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Abstract. A computational pipeline is developed to accurately predict urine ex-
cretory proteins and the possible origins of the proteins. The novel contributions 
of this study include: (i) a new method for predicting if a cellular protein is 
urine excretory based on unique features of proteins known to be urine excreto-
ry; and (ii) a novel method for identifying urinary proteins originating from the 
urinary system. By integrating these tools, our computational pipeline is capa-
ble of predicting the origin of a detected urinary protein, hence offering a novel 
tool for predicting potential biomarkers of a specific disease, which may have 
some of their proteins urine excreted. One application is presented for this pre-
diction pipeline to demonstrate the effectiveness of its prediction. The pipeline 
and supplementary materials can be accessed at the following URL: 
http://csbl.bmb.uga.edu/PUEPro/. 
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1 Introduction 

Early detection is essential for disease control and possible prevention [1]. Among the 
existing techniques, detection of biomarkers in body fluids such as blood, urine or 
saliva represents the least invasive and most efficient approaches, which can offer an 
initial indication of diseases in specific organs. A key to accomplishing this lies in our 
ability to accurately identify informative biomarkers. Technical challenges involve (1) 
accurate identification of overly produced biomolecules in targeted disease tissues, 
which are specific to the disease, and (2) reliable prediction of which of such biomol-
ecules can enter a specific type of body fluid.  

Compared to blood, urine is probably equally information rich in term of the types 
of biomolecules from different origins. This makes urinary biomarkers more desira-
ble, considering that (i) urine tends to have a simpler composition, which simplifies 



the detection problem compared to blood; (ii) the dynamic range across different pro-
teins is substantially smaller in urine than in blood; and (iii) collecting urine is sub-
stantially less invasive and easier to do than blood collection.  

Proteins in urine originate mainly from glomerular filtration of serum proteins [2] 
and from the urinary system through secretion and membrane shedding. Therefore, it 
is necessary to identify and remove proteins that are from the urinary system among 
proteins found in urine, in order to identify biomarkers for diseases in distal organs 
[3]. Currently, the most useful disease markers in urine have been largely for urogeni-
tal diseases, such as urothelial cancer [4], renal cell carcinoma [5], prostate cancer [6], 
and bladder cancer [7]. A few recent studies have demonstrated the feasibility in us-
ing urinary proteins as disease markers in distal organs, such as ovarian carcinoma 
[8], lung cancer [9], hepatocellular carcinoma [10], and gastric cancer [11]. 

Only a few studies have been published on the prediction of urinary proteins, ours 
being one of them [11]. The present study extends the previous study by including 
novel capabilities for identification of origins of detected proteins in urine in addition 
to an improved prediction tool for proteins that are urine excretory. Our study utilizes 
a few data sources of urinary proteins to build a predictor for such proteins, including 
those given in [12-16]. The current knowledge is: 70% of the urinary proteins origi-
nate from the kidney and the urinary tracts, and the remaining 30% are filtered from 
blood circulation by the glomerulus [17]. Specifically, the origins of urinary proteins 
are: (i) glomerular filtration of blood proteins; (ii) proteins from renal tubular epithe-
lial cells and other urinary cells, including those secreted from these cells or shed 
from their plasma membranes; (iii) membrane shedding proteins from renal tubular 
epithelial cells and other urinary system; (iv) exosome secretion; and (v) the whole 
cell shed from urinary tracts [2, 18].  

A few studies have been published on the identification of the origins of detected 
urinary proteins, such as the work presented in [19], which identified urinary proteins 
which originated from kidney using an isolated rat kidney model, and studies that 
identified urinary proteins as being from the urinary tracts [3, 20]. These data are used 
to train our computational predictor for the origins of detected urinary proteins. Over-
all, the current study has made the following novel contributions: (i) a novel approach 
to predicting excretory proteins in urine; and (ii) a novel method for predicting the 
origins of detected urinary proteins. A server called PUEPro (Prediction of Urine 
Excretory Proteins) has been developed based on these novel methodological devel-
opments, and it can be accessed at: http://csbl.bmb.uga.edu/PUEPro/, from which the 
supplementary files of this paper can be downloaded.  

2 Material and Methods 

2.1 Data collection 

Collecting urinary proteins and generating negative training data.  
Several datasets of proteins have been identified in human urine, including those in 

the Sys-BodyFluid database [12] and the Human Proteome Project (HPP) database 
[13]. The Sys-BodyFluid database consists of 1,941 distinct human proteins that have 



been experimentally identified in nine urinary proteomic studies. Over 2,000 experi-
mentally verified urinary proteins are available and retrieved from the HPP database. 
In addition, we have also gathered urinary proteins identified by other urinary prote-
omic studies [14-16]. Overall, a total of 3,133 unique human urinary proteins were 
collected. To rule out the possibility of false identification of urinary proteins, we 
have used 1,495 out of the 3,133 proteins that have been detected by more than one 
study as the positive data in our study. Among the 1,495 proteins, 1,000 are used as 
training data and the remaining 495 as the test data. 

Since we do not have a very clear understanding about which cellular proteins can-
not be excreted to urine, generating a negative dataset is a challenge. In this study, we 
applied a selection process similar to the one presented by Cui et al. [21] through 
choosing proteins from the Pfam protein families [22] that do not contain any proteins 
that have been detected in urine. For each Pfam family (with at least ten members), 
ten members are randomly selected as part of the negative data. As a result, 1,821 
proteins are selected as the negative data, of which 1,000 are used as training data and 
821 proteins as the test data. 

Collecting urological proteins in urine and generating negative training data.  
A few studies have been published regarding identified urinary proteins with origi-

nate from the urinary system. For example, 990 human proteins are predicted to be 
homologs of rat kidney proteins [19]. In addition, other studies have identified more 
urinary proteins with origins in the urinary system [3, 20]. We have compared these 
proteins with the above 1,495 urinary proteins, and found that only 430 of them origi-
nates from the urinary system. To predict which urinary proteins do not originate 
from the urinary system, we used a similar procedure discussed earlier, i.e., to select 
proteins from the Pfam families which do not contain any of the 430 proteins detected 
above. This gives us 365 urinary proteins which do not originate from the urinary 
system. 

2.2 Model construction 

Feature construction.  
We aim to identify sequence or structure-based features that can distinguish be-

tween a specified positive set and a negative set as discussed in the previous section. 
We have examined features of the following types: (1) general sequence features; (2) 
physicochemical properties; (3) specific domains/motifs; (4) structural properties. The 
general sequence features include sequence length, amino acid composition, autocor-
relation and quasi-sequence-order of each protein. The physicochemical properties 
include hydrophobicity, polarity, charge, secondary structure, and molecular weight. 
Specific domains/motifs include transmembrane score, signal peptide, and the number 
of glycosylation sites. Structural properties include secondary structure composition, 
radius of gyration among a few others. Overall, 39 features, represented by 1,537 
feature elements, are considered and are shown in Table S1 of the supplementary 
material. 



Distinguishing feature selection.  
For these features elements, there are four major categories: relevant features, re-

dundant features, irrelevant features, and noisy features. For the feature set containing 
many features, the relevant features are only very small part of the whole feature set, 
and most of the features are irrelevant features. So, many feature selection methods 
for expression data analysis remove the irrelevant features firstly. In this research, we 
have employed a two-stage feature-selection procedure to distinguish the positive 
datasets from the negative ones on the training dataset. A t-test, which is a simple and 
effective filter feature selection method, was used to determine and eliminate the fea-
tures without discerning power for our problem. Based on the calculated p-value, a q-
value for each feature was calculated to control the False Discovery Rate [23]. Q-
value = 0.005 was used as the threshold of q-value for removing non-contributing 
features. In the second step, a support vector machine (SVM)-recursive feature elimi-
nation (RFE) procedure [23], which is one of the best embedded feature selection 
methods, was applied to rank the remaining features, and to remove the lowly ranked 
and non-contributing features by the backward elimination technology, which selects 
relevant features by iteratively removing the most irrelevant feature at one time until 
the predefined size of the final features subset is reached. In each loop, the feature 
ranking of the remaining features can be possibly modified. At the end, 87 feature 
elements were selected and used in our analysis. The method eliminates irrelevant 
features and selects relevant features according to a criterion related to their support to 
a discrimination function DJ, which is measured by training SVM at each step. The 
discrimination function DJ is defined as follows: 
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where yi and yj are the class labels of samples xi and xj. K(xi, xj) is the kernel function 
that measures the similarity between xi and xj.  α is obtained by training the clasifier of 
SVM in the algorithm of SVM-train. The algorithm of SVM-RFE [23] is defined as 
follows: 

 

SVM-RFE Algorithm: 

Input:  

Training examples: 0 1 2[ , ,... ,... ]Ti nX x x x x=   

Class label: 1 2[ , ,... ,... ]Ti ny y y y y=  

Initialize:  

Subset of surviving features: s [1,2,... m]=   

Feature ranked list: r=[] 

Repeat until s []=  

Restrict training examples to good feature indices: 0 (:, )X X s=  

Train the classifier by SVM : - ( , )SVM train X yα =  
Compute the matrix H: ( , )i j i jH y y K x x=  



Compute the ranking criteria: ( ) (1 2) - (1 2) (- )T TDJ i H H iα α α α=  
Find the feature with the smallest ranking criterion: f = argmin(DJ) 
Update feature ranking list: r = [s(f), r] 
Eliminate the feature with smallest ranking criterion: s = s(1:f-1, f+1:length(s)) 

End 
Output:  

Feature ranking list r. 

Classification and assessment.  
For determining the class labels for the new proteins correctly, a classifier needs to 

be constructed. In this research, the Support Vector Machine (SVM) is used as the 
classifier with several evaluation criteria, which are used to guide the choice of pa-
rameters. In SVM, the hyperplane of a high dimensional space, which is called feature 
space, is constructed to separate two classes. A good separation of one hyperplane 
needs to have the largest distance to the nearest training data of any class. The kernel 
functions, the wide coefficient of kernel functions, and the penalty coefficient C are 
the main parameters of SVM. Gaussian kernel with a single parameter q is a common 
choice for classification. Then, we can select the combination of C and q by grid 
search to improve the effectiveness. Using different parameters for the classifier, we 
can derive the distance d between the positions of the prediction data in the feature 
space and the optimal separating hyperplane. A larger distance d means more reliable 
prediction results. The SVM-based classifier was trained on the training data using the 
selected features to predict if a protein is urinary or not. Similarly, a second classifier 
is trained to predict whether a urinary protein originates from the urinary system. 

The following measures are used to evaluate the prediction performance:

specificity= TN
TN FP+

， precision= TP
TP FP+

, accuracy=
total
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N
+ , 
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=

+ + + +
 and AUC (the area under the 

curve) of the sensitivity-specificity curve [24], where TP is the number of true posi-
tives, FP refers to the number of false positives, TN means the number of true nega-
tives, FN for the number of false negatives, and Ntotal is the total number of proteins 
for prediction in a given test set. 

2.3 Identification of differentially expressed genes 

We have applied our prediction method developed above to the gene-expression data 
of lung cancer versus control samples. The dataset consists of RNA-seq data of 101 
paired samples of lung cancer and control samples, which are downloaded from the 
TCGA database [25]. The following formula is used to estimate the fold-change of 
each gene: 
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where m is the number of samples, and 
ij
C  and ijN  are the expression levels of gene 

i in the jth pair of cancer and normal control. If iFC  is greater than zero, the relevant 
gene is considered as up-regulated in cancer; otherwise down-regulated or no change. 
0.5 (-0.5) was used as the threshold for defining differentially expressed genes. In 
addition, a Wilcoxon test was used to assess the statistical significance of the ob-
served differential expression in cancer vs. normal samples, and the statistical signifi-
cance cutoff value is set at 0.05. 

3 Results 

3.1 Features of urine-excretory proteins 

39 features, represented as a vector of 1,537 elements (see Table S1), are used to dis-
tinguish between the positive and the negative training data by training an SVM-
based classifier with an RBF kernel. 10-fold cross-validation was done to assess the 
performance of the trained classifier, and the classifier has the average sensitivity, 
specificity, precision and accuracy of 84.40%, 82.87%, 83.20%, and 83.63%, respec-
tively.  

A feature selection process was then conducted to select the most discerning pa-
rameters among the 1,537. At the end, 87 parameters were selected, which achieve  
comparable performance to the above. Among the selected parameters, transmem-
brane domains and signal peptides have been found to be useful for predicting protein 
secretion to blood circulation [11, 21]. The radius of gyration is an interesting one, 
which has been suggested to play a role in proteins passing through the GBM (glo-
merular basement membrane). Published studies have observed that proteins with a 
radius smaller than 1.8 nm can pass through the GBM-slit diaphragm barrier, whereas 
proteins with a radius larger than 4.0 nm are retained [26]. 

3.2 Performance of urine-excretory proteins 

Urine-excretory proteins prediction.  
We then retrained an SVM-based classifier based on the 87 selected parameters, 

using both the linear and RBF kernel. The performance assessment of the classifier 
was done using 10-fold cross-validation by repeating the prediction 100 times on the 
training set containing 1,000 positive and 1,000 negative samples. It is found that the 
classification accuracy ranges from 81.00% to 97.00% for the positive data and from 



74.51% to 94.12% for the negative data. The average performance based on the linear 
and RBF kernel is shown in Table 1. In addition, the ROC curve is given in Figure 1 
(left). 

Table 1. Average performance of urine protein prediction by 10-fold cross valida-
tion on training set 

SVM Kernel Sensitivity Specificity Precision Accuracy MCC AUC 
Linear 88.77% 88.70% 88.61% 88.74% 0.775 0.947 
RBF 88.05% 87.57% 87.52% 87.81% 0.756 0.937 

 
We then assessed the trained models on an independent test set composed of 495 

urine-excretory proteins and 821 non-urine excretory proteins, with the detailed pro-
tein names given in Table S2 of the supplementary material. The prediction perfor-
mance is presented in Table 2 along with the ROC curve in Figure 1(right). At the 
end, we have selected the classifier using the RBF kernel as it performs better than the 
linear model on the test set. 

 

Fig. 1. The ROC curve for 10-fold cross validation on the training set (left) and on an inde-
pendent testing set (right). 

Table 2. Average performance of our classifier on the independent testing set 

SVM Kernel Sensitivity Specificity Precision Accuracy MCC AUC 
Linear 83.84% 83.19% 75.05% 83.43% 0.658 0.906 
RBF 83.84% 87.82% 80.58% 86.32% 0.712 0.931 

Predicting and ranking the known excretory proteins in urine.  
We define the D-value of a protein in the UniProt database [27] as follows: 

*D d p= ,      (4) 

where p = 1 if the protein is predicted to be urine-excretory and -1 otherwise; and d is 
the distance between the position of the protein in the feature space and the separating 
hyper-plane defined by the trained SVM classifier. 228 (22.8%) of the positive train-
ing data (1,000) are ranked among the top 1,000 proteins. Among these 1,000 pro-
teins, 110 (22.2%) are in the positive test dataset (495). 
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We also ranked the urine-excretory proteins that have been detected to be associat-
ed with human diseases in the literature and do not overlap with our training data. To 
accomplish this, we have collected such proteins from the Urinary Protein Biomarker 
Database [3]. 261 proteins are found to be in both this database and the UniProt, with 
the detailed protein names given in Table S3. 56 (21.46%) of these 261 proteins 
ranked among the top 1,000, 91 (34.87%) among the top 2,000 and 123 (47.13%) 
among the top 3,000, as detailed in Table 3 along with the p-values being 6.45e-21, 
4.22e-28, and 1.83e-35, respectively. A comparison was also included in Table 3 
between the results by our model and by a previous study [11], which is the only rele-
vant study in the literature. In our model, we have employed a two-stage feature-
selection procedure to distinguish the positive datasets from the negative ones on the 
training dataset and applied SVM with different kernel functions. 

We have also conducted a function enrichment analysis of the top 1,000 D-value 
ranked proteins, using DAVID [28] against the Gene Ontology, KEGG, BBID and 
BIOCARTA databases, and using the whole set of UniProt as the background set. The 
goal is to check the subcellular locations as well as the biological processes enriched 
by these proteins. For understanding the cellular functions and subcellular locations of 
these predicted excretory proteins in urine, we noted that the most significantly en-
riched biological processes and cellular components were cell adhesion and extracel-
lular region. In addition, the most significantly enriched pathways are cell adhesion 
molecules, ECM-receptor interaction, and complement and coagulation cascades (see 
Table S4), which are all closely involved in the urine excretory process. 

Table 3. A comparison among the ranking results of known urinary biomarkers for diseases by 
our classifier versus a published classifier [11] 

Top Ranked 
Proteins 

The number of urinary 
biomarkers included1 

P-value1 The number of urinary 
biomarkers included2 

P-value2 

500 12 0.0045 29 1.50e-11 

1,000 21 0.0012 56 6.45e-21 

1,500 34 1.15e-05 74 1.60e-24 

2,000 48 2.60e-08 91 4.22e-28 

2,500 68 2.83e-14 112 3.88e-35 

3,000 86 4.24e-20 123 1.83e-35 

3,500 106 3.74e-28 140 1.13e-40 

4,000 113 6.83e-28 146 3.28e-38 

4,500 116 3.01e-25 154 1.21e-37 

5,000 120 1.34e-23 164 8.01e-39 

5,500 126 2.06e-23 176 8.37e-42 

6,000 129 1.43e-21 182 1.18e-40 
1 by using the classifier in a previous study [11]; 2 by using our classifier.   



3.3 The Prediction of origins of urinary proteins 

The prediction of urological origins of the predicted excretory proteins.  
We have developed a classifier for predicting the urological origin of excretory 

proteins. The training of the classifier was done on a set of 430 proteins known to be 
of urological origin and 365 proteins known to be not of urological origin. An SVM-
based classifier was trained along with a feature selection procedure based on the 
same set of 39 features totaling 1,537 dimensions (see Section 3.1), which gives rise 
to 111 final parameters.  

Then 10-fold cross-validation was applied to the training set to evaluate the predic-
tion performance of excretory proteins of urological origin. The performance by the 
trained classifier using a linear and RBF kernel, respectively, is shown in Table 4. 
Figure 2 shows the ROC curves. 

 

Fig. 2. The ROC curves for predicted urological origins of excretory proteins. 

Table 4. The average performance of the prediction of urological origins for excretory proteins 
assessed by 10-fold cross validation 

SVM Kernel Sensitivity Specificity Precision Accuracy MCC AUC 
Linear 83.10% 77.90% 81.72% 80.72% 0.611 0.873 

RBF 83.39% 77.90% 81.77% 80.88% 0.614 0.875 

 
For the top 5,000 human proteins that have been predicted as excretory proteins in 

urine, we predicted that 2,357 are of urological origin and 2,643 are not. The function 
enrichment analysis of Gene Ontology and Pathway is used to understand the cellular 
functions and subcellular locations of the 2,357 urological origin proteins. The most 
significantly enriched biological processes, cellular components, and molecular func-
tion are biological adhesion, extracellular region, and GTP binding. Meanwhile, the 
most significantly enriched pathways are Glycolysis/Gluconeogenesis and Pyruvate 
metabolism (see Table S5). The function enrichment analysis of Gene Ontology and 
Pathway is used to understand the cellular functions and subcellular locations of the 
2,643 non-urological origin proteins. The most significantly enriched biological pro-
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cesses, cellular components, and molecular function are immune response, intrinsic to 
plasma membrane, and hormone activity. Meanwhile, the most significantly enriched 
pathways are Cytokine-cytokine receptor interaction and Complement and coagula-
tion cascades (see Table S5). We can see that the significantly enriched pathways of 
urological origin proteins are related to metabolic pathways, and the significantly 
enriched pathways of non-urological origin proteins are related to immune systems 
and tissue repair. 

3.4 Identification of urinary biomarkers for lung cancer.  

We have applied the methods presented above to the gene-expression data of lung 
adenocarcinoma and squamous cell carcinoma, with an aim to predict urinary markers 
for the disease. By examining 102 lung cancer tissue versus 102 matching control 
tissues in the TCGA database [25], 5,491 genes are found to be differentially ex-
pressed in the cancer versus the control tissues. Using the prediction method given in 
Section 2.2, 587 of these genes are predicted to be urine excretory. Out of these pro-
teins, 116 have been identified in human urines, including 13 that have been reported 
as potential urine biomarkers for non-small-cell lung carcinoma [29]. 

Table 5. Proteins predicted as urinary biomarkers of two types of lung cancer. 

Not included in the training dataset 
Accession Protein Name Ratio (cancer/normal) D-value 

Q6ZMP0 
Thrombospondin type-1 domain-

containing protein 4 
-1.74 1.466 

P28908 
Tumor necrosis factor receptor superfam-

ily member 8 
-1.92 1.431 

P08833 
Insulin-like growth factor-binding pro-

tein 1 
1.45 1.591 

O43240 Kallikrein-10 -15.05 1.110 
P01127 Platelet-derived growth factor subunit B -2.13 1.324 
P39900 Macrophage metalloelastase 87.24 1.119 

Included in the training dataset 
Accession Protein Name Ratio (cancer/normal) D-value 

P13688 
Carcinoembryonic antigen-related cell 

adhesion molecule 1 
2.23 2.401 

P01033 Metalloproteinase inhibitor 1 1.62 1.479 
P39060 Collagen alpha-1(XVIII) chain 1.21 1.922 
P39059 Collagen alpha-1(XV) chain 2.34 1.238 
P01024 Complement C3 -5.20 2.131 
P10909 Clusterin -4.19 1.791 
P04085 Platelet-derived growth factor subunit A -1.00 1.000 



4 Discussions and conclusion 

 Early diagnosis plays a vital role in controlling diseases. Identifying disease-
informing biomarkers represents an effective way for early diagnosis of a disease. The 
key is to identify the most useful biomarkers for disease detection. With the rapid 
development of omic technologies, a variety of disease tissue omic data are being 
generated and stored into publicly available databases. These data provided unprece-
dented opportunities to computational data analysts to develop effective methods to 
discover the most effective biomarkers for specific diseases.  

Comparable to the existing biomarker prediction methods, our study has two novel 
aspects: (i) a new method for predicting if a cellular protein is urine excretory based 
on unique features of proteins known to be urine excretory; and (ii) a novel method 
for identifying urinary proteins originated from the urinary system. We anticipate that 
these ideas and methods will ultimately lead to substantially improved abilities for 
reliable identification of urinary biomarkers. 
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