
bilities for accumulating sufficient statistics, are obtained by
appending the first- and second-order temporal derivatives
(delta and acceleration features) to the static features. We
denote the noise-corrupted observation by o:

o =

 y
∆∆∆y
∆∆∆2y

 , (9)

and the clean speech observation c is obtained similarly from
x (x and y are 13-dimensional vectors, while c and o are
39-dimensional).

In the framework of joint uncertainty decoding (JUD) [9],
the relationship between the observed noisy speech o, the

underlying clean speech vector c, and Gaussian component
m can be expressed as

p(o|m) =
∫

p(c,o|m)dc =
∫

p(o|c,m)p(c|m)dc, (10)

where the conditional distribution p(o|c,m) models the effect
of noise on clean speech for Gaussian component m. If the
dependency on m is removed from the conditional distribution,
that is

p(o|c,m) ≈ p(o|c), (11)

then it results in a simplified uncertainty decoding rule, used
for many feature domain approaches, such as SPLICE with
uncertainty [7].

Although each individual Gaussian component could be
compensated using (10), such an approach is not computation-
ally feasible in practice. Instead, the Gaussians are grouped
into a relatively small number of classes based on their
acoustic similarities. One way of clustering the Gaussians is
to use a regression tree [22], first proposed in the context
of speaker adaptation. Equation (10) is approximated by
replacing Gaussian component m with its regression class rm:

p(o|m) ≈
∫

p(o|c, rm)p(c|m)dc. (12)

The conditional distribution p(o|c, rm) is derived from the
joint distribution of clean and noise-corrupted speech which
is assumed to be Gaussian. For rth regression class

p

([
c
o

]
| r
)

:= N

([
µµµ

(r)
c

µµµ
(r)
o

]
,

[
ΣΣΣ(r)

c ΣΣΣ(r)
co

ΣΣΣ(r)
oc ΣΣΣ(r)

o

])
(13)

By marginalizing out the clean speech distribution p(c|m)
using (12), the likelihood of corrupted speech for the mth

component may be expressed as a Gaussian with transformed
features and an additive covariance bias, ΣΣΣ(rm)

b :

p(o|m) ≈ |A(rm)|N
(
A(rm)o + b(rm);µµµm,ΣΣΣm + ΣΣΣ(rm)

b

)
,

(14)

where the JUD transform parameters are obtained as:

A(r) = ΣΣΣ(r)
c ΣΣΣ(r)

oc

−1
, (15)

b(r) = µµµ(r)
c −A(r)µµµ(r)

o , (16)

ΣΣΣ(r)
b = A(r)ΣΣΣ(r)

o A(r)T
−ΣΣΣ(r)

c . (17)

The clean speech parameters, µµµ(r)
c and ΣΣΣ(r)

c , may be derived
from the clean speech model using a regression tree. The
corresponding parameters for noise-corrupted speech, µµµ

(r)
o ,

ΣΣΣ(r)
o , and the cross covariance ΣΣΣ(r)

oc , are obtained from the
mismatch function (6). In practise, only the parameters for the
static cepstral coefficients, µµµ

(r)
y , ΣΣΣ(r)

y , and ΣΣΣ(r)
yx , are computed

using (6), given an estimate of the noise parameters µµµn,ΣΣΣn,
and µµµh. Certainly, the true noise parameters are unknown
and they need to be estimated jointly with the transform
parameters. Details of noise model estimation are provided
in Section V-B.

The means and covariances of the dynamic coefficients are
computed using the continuous time approximation (7), as
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described in the following section. Cross-correlations between
the static and dynamic components are assumed to be zero,
which leads to a block-diagonal structure for the matrices
appearing in equations (15)–(17). As an alternative to the
continuous time approximation for dynamic features, the static
coefficients yt may be extended by appending the static coeffi-
cients of the preceding and succeeding frames, and calculating
the dynamic coefficients as a linear transform of this extended
vector. Although there is evidence that this approach improves
upon the continuous time approximation [34], it has a much
higher computational cost and hence not considered for this
work.

IV. JUD TRANSFORMATION ESTIMATION

To estimate the JUD transform for regression class r we use
a first-order VTS approximation [5] to linearise the mismatch
function, around the expansion point {µµµ(r)

x ,µµµh,µµµn} which
results in:

y|r ≈ f(µµµr
x,µµµh,µµµn,ααα) + G(r)

x

(
x−µµµ(r)

x

)
+ G(r)

n (n−µµµn) , (18)

where G(r)
x and G(r)

n denote the Jacobian matrices

G(r)
x =

∂f(·)
∂x

|
µµµ

(r)
x ,µµµh,µµµn

, (19)

G(r)
n =

∂f(·)
∂n

|
µµµ

(r)
x ,µµµh,µµµn

= I−G(r)
x . (20)

The mean and covariance of y can then be obtained by taking
expectations:

µµµ(r)
y = E

[
y|r
]

= f
(
µµµ(r)

x ,µµµh,µµµn,ααα
)

, (21)

ΣΣΣ(r)
y = E

[
yyT |r

]
−µµµ(r)

y µµµ(r)T
y

= G(r)
x ΣΣΣ(r)

x G(r)T
x + G(r)

n ΣΣΣnG(r)T
n . (22)

To obtain the delta parameters, we similarly take expecta-
tions on both sides of equation (7):

µµµ
(r)
∆y ≈ G(r)

x µµµ
(r)
∆x, (23)

ΣΣΣ(r)
∆y ≈ G(r)

x ΣΣΣ(r)
∆xG

(r)T
x + G(r)

n ΣΣΣ∆nG(r)T
n . (24)

Here we have assumed E
[
∆∆∆n
]

= 0. This assumption was
relaxed in [25], but the results showed no improvements when
compensating the static or dynamic parts of the variances.
Similar expressions can be obtained for the acceleration coef-
ficients, where we assume E

[
∆∆∆2n

]
= 0 as well.

The cross covariance ΣΣΣyx is calculated as:

ΣΣΣ(r)
yx = E

[
yxT |r

]
−µµµ(r)

y µµµ(r)T
x . (25)

By substituting the VTS approximation of y from equation
(18) and µµµ

(r)
y from equation (21) into (25), we obtain:

ΣΣΣ(r)
yx ≈ G(r)

x ΣΣΣ(r)
x . (26)

Again, a continuous time approximation can be used to derive
the dynamic coefficients, which gives

ΣΣΣ(r)
∆y∆x ≈ G(r)

x ΣΣΣ(r)
∆x, ΣΣΣ(r)

∆2y∆2x ≈ G(r)
x ΣΣΣ(r)

∆2x. (27)

Note that even if ΣΣΣ(r)
x and ΣΣΣn are diagonal, ΣΣΣ(r)

y and
ΣΣΣ(r)

yx are not, since the Jacobian matrices G(r)
x and G(r)

n

are full. This makes the covariance bias term ΣΣΣ(r)
b block-

diagonal, which is incompatible with standard HMM/GMM
based speech recognizers that use diagonal covariance ma-
trices. To obtain a final diagonal compensated covariance
matrices, elements of the joint distribution are diagonalized for
GMM based systems as in [35]. Diagonalising is expected to
limit the compensation power of JUD. For SGMMs, however,
diagonalising is not applied since the model can use full or
block-diagonal covariance matrices.

V. JOINT UNCERTAINTY DECODING FOR SGMMS

In the SGMM acoustic model [17], the HMM state output
density is modelled as:

p(ot|j) =
Kj∑
k=1

cjk

I∑
i=1

wjkiN (ot;µµµjki,ΣΣΣi), (28)

µµµjki = Mivjk, (29)

wjki =
expwT

i vjk∑I
i′=1 expwT

i′vjk

, (30)

where j is the HMM state index, k is a substate [17], I
is the number of Gaussian components, and ΣΣΣi is the i-th
covariance matrix. vjk ∈ RS is referred to as the substate
vector, and S denotes the subspace dimension. The matrices
Mi and the vectors wi span the model subspaces for Gaussian
means and weights, respectively, and are used to derive the
GMM parameters given substate vectors (equations (29) and
(30)). We refer to the Gaussian components that comprise the
mixture models for each substate as the “surface Gaussians”.

The SGMM parameters are initialised from a universal
background model (UBM) (cf. [17], section 2), and the surface
Gaussians in the region of the acoustic space corresponding
to the ith UBM component share the same global parameters
Mi,wi and ΣΣΣi. The UBM is also used during likelihood
evaluation for state j (equations (28)–(30)) to select a reduced
set of the most likely regions for evaluation, rather than
evaluating all Kj × I surface Gaussian components. In other
words, the UBM itself provides a clustering of the surface
Gaussians based on acoustic similarity. This obviates the use of
a regression tree for clustering the surface Gaussians in JUD,
and preserves the compact model structure of the SGMM.
We estimate a JUD transform and a covariance bias for each
of the I UBM components, and hence for SGMMs the JUD
parameters are indexed by i instead of r.

A. Noise compensation with JUD

Since JUD noise compensation takes the form of a feature
transform with an additive covariance bias, it is well suited to
the SGMM framework. By contrast, VTS compensates each
Gaussian individually, which is computationally infeasible
(and inelegant) for an SGMM system which has a large
number of surface Gaussians—for instance, in the experiments
presented in this paper the models have 6.4 million surface
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Gaussians. Using JUD with the UBM as the regression model,
the likelihood of noise-corrupted speech becomes:

P (ot|j,Mn) =
Kj∑
k=1

cjk

I∑
i=1

wjki |A(i)|

× N
(
A(i)ot + b(i); µµµjki,ΣΣΣi + ΣΣΣ(i)

b

)
(31)

where A(i),b(i) and ΣΣΣ(i)
b correspond to the ith Gaussian in

the UBM; and Mn = {µµµn,ΣΣΣn,µµµh} denotes the noise model.
Since the covariances are compensated using an additive

bias, the data-independent normalisation terms in the SGMM
likelihood computation (cf. [17], section 3) need to be re-
computed on a per-utterance basis. This extra computation
may be saved by using a predictive CMLLR method [36] that
computes a set of feature transforms to minimise the Kullback-
Leibler divergence between the CMLLR-adapted and JUD-
compensated distributions [35]. The effect of the covariance
bias terms is subsumed in the second-order statistics used for
the estimation of the CMLLR transforms, thereby keeping the
original covariances unchanged.

B. Noise model estimation

Noise compensation using the mismatch function (6) re-
quires knowledge of the noise parameters µµµn,ΣΣΣn, and µµµh.
Given the clean speech model, the noise parameters and the
JUD transforms can be estimated alternately following the pro-
cedure outlined in Table I. The noise model may be estimated
either using expectation-maximization (EM), which treats the
noise parameters as latent variables [37]; or using a gradient
based optimization approach [14], [25]. A comparison between
the two approaches [38] showed the gradient-based approach
to converge faster than EM, and to provide comparable or
better recognition accuracy.

In this paper we use the gradient-based approach. The
auxiliary function for noise model update is

Q(M̂n;M̌n) =
∑
jkit

γjki(t)

[
log |A(i)|

+ logN
(
A(i)ot + b(i); µµµjki, ΣΣΣi + ΣΣΣ(i)

b

)]
, (32)

where M̂n and M̌n are the ‘new’ and ‘old’ estimates of the
noise model, respectively. γjki(t) is the Gaussian component
posterior, which is defined as:

γjki(t) = p (j, k, i|ot) . (33)

In [14], the derivatives of the objective function are computed
numerically for JUD/GMM based noise model estimation.
In this paper we derive explicitly the gradients and Hessian
matrices for JUD/SGMM based noise model estimation. These
derivations are similar to the VTS based noise model esti-
mation in [14], [25], with a major difference being in the
estimation of the additive noise variance ΣΣΣn since we use the
block-diagonal covariance matrices for SGMMs rather than
diagonal covariance matrices typically used for GMMs [14],
[25]. We present the overview of the estimation here with the
details presented in the appendices.

TABLE I
PROCEDURE FOR JUD NOISE-COMPENSATION USING GRADIENT-BASED

NOISE MODEL ESTIMATION. IN THIS PAPER, WE USED THE VITERBI
ALIGNMENT FOR THE SGMM SYSTEM. STEP 3 IS REQUIRED FOR THE

FIRST LOOP, BUT CAN BE SKIPPED AFTER THAT WHICH MEANS ONLY THE
ALIGNMENT WILL BE UPDATED USING THE NEW NOISE MODEL.

1. Given a test utterance U , initialize the noise model Mn.
2. Obtain the JUD transforms {A(i),b(i),ΣΣΣ(i)} using the current Mn.
3. If required, decode U and generate the hypothesis Hu given the clean

acoustic model Ms, and the JUD transforms {A(i),b(i), ΣΣΣ(i)}.
4. Given U , Ms and Hu, accumulate the statistics λu by Viterbi

alignment.
5. Update the noise model:

for i = 1; i ≤ #iter1; i++
1) Given λu, Ms and the ‘old’ noise model Mn, update the
noise model means µµµn,µµµh (36).
2) Compute the auxiliary function (32), and if its value decrease,
back-off the noise model means (40, 41).
for j = 1; j ≤ #iter2; j++

3) Given λu, Ms and the ‘old’ noise model Mn, update the
noise model variance ΣΣΣn (37);
4) Compute the auxiliary function (32), and if its value
decreases, back-off the noise model variance.

end
end

6. Go to step 2. if not converged.
7. Decode the utterance to obtain the final results.

1) Update the additive and channel noise mean: To update
the additive and channel noise means, we first fix the VTS
expansion point, and then the Jacobian matrices G(r)

x , G(r)
n

as well as the covariance bias terms ΣΣΣ(r)
b are also fixed. Taking

the derivatives of Q(·) with respect to µ̂µµn and µ̂µµh, we obtain

∂Q(·)
∂µ̂µµn

= d−Eµ̂µµn − Fµ̂µµh, (34)

∂Q(·)
∂µ̂µµh

= u−Vµ̂µµn −Wµ̂µµh, (35)

where d,E,F and u,V,W are defined in equations (50–52)
and (54–56) in Appendix A. By setting the two derivatives
to zero, we obtain the additive and channel noise means as a
solution to the following linear system:

[
E F
V W

] [
µ̂µµn

µ̂µµh

]
=
[

d
u

]
. (36)

Here, we jointly estimate µµµn and µµµh, which is similar to
the VTS noise model estimation in [14] (Chapter 4). This
approach is slightly different from that used in [25], in which
µµµh is updated first, and µµµn is estimated using the updated µµµh.
The detailed derivation can be found in Appendix A.

2) Update the additive noise variance: Unlike the additive
and channel noise means, there is no closed-form solution for
the additive noise variance ΣΣΣn. In this paper, we use Newton’s
algorithm to update it. If we denote σ2

nd as the dth coefficient
of ΣΣΣn, then

σ̂2
nd = σ2

nd − ζ

(
∂2Q(·)
∂(σ2

nd)2

)−1(
∂Q(·)
∂σ2

nd

)
, (37)
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where ζ is the learning rate, and it was set to be 1 in this
work. The gradient and Hessian are defined as:

∂Q(·)
∂σ2

nd

= −1
2

I∑
i=1

(γiκid − βid), (38)

∂2Q(·)
∂(σ2

nd)2
= −1

2

I∑
i=1

(2κidβid − γiκ
2
id), (39)

where κid, βid and ΩΩΩi are defined in equations (63), (66)
and (65) in Appendix B, and γi =

∑
jkt γjki(t). Note that

in practice, the variance may be negative if (76) is applied
directly. To enforce the positivity, the logarithm of variance
is estimated as in [25], [39]. Details of the derivation are
given in Appendix B. As observed in [38], the gradient-based
optimization approach converges within a small number of
iterations. For the experiments in this paper, we use #iter
= 3 and #iter2 = 1 in the algorithm presented in Table I
to update the noise model.

C. Implementation Details

Since the noise model only accounts for the static features
and the Jacobian matrices are fixed during estimation, updating
µµµn and µµµh according to equation (36) does not guarantee an
increase in the auxiliary function (32). We used a simple back-
off scheme [14] that interpolates between the ‘old’ and ‘new’
model parameters:

µ̂µµh = ηµµµold
h + (1− η)µµµnew

h , (40)

µ̂µµn = ηµµµold
n + (1− η)µµµnew

n , (41)

where η ∈ [0, 1] is chosen by line search such that the auxiliary
function does not decrease. A similar back-off scheme is also
applied to the additive noise variance ΣΣΣn. The choice of η is
conservative and makes the iterates stay at the starting value
if the auxiliary function does not increase. In our experiments,
we found that the back-off scheme is important for the noise
model estimation (also reported in [14]). Finally, the auxiliary
function (32) needs to be computed efficiently, since it is
evaluated multiple times during the iterative update of the
noise model. We do this by computing the sufficient statistics
for each Gaussian component in the UBM over the entire
utterance and caching them.

VI. EXPERIMENTAL RESULTS

We performed experiments using the Aurora 4 corpus2,
which is derived from the Wall Street Journal (WSJ0) 5,000-
word (5k) closed vocabulary transcription task. The clean
training set contains about 15 hours of audio, and Aurora
4 provides a noisy version, which enables multi-condition
training (MTR). The test set has 300 utterances from 8
speakers. The first test set, set A (test01), was recorded
using a close talking microphone, similar to the clean training
data. The data comprising set B (test02 to test07) was
obtained by adding six different types of noise, with randomly
selected signal-to-noise ratios ranging from 5dB to 15dB, to

2http://aurora.hsnr.de/aurora-4.html; available from http://catalog.elra.info/

TABLE II
WER OF VTS AND JUD BASED ON GMM SYSTEMS WITH ααα = 0.

Methods A B C D Avg
Clean model 7.7 56.6 46.7 72.8 59.3
MTR model 12.7 18.6 31.7 36.8 26.9
VTS-init 8.7 22.4 43.0 48.0 33.9
+ 1st iter 7.1 15.8 17.3 28.6 20.8
+ 2nd iter 7.3 14.8 12.1 24.8 18.3
JUD-init 8.4 23.8 42.6 47.1 34.0
+1st iter 7.2 17.3 24.1 31.8 23.3
+2nd iter 7.0 16.6 16.3 28.7 21.1

TABLE III
WERS OF NOISE COMPENSATION BY JUD ON SGMM SYSTEMS WITH

ααα = 0.

Methods A B C D Avg
Clean model 5.2 58.2 50.7 72.1 59.9
MTR model 6.8 15.2 18.6 32.3 22.2
JUD-init 5.5 20.6 36.8 45.6 31.4
+1st iter 5.3 15.3 25.3 32.0 22.5
+2nd iter 5.3 14.7 20.7 28.4 20.3

set A. Set C (test08) was recording using a desk-mounted
secondary microphone and the same type of noise used for
set B was added to this test set to form set D (test09 to
test14).

In the following experiments, we used 39 dimensional
feature vectors for both GMM- and SGMM-based systems:
12th order mel frequency cepstral coefficients, plus the zeroth
order coefficient (C0), with delta and acceleration features. We
used the standard WSJ0 5k bigram language model [40] and
the CMU pronunciation dictionary3.

A. Results of GMM based systems

The GMM systems were built using the HTK4 software
[41]. Table II shows the results of VTS and JUD noise
compensation on a conventional GMM system, without the
phase term (i.e. ααα = 0). Here, the clean and MTR models
each have about 3,100 tied triphone states, with each speech
state modelled using 16 Gaussian components and 32 Gaussian
components for the silence state model. The language model
scale factor and word insertion penalty were tuned on the
development dataset si_dt_05.odd in the WSJ0 corpus
and were fixed for all testing conditions. As expected, the
clean model results in a high word error rate (WER) on
the noisy test data, whereas the MTR model can alleviate
the mismatch, resulting in significant reductions in WER, on
average. For the JUD system, we used a regression model
with 112 Gaussian clusters, in which 48 clusters were used
for silence and the remaining 64 for speech. Two separate
regression trees were used. For comparison, we carried out
VTS-based noise compensation, which may be viewed as JUD
when every Gaussian component corresponds to a regression
class.

3Available from: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
4http://htk.eng.cam.ac.uk
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Fig. 1. Effect of phase term α for both GMM and SGMM system with VTS
or JUD style noise compensation. The best result for VTS/GMM is 17.3%
(ααα = 1.0), JUD/GMM is 19.2% (ααα = 1.0) and JUD/SGMM is 16.8%
(ααα = 2.5).

TABLE IV
WERS OF VTS/GMM (ααα = 1.0) AND JUD/SGMM (ααα = 2.5) SYSTEMS.

Methods A B C D Avg
VTS/GMM 7.0 14.8 10.6 22.7 17.3
JUD/SGMM 5.1 13.1 12.0 23.2 16.8

The noise model was initialized by the first and last 20
frames of each test utterance, corresponding to “VTS-init”
and “JUD-init” in Table II. The hypotheses generated by the
initial decoding were then used to update the noise model, and
another decoding pass was conducted, giving results shown
as “1st iter”. The procedure was repeated to give the results
“2nd iter”. Table II indicates that updating the noise model
leads to considerable gains in accuracy for both VTS and JUD.
In addition, VTS-based systems consistently outperform their
JUD counterparts as expected. However, the computation cost
for JUD is much lower than that for VTS. The lowest WER
given by VTS is 18.3% which is comparable to 17.8% reported
in [42] with a similar system configuration, and that for JUD
is 21.1% which is a little better than 22.2% in [43].

B. Results of SGMM based systems

The SGMM systems were built using the open-source
Kaldi5 speech recognition toolkit [44]. We used I = 400
components in the UBM and a subspace dimension S = 40.
There were about 3,900 tied triphone states and a total of about
16,000 substates, resulting in 6.4 million surface Gaussians.
Similar to the GMM-based systems, we separated speech
and silence in the regression model, using 100 Gaussian
components for silence and 300 for speech in the UBM.
Table III gives the baseline results using clean and MTR
models. The SGMM system has a lower WER than the GMM
system on clean test data (A; 5.2% vs. 7.7%); however, the
improvement disappears in noisy conditions. For the MTR
model, where the mismatch is less serious, we observed that

5http://kaldi.sf.net

the SGMM system has a lower average WER compared with
its GMM counterpart (22.2% vs. 26.9%). Just as we discussed
in section I, an SGMM acoustic model can use larger number
of Gaussian components and may results in more accurate
speech recognition compared with its GMM counterpart due
the larger modelling power. However, this is not observed in
highly mismatched condition.

We then applied JUD noise compensation to a clean SGMM
acoustic model. Table III shows the results without the phase
term, i.e. ααα = 0. Again, the noise model is initialised by the
first and last 20 frames of each utterance, and then updated by
the algorithm described in section V-B. The results show that
JUD compensation lead to lower WERs for SGMM systems in
the presence of additive noise compared with the MTR model.
Overall, using a three-pass decoding, we achieve 20.3% WER,
which is about 2% absolute lower than that obtained using the
MTR/SGMM.

We then investigated using a non-zero phase term. We
did not optimize the value of ααα (as in [24]) but set all the
coefficients of ααα to a fixed value [25]. As a comparison,
we also investigated different values of the phase factor for
the GMM-based VTS and JUD systems. Figure 1 graphs
the average WERs. We find that the phase factor signifi-
cantly affects both VTS and JUD compensation for GMM
and for SGMM systems, consistent with previously reported
results [24], [25]. The phase factor has a large effect on
the JUD/SGMM system: tuning ααα achieves 16.8% WER,
significantly lower than the 20.3% WER with α = 0α = 0α = 0. It also
outperforms the VTS/GMM system with optimal ααα by 0.5%
on average. Table IV reveals that the improvement is obtained
on channel matched conditions (Set A and B), whereas for
channel mismatched conditions (Set C and D), JUD/SGMM
performs slightly worse than VTS/GMM system.

Possible reasons for the improvement obtained by opti-
mizing ααα may be the correlations between noise and speech
captured by the phase factor, and the systematic bias intro-
duced by the VTS linearisation error (equation (18)) [24],
[25]. However, for SGMMs the best results are obtained by
values of ααα that are outside the range [−1, 1] dictated by the
phase-sensitive theory [24]. Similar results of better WER by
using larger ααα for GMM systems have also been reported in
[25], in which the authors attribute the improvement to the
fact that larger ααα can compensate for the linearisation bias of
VTS and perform domain combination since different values
of ααα corresponds to different feature domains. To explain
the contradiction between the experimental results and the
phase-sensitive theory, the authors in [26] argue that Equation
(6) may be considered as a generalisation of the mismatch
function, where ααα is an additional parameter that should be
optimized. We provide further analysis of the behavior of the
JUD/SGMM system for different values of ααα in the following
section.

C. Analysis of the effect of phase factors

To gain further insight into the effect of phase term, we
calculated the total variance of ΣΣΣi +ΣΣΣ(i)

b and averaged it by I
and the number of test utterances. The plot is shown in Figure
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TABLE V
WERS OF EACH TEST SET WITH REGARDS TO THE VALUE OF PHASE FACTOR FOR JUD/SGMM SYSTEM. “RESTAU.” DENOTES RESTAURANT NOISE

CONDITION.

Set A Set B Set C Set D Average
test01 test02 test03 test04 test05 test06 test07 test08 test09 test10 test11 test12 test13 test14

ααα clean car babble restau. street airport station clean car babble restau. street airport station
-0.5 5.2 9.0 20.9 26.3 21.9 16.6 23.1 23.3 29.1 36.4 41.6 41.1 36.2 40.1 26.5
0.0 5.3 7.6 14.6 20.1 15.8 13.4 16.6 20.7 18.5 28.0 32.6 32.4 28.4 30.7 20.3
0.5 5.3 7.1 13.0 18.6 14.2 12.4 15.5 17.8 14.1 25.6 30.7 29.2 24.9 27.9 18.3
1.0 5.3 7.2 12.3 17.5 14.2 11.6 15.0 16.2 12.7 24.0 30.0 27.1 23.6 26.2 17.3
1.5 5.3 7.1 12.4 17.5 14.5 11.1 15.2 14.2 12.5 23.9 28.8 26.3 23.5 26.3 17.1
2.0 5.2 7.1 12.5 17.3 14.4 11.2 15.3 13.1 12.1 23.3 28.6 26.0 23.2 26.0 16.8
2.5 5.1 7.3 12.5 17.5 14.4 11.5 15.5 12.0 12.0 23.4 28.2 26.1 23.1 26.2 16.8
3.0 5.0 7.4 12.5 17.4 14.8 12.0 15.7 10.8 12.1 24.0 28.1 26.0 22.8 26.5 16.8
3.5 5.3 7.6 12.8 17.5 14.6 11.8 15.8 10.7 12.1 24.5 28.3 26.3 23.0 26.5 16.9
4.0 5.1 7.6 13.2 17.8 14.9 11.7 16.0 10.4 12.2 23.8 28.3 26.4 23.2 26.7 16.9
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Fig. 2. Average trace of covariance matrix ΣΣΣi + ΣΣΣ
(i)
b respect to the phase

term ααα for JUD/SGMM systems. ΣΣΣ
(i)
b is large when ααα is small (e.g. ααα = 0).

The value for ααα = −0.5 is much larger, and it is not shown here for clarity.

2 for JUD/SGMM system, and shows a similar trend to that of
the WER when using different values of phase factors. This
is not unexpected if one interprets the value of covariance
as indicating the degree of uncertainty of the model. A small
covariance may indicate that the model is more confident in its
explanation of the data; if this confidence is gained from more
accurate model compensation, it is expected to result in lower
WER. However, the absolute value in the figure is not intuitive
as the features were first transformed into another feature space
by the JUD transformation (A(i),b(i)). As shown in Figure
2, we obtain large ΣΣΣ(i)

b when ααα is small.
The reason may be that the phase term avoids over em-

phasising the noise parameters: it is clear from (6) that to
explain the same mismatch between x and y, the noise n
or h should be larger if the phase term is removed, whereas
with the positive phase term, n and h can be smaller given
the same x and y. The over estimation of noise will result in
higher uncertainty and larger ΣΣΣ(i)

b which is in agreement with
the uncertainty theory [7]. This argument also agrees with
[26] that the mismatch function is generalized by using the
phase term. Under this hypothesis, larger phase term may be
beneficial if the mismatch between x and y is high, and this

is confirmed by the results in Table V, which is explained in
the next paragraph. Furthermore, note that the Jacobian matrix
G(i)

x (cf. equation (19)) for component i is a function of the
phase factor ααα, and we observe that when ααα is small, G(i)

x

has very small eigenvalues, leading to a large transformation
matrix A(i) since [14]:

A(i) ≈

 G(i)−1
x 0 0
0 G(i)−1

x 0
0 0 G(i)−1

x

 (42)

and, consequently, ΣΣΣ(i)
b is also large (cf. equation (17)). A

large value of the phase factor is able to smooth the Jacobian
matrix G(i)

x , resulting in smaller transformation parameters
(A(i),b(i),ΣΣΣ(i)

b ) and stabilizing the system.
To investigate the effect of phase factors in different noise

conditions, we show the results of JUD/SGMM system on
the 14 individual test sets in Table V. We can see that the
optimal values of ααα vary in different noise condition. Overall,
the optimal ααα is larger in highly mismatch condition (e.g. Set
C and D) which confirms our claim in previous paragraph. For
the clean test set A, introducing a non-zero phase term does
not improve accuracy notably just as expected. For noisy set
B, there is a consistent trend of lower word error rates when a
positive values phase factor are used. The effect of the phase
factor is most apparent for set C, which does not have added
noise, but was recorded using a desk-mounted microphone. In
this case, using a zero phase factor results in a high WER
(20.7%, compared to 12.1% for VTS/GMM and 18.6% for
MTR SGMM). Increasing the factor to a relatively large values
(e.g. ααα = 4) reduces the WER by 50% relative to 10.4%. Set
D (distant microphone with added noise) also demonstrated
similar behaviour. The optimal phase factor for Set D is around
ααα = 2.5. Further insight on the effect of phase factor ααα may
be obtained by using higher order VTS expansion [32], [33]
in which the linearizaiton error will be less, or estimating the
value of ααα directly from the test data for either each utterance
or each frame [24].

D. Analysis of speech and silence separation in UBM
In the regression model of the JUD/GMM system, clusters

for speech and silence were defined using different regression
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TABLE VI
CONFUSION MATRIX OF SPEECH AND SILENCE SEPARATION BY UBM

MODEL.

sil speech
sil 64.8% 35.2%

speech 9.3% 90.7%

TABLE VII
COMPARISON OF UBM MODEL WITH (‘YES/S’) AND WITHOUT (‘NO/S’)

SPEECH AND SILENCE SEPARATION FOR JUD/SGMM SYSTEM.

ααα 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
no/S 20.9 18.7 17.7 17.1 16.8 16.8 16.8 17.0
yes/S 20.3 18.3 17.3 17.1 16.8 16.8 16.8 16.9

trees. The reason for this is that speech and silence show
different characteristics in the spectral domain, and their
distortions by additive and channel noise are also different.
This separation is expected to reduce the mismatch between
the regression class model and its clusters. We also separate the
speech and silence in the UBM in the JUD/SGMM system,.
This was done by first identifying the speech and silence
frames in the training data using a baseline system, and then
building the two UBM models for speech and silence using
100 and 300 Gaussian components, respectively. They were
combined to form the final UBM model, which was then used
to classify the acoustic frame in the training data.

The results are shown in Table VI. We observe that by this
approach, we achieve high accuracy to identify the speech
frames, but not for silence (90.7% vs. 64.8%). The accuracy
for noisy test data may decrease further even after noise
compensation. This may undermine the gains achieved by
separating speech and silence in the UBM. We compared
the results of systems with and without speech and silence
separation, which is shown in Table VII. Without the phase
term, we achieved 0.6% gains relative by speech and silence
separation in UBM, but the two system achieve the same
accuracy after tuning the phase factor. Hence, separating the
speech and silence in the UBM using this approach does
not improve the accuracy of JUD/SGMM systems with phase
factors. However, these results shed insight into the effect
of phase factor with JUD/SGMM system. From Table VII,
tuning ααα achieves higher gain for the system without speech
and silence separation in the UBM (from 20.9% to 16.8%
vs. from 20.3% to 16.8%). This is because the approximation
p(o|c, rm) ≈ p(o|c,m) used in Equation (12) is poor since
the effect of noise on speech and non-speech component is
different. As stated before, the phase term can avoid the over
estimation of noise model, and it may explain the gain here.

E. Unsupervised noise model estimation

Model-based noise compensation is normally computation-
ally expensive, and not suitable for real time applications. For
instance, in our experiments, we performed three decoding
passes to obtain the final results, in which the first two
passes were used to generate the hypotheses for noise model
estimation. For applications with limited computational power,
feature space noise compensation is normally preferred, but

TABLE VIII
WERS (%) OF SUPERVISED (“SGMM-AUX”) AND UNSUPERVISED

(“UBM-AUX”) AND HYBRID (“HYBRID”) NOISE MODEL ESTIMATION FOR
SGMM/JUD SYSTEM. “#PASS” DENOTES THE NUMBER OF DECODING

PASSES.

ααα 1.0 1.5 2.0 2.5 3.0 3.5 4.0 #pass
UBM-aux 18.2 17.7 17.5 17.4 17.3 17.2 17.3 1
SGMM-aux 17.7 17.1 16.8 16.8 16.8 17.0 17.1 3
Hybrid 17.5 17.1 16.8 16.8 16.7 16.8 16.8 2

has lower accuracy compared to its model-based counterpart
[45]. We have investigated reducing the computational cost
of the JUD/SGMM by employing unsupervised noise model
estimation. Instead of Equation (32), we used the UBM to
update the noise model using the following auxiliary function:

Q(M̂n;M̌n) =
∑
it

γi(t)

[
log |A(i)|

+ logN
(
A(i)yt + b(i); µµµ(i)

x , ΣΣΣ(i)
x + ΣΣΣ(i)

b

)]
, (43)

where µµµ
(i)
x and ΣΣΣ(i)

x are the mean and covariance the ith UBM
component, and γi(t) is the posterior of the ith component.
In this case, the noise model can be estimated without a
hypothesis. So decoding of test utterance is not required,
leading to a significant reduction in computational cost. The
motivation behind this is similar to the feature space VTS, in
which a GMM is used to model the acoustic space, and to learn
the mapping between a clean model and its noise-corrupted
counterpart. However, we do not use the mapping to denoise
the features, but to compensate for the noise in the model
domain. This approach is also different from the front-end JUD
(FE-JUD) [14], where a GMM is used to model the conditional
distribution p(y|x) in equation (11) which is independent of
the acoustic model. The transformation for each acoustic frame
is globally shared by the all the Gaussian components in the
acoustic model in FE-JUD. In contrast, our approach will have
a regression class dependent transformation.

Table VIII shows that using unsupervised noise model
estimation results in slightly increased WER compared with
the supervised version (17.2% vs. 16.8%), while significantly
reducing the computational cost using only single-pass decod-
ing. In our system, the real-time factor for each decoding pass
is 10.98 on average. We can also initialize the noise model
in an unsupervised fashion, and then switch to supervised
estimation to refine the noise model parameters. We denote
such a system as “Hybrid” in Table VIII. The “Hybrid” system
achieves a similar WER compared to “SGMM-aux” but with
a significantly reduced computational cost.

VII. DISCUSSION AND CONCLUSION

This paper addresses robust speech recognition based on
subspace Gaussian mixture models (SGMMs) using joint
uncertainty decoding (JUD) noise compensation. Compared
to VTS, JUD significantly reduces the computational cost by
sharing the compensation parameters for Gaussian components
within the same class. The major computational cost of such
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TABLE IX
APPROXIMATION OF COMPUTATIONAL COST FOR VTS/GMM, JUD/GMM

AND JUD/SGMM SYSTEM. M ′ AND R DENOTE THE TOTAL NUMBER
GAUSSIANS AND REGRESSION CLASSES IN GMM SYSTEMS.

System Model Transform Estimation Compensation
VTS/GMM diag O(M ′D3) O(M ′D2)
JUD/GMM diag O(RD3) O(RTD + M ′D)

JUD/SGMM blck O(ID3) O(ITD2 + ID2)

approaches is because of the multiple decoding passes that
are required to estimate the noise model parameters and
compensation parameters.

JUD is an attractive noise compensation approach for SG-
MMs, since the adaptation takes advantage of the SGMM
structure, rather than adapting the surface Gaussians explicitly.
For each decoding pass, the surface Gaussians are adapted
using I sets of feature transforms and covariance biases, corre-
sponding to the UBM components. For each test utterance with
T frames, each frame is transformed by the I transformations
with a computational cost of O(ITD2). In this paper, I = 400,
D = 39 and 100 ≤ T ≤ 1000. Updating the variance is
O(ID2), with some additional computation required to update
the normalization term [17]. The number of regression classes
for the JUD/SGMM system does not need to be equal to the
number of UBM components. A smaller number of regression
classes may be used by clustering the UBM Gaussians and
sharing the JUD transforms within each clustered set of UBM
components.

However, the total computational cost is still significantly
lower than direct VTS compensation of SGMMs, which would
require O(MD3) for the block-diagonal covariance matrices
used in this paper, where M is the total number of surface
Gaussians (6.4 million in this paper). As previously mentioned,
further computational savings may be achieved by using by
predictive CMLLR [36] to remove the covariance bias terms
ΣΣΣ(i)

b , so that the normalization terms of SGMMs can be left
untouched.

In Table IX, we compare the computational cost in terms of
transformation estimation and compensation for VTS/GMM,
JUD/GMM and JUD/SGMM systems. For transform estima-
tion, the main computational cost is to estimate the Jacobian
matrices (e.g. equation (19)), which is linear in the number
of Gaussians for VTS/GMM, while it is linear in the number
of regression classes for JUD/GMM and JUD/SGMM. In this
case, the cost of estimating transformations for JUD/SGMM
system is lower than that of VTS/GMM system. For com-
pensation, the computational cost lies in compensating the co-
variance (e.g. equation (22)) for VTS/GMM system, and as we
used diagonal covariances, the cost was reduced to O(M ′D2).
In this paper, the number of Gaussians components used in the
VTS/GMM system is about 3,000, hence M ′ < IT . Thus, in
this case, the overall computational cost of JUD/SGMM is
greater than that of VTS/GMM. However, the gap will shrink
when using more complex systems with a greater number of
Gaussians, or using a smaller number of regression classes for
the SGMM system.

To further reduce the computational cost of JUD/SGMM,
we also investigated the unsupervised noise model estimation

using UBM which removes the need for multiple decoding
passes at the cost of a slightly increased WER, or which can
be used to initialize the noise model, thus reducing the number
of decoding passes for the supervised case.

To summarize our experimental results, by empirically tun-
ing the phase factor, we achieved 16.8% WER for JUD/SGMM
system on the Aurora 4 corpus, which is comparable to the
state-of-the-art noise compensation results on this task [42],
[46]. Further improvements have been observed by VTS-based
noise adaptive training [39], joint speaker/noise compensation
[42], and discriminative adaptive training [46]. The subspace
GMM framework has considerable potential to explore adap-
tive approaches related to these, and in particular provides
a highly promising structure to explicitly factorise causes of
variability such as additive noise, channel noise, and speaker
effects.

APPENDIX A
UPDATE THE ADDITIVE AND CHANNEL NOISE MEAN

The following derivations are for the static features; the
delta and acceleration coefficients may be obtained using a
continuous time approximation, as discussed in Section II, in
which the static and dynamic coefficients are assumed to be
independent. Likewise, the JUD transforms (A(i),b(i),ΣΣΣ(i)

b )
in these derivations correspond to the static coefficients only.

We denote the clean and noisy UBM models as
{µµµ(i)

x ,ΣΣΣ(i)
x ; i = 1, . . . , I}, and {µµµ(i)

y ,ΣΣΣ(i)
y ; i = 1, . . . , I},

respectively. As stated before, the derivations here are similar
to the VTS noise model estimation [14] (Chapter 4), but with
a different accumulation of statistics for the SGMM. We use
a similar notations to [14] in order to make clear the relations
and difference between the two. We first rewrite the auxiliary
function (32) for the static coefficients as

Q(·) =
∑
jkit

γjki(t)

×
[
logN

(
yt; A(i)−1

(
µµµjki −µµµ(i)

x

)
+ µµµ(i)

y , Σ̃ΣΣ
(i)

y

)]
= −1

2

∑
jkit

γjki(t)
(
log |Σ̃ΣΣ

(i)

y |+ ỹT
jkitΣ̃ΣΣ

(i)−1

y ỹjkit

)
(44)

where

ỹjkit =
(
yt −A(i)−1

(
µµµjki −µµµ(i)

x

)
−µµµ(i)

y

)
, (45)

Σ̃ΣΣ
(i)

y = A(i)−1
(
ΣΣΣi + ΣΣΣ(i)

b

)
A(i)−T

= ΣΣΣ(i)
y + A(i)−1

(
ΣΣΣi −ΣΣΣ(i)

x

)
A(i)−T . (46)

To update the noise model, we first fix the VTS expansion
point, so that the Jacobian matrices are also fixed, and µµµ

(i)
y is

a function of the additive and channel noise means, µµµn and
µµµh, only. Using the first order VTS expansion around the old
noise model parameters (µ̌µµn, µ̌µµh), µµµ

(i)
y can be expressed as

µµµ(i)
y ≈ E

{
f
(
µµµ(i)

x , µ̌µµn, µ̌µµh,ααα
)

+ G(i)
x

(
x−µµµ(i)

x

)
+ G(i)

n (n− µ̌µµn) + G(i)
h (h− µ̌µµh)

}
= µ̌µµ(i)

y + G(i)
n (µ̂µµn − µ̌µµn) + G(i)

h (µ̂µµh − µ̌µµh) , (47)
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where G(i)
x and G(i)

n are the Jacobian matrices (19) and (20).
G(i)

h is defined as

G(i)
h =

∂f(·)
∂µ̌µµh

|
µµµ

(i)
x ,µ̌µµh,µ̌µµn

. (48)

Taking the derivative of Q(·) w.r.t. µ̂µµn, we obtain

∂Q(·)
∂µ̂µµn

=
∑
jkit

γjki(t)G(i)T
n Σ̃ΣΣ

(i)−1

y ỹjkit

=
∑
jkit

γjki(t)G(i)T
n Σ̃ΣΣ

(i)−1

y

(
yt −A(i)−1

(
µµµjki −µµµ(i)

x

)
− µ̌µµ(i)

y −G(i)
n (µ̂µµn − µ̌µµn)−G(i)

h (µ̂µµh − µ̌µµh)
)

= d−Eµ̂µµn − Fµ̂µµh, (49)

where

d =
∑
jkit

γjki(t)G(i)T
n Σ̃ΣΣ

(i)−1

y

(
yt −A(i)−1

(
µµµjki −µµµ(i)

x

)
− µ̌µµ(i)

y + G(i)
n µ̌µµn + G(i)

h µ̌µµh

)
, (50)

E =
∑

i

γiG(i)T
n Σ̃ΣΣ

(i)−1

y G(i)
n , (51)

F =
∑

i

γiG(i)T
n Σ̃ΣΣ

(i)−1

y G(i)
h , (52)

and γi =
∑

jkt γjki(t). Similarly, taking the derivative of Q(·)
w.r.t. µ̂µµh gives

∂Q(·)
∂µ̂µµh

=
∑
jkit

γjki(t)G
(i)T
h Σ̃ΣΣ

(i)−1

y ỹjkit

= u−Vµ̂µµn −Wµ̂µµh, (53)

where

u =
∑
jkit

γjki(t)G
(i)T
h Σ̃ΣΣ

(i)−1

y

(
yt −A(i)−1

(
µµµjki −µµµ(i)

x

)
− µ̌µµ(i)

y + G(i)
n µ̌µµn −G(i)

h µ̌µµh

)
, (54)

V =
∑

i

γiG
(i)T
h Σ̃ΣΣ

(i)−1

y G(i)
n , (55)

W =
∑

i

γiG
(i)T
h Σ̃ΣΣ

(i)−1

y G(i)
h . (56)

Setting the two derivatives to be zero we obtain[
E F
V W

] [
µ̂µµn

µ̂µµh

]
=
[

d
u

]
, (57)

which gives [
µ̂µµn

µ̂µµh

]
=
[

E F
V W

]−1 [ d
u

]
. (58)

In our implementation, we cached the statistics that are
independent of the noise parameter so that they were not
computed repeatedly. For instance, d can be decomposed as

follows:

d =
∑

i

γiG(i)T
n Σ̃ΣΣ

(i)−1

y

(
G(i)

n µ̌µµn + G(i)
h µ̌µµh − µ̌µµ(i)

y

)
+
∑

i

G(i)T
n Σ̃ΣΣ

(i)−1

y

∑
jkt

γjki(t)yt︸ ︷︷ ︸
cached

−
∑

i

G(i)T
n Σ̃ΣΣ

(i)−1

y A(i)−1
∑
jkt

γjki(t)
(
µµµjki −µµµ(i)

x

)
︸ ︷︷ ︸

cached

Caching was also used for the computation of u in (54).

APPENDIX B
UPDATE THE ADDITIVE NOISE VARIANCE

The derivation here is similar to the estimation of the
additive noise variance ΣΣΣn for VTS [14] (App. C). To update
ΣΣΣn, we first fix the value of µµµn and µµµh. Again, the derivations
are for static features only. For the dynamic coefficients of ΣΣΣn,
the derivations are similar. We rewrite the auxiliary function
(44):

Q(·) = −1
2

∑
jkit

γjki(t)
(
log |Σ̃ΣΣ

(i)

y |+ ỹT
jkitΣ̃ΣΣ

(i)−1

y ỹjkit

)
(59)

where ỹjkit and Σ̃ΣΣ
(i)

y are defined in (45) and (46). Note that

that Σ̃ΣΣ
(i)

y is full rather than diagonal (unlike [14]). Therefore,
the derivations are slightly different. Since ỹjkit does not
depend on ΣΣΣn, by taking derivative Q(·) w.r.t. to the dth

diagonal element of ΣΣΣn, we obtain:

∂Q(·)
∂σ2

nd

= −1
2

∑
jkit

γjki(t)

[
∂ log |Σ̃ΣΣ

(i)

y |
∂σ2

nd︸ ︷︷ ︸
first part

+ ỹT
jkit

∂Σ̃ΣΣ
(i)−1

y

∂σ2
nd

ỹjkit︸ ︷︷ ︸
second part

]

(60)

The first part of the derivative is

∂ log |Σ̃ΣΣ
(i)

y |
∂σ2

nd

=
1

|Σ̃ΣΣ
(i)

y |

∂|Σ̃ΣΣ
(i)

y |
∂σ2

nd

= Tr

Σ̃ΣΣ
(i)−1

y

∂Σ̃ΣΣ
(i)

y

∂σ2
nd

 . (61)

It can be seen from (46) that only ΣΣΣ(i)
y depends on σ2

nd, and
from (22)

ΣΣΣ(i)
y = G(i)

x ΣΣΣ(i)
x G(i)T

x + G(i)
n ΣΣΣnG(i)T

n .

Hence

∂Σ̃ΣΣ
(i)

y

∂σ2
nd

=
∂ΣΣΣ(i)

y

∂σ2
nd

= [G(i)
n ]d[G(i)

n ]Td , (62)

where [G(i)
n ]d denotes the dth column of G(i)

n . Substituting
(62) into (61), we obtain the first part of the derivative as

κid ≡
∂ log |Σ̃ΣΣ

(i)

y |
∂σ2

nd

= Tr
(
Σ̃ΣΣ

(i)−1

y [G(i)
n ]d[G(i)

n ]Td
)

= [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y [G(i)
n ]d (63)



12 SUBMITTED TO IEEE TRANSACTION ON AUDIO, SPEECH AND LANGUAGE PROCESSING

Similarly, for the second part of the derivative

∂Σ̃ΣΣ
(i)−1

y

∂σ2
nd

= −Σ̃ΣΣ
(i)−1

y

∂Σ̃ΣΣ
(i)

y

∂σ2
nd

Σ̃ΣΣ
(i)−1

y

= −Σ̃ΣΣ
(i)−1

y [G(i)
n ]d[G(i)

n ]Td Σ̃ΣΣ
(i)−1

y (64)

Hence, we can compute it as

∑
jkit

γjki(t)ỹT
jkit

∂Σ̃ΣΣ
(i)−1

y

∂σ2
nd

ỹjkit

= −
∑
jkit

γjki(t)ỹT
jkitΣ̃ΣΣ

(i)−1

y [G(i)
n ]d[G(i)

n ]Td Σ̃ΣΣ
(i)−1

y ỹjkit

= −
∑
jkit

γjki(t)[G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ỹjkitỹT
jkitΣ̃ΣΣ

(i)−1

y [G(i)
n ]d

= −
∑

i

[G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩiΣ̃ΣΣ
(i)−1

y [Gi
n]d,

where we have accumulated all the statistics indexed by j, k, t
as

ΩΩΩi =
∑
jkt

γjki(t)ỹjkitỹT
jkit. (65)

Again, we decompose ΩΩΩi and cache the statistics that do
not depend on the noise parameters in order to save the
computation, but we omit the details here for brevity. If we
denote

βid ≡ [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩiΣ̃ΣΣ
(i)−1

y [Gi
n]d, (66)

then the gradient can be expressed as

∂Q(·)
∂σ2

nd

= −1
2

I∑
i=1

(γiκid − βid). (67)

As stated before, to enforce positivity, the logarithm of the
variance is estimated [25]:

σ̃2
nd = log(σ2

nd), (68)

σ2
nd = exp(σ̃2

nd). (69)

Then we can obtain

∂Q(·)
∂σ̃2

nd

=
∂Q(·)
∂σ2

nd

∂σ2
nd

∂σ̃2
nd

=
∂Q(·)
∂σ2

nd

σ2
nd

= −1
2

I∑
i=1

(γiκid − βid)σ2
nd. (70)

Next, we calculate the Hessian matrix of Q(·) w.r.t. the
noise variance ∂2Q(·)/∂(σ2

nd)
2. From the gradient (67) we

can obtain:

∂2Q(·)
∂(σ2

nd)2
=

∂

∂σ2
nd

(
∂Q(·)
∂σ2

nd

)
=

∂

∂σ2
nd

(
−1

2

I∑
i=1

(γiκid − βid)

)

= −1
2

I∑
i=1

(γi
∂κid

∂σ2
nd

− ∂βid

∂σ2
nd

). (71)

From (63) and (64), we can obtain the first part of the
derivative as:

∂κid

∂σ2
nd

= [G(i)
n ]Td

∂Σ̃ΣΣ
(i)−1

y

∂σ2
nd

[G(i)
n ]d

= − [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y [G(i)
n ]d︸ ︷︷ ︸

κid

[G(i)
n ]Td Σ̃ΣΣ

(i)−1

y [G(i)
n ]d︸ ︷︷ ︸

κid

= −κ2
id. (72)

Using (66) and (64), we can compute the second part of the
derivative ∂βid/∂σ2

nd:

∂βid

∂σ2
nd

=
∂

“
[G

(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩiΣ̃ΣΣ
(i)−1

y [G
(i)
n ]d

”
∂σ2

nd

= [G(i)
n ]Td

∂Σ̃ΣΣ
(i)−1

y

∂σ2
nd

ΩΩΩiΣ̃ΣΣ
(i)−1

y [G(i)
n ]d

+ [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩi
∂Σ̃ΣΣ

(i)−1

y

∂σ2
nd

[G(i)
n ]d

= − [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y [G(i)
n ]d| {z }

κid

[G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩiΣ̃ΣΣ
(i)−1

y [G(i)
n ]d| {z }

βid

− [G(i)
n ]Td Σ̃ΣΣ

(i)−1

y ΩΩΩiΣ̃ΣΣ
(i)−1

y [G(i)
n ]d| {z }

βid

[G(i)
n ]Td Σ̃ΣΣ

(i)−1

y [G(i)
n ]d| {z }

κid

= −2κidβid.
(73)

By summing the two parts we obtain

∂2Q(·)
∂(σ2

nd)2
= −1

2

I∑
i=1

(2κidβid − γiκ
2
id), (74)

and the Hessian of the logarithm of the variance can be
estimated as

∂2Q(·)
∂(σ̃2

nd)2
=

∂

∂σ̃2
nd

(
∂Q(·)
∂σ̃2

nd

)
=

∂Q(·)
∂σ2

nd

σ2
nd +

∂2Q(·)
∂(σ2

nd)2
σ2

ndσ
2
nd

= −1
2

I∑
i=1

(γiκid − βid)σ2
nd

− 1
2

I∑
i=1

(2κidβid − γiκ
2
id)σ

2
ndσ

2
nd. (75)

After obtaining the gradient (70) and Hessian (75) of the
logarithm of the variance σ̃2

nd we can update the estimate
similar to (76) as

ˆ̃σ2
nd = σ̃2

nd − ζ

(
∂2Q(·)
∂(σ̃2

nd)2

)−1(
∂Q(·)
∂σ̃2

nd

)
. (76)

Then we use equation (69) to compute the original variance.
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