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Abstract. Support Vector Clustering (SVC) has become a significant boundary-
based clustering algorithm. In this paper we propose a novel SVC algorithm 
named “Partitioning Clustering Based on Support Vector Ranking (PC-SVR)”, 
which is aimed at improving the traditional SVC, which suffers the drawback of 
high computational cost during the process of cluster partition. PC-SVR is di-
vided into two parts. For the first part, we sort the support vectors (SVs) based 
on their geometrical properties in the feature space. Based on this, the second 
part is to partition the samples by utilizing the clustering algorithm of similarity 
segmentation based point sorting (CASS-PS) and thus produce the clustering. 
Theoretically, PC-SVR inherits the advantages of both SVC and CASS-PS 
while avoids the downsides of these two algorithms at the same time. Accord-
ing to the experimental results, PC-SVR demonstrates good performance in 
clustering, and it outperforms several existing approaches in terms of Rand in-
dex, adjust Rand index, and accuracy index.  

Keywords: support vector clustering, support vector ranking, partitioning clus-
tering 

1 Introduction 

Clustering is a process in which a collection of elements is divided into several sub-
sets based on the attributes of the elements, so that the elements within the same sub-
set have greater similarity, and the elements in different subsets have lower similarity. 
Clustering algorithms can be classified into the following five categories [1]: parti-
tioning methods [2, 3, 4], hierarchical methods [2, 5, 6, 7], density-based methods [8, 
9, 10], grid-based methods [11, 12], and model-based methods [13, 14]. 

Among many clustering algorithms, support vector clustering (SVC) [15, 16] has 
become a significant boundary-based clustering algorithm in several applications such 
as community discovery, speech recognition and bioinformatics analysis [17]. SVC 
has the following features: first, it can be applied to various shapes of the clusters; 
second, the number of clusters is not needed in advance; third, it can deal with struc-
tured data by using Kernel functions; fourth, it can reduce the impact of noise on the 
cluster partition.  
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However, there is still room for improvement for SVC. The algorithm is still inade-
quate due to two bottlenecks: expensive computational cost and poor labeling piece, 
and this degrades the popularity of SVC [17]. To address these limitations, some work 
has been done: Ben-Hur et al. [15] improved the original algorithm and proposed a 
method called support vector graph (SVG). The main idea of this method was that 
support vectors (SVs) were used to construct the adjacency matrix and derive con-
nected component with an aim to reduce time complexity; Yan Yang et al. [18] pro-
posed the proximity graph (PG), and its time complexity was reduced to ( log )O N N  
or ( )O N ; Lee et al. [19] devised gradient descent (GD) by looking for stable equilib-
rium point (SEP); Jung et al. [20] proposed the fast support vector clustering (FSVC), 
which improved the speed of the algorithm as well as the quality of clustering; Sei-
Hyung Lee [21] designed a cone-based cluster partition method to avoid random op-
erations, and it was called Cone Cluster Labeling (CCL), which improved the quality 
of clustering but increased operation cost; Convex decomposition based cluster label-
ing (CDCL) [22] was proposed to improve both the efficiency and accuracy of clus-
tering based on convex decomposition; L-CRITICAL was a novel SVC cluster label-
ing algorithm, and it solved the labeling phase of SVC within competitive processing 
time [23]; Proximity Multi-sphere Support Vector Clustering (PMS-SVC) was devel-
oped based on the multi-sphere approach to support vector data description [24]; 
Rough–Fuzzy Support Vector Clustering (RFSVC) can obtain rough fuzzy clusters 
using the support vectors as cluster representatives [25]. 

The clustering algorithm of similarity segmentation based point sorting (CASS-PS) 
[26] has a faster speed in clustering. However, the similarity measure of the algorithm 
is based on distance, which is likely to cause staggered sorting issue between different 
cluster elements, and this will reduce the accuracy of clustering results. 

In this paper, we propose an improved SVC algorithm called partitioning clustering 
based on support vector ranking (PC-SVR). The algorithm’s crucial components are 
SV’s sorting based on their geometric properties in the feature space and cluster parti-
tion that uses the clustering algorithm of similarity segmentation based point sorting 
(CASS-PS). The proposed algorithm guarantees the quality of the clustering and im-
proves the speed of clustering meanwhile. 

2 Partitioning clustering based on support vector ranking 

Our PC-SVR algorithm combines the first stage of SVC and CASS-PS, and the algo-
rithm is composed of two stages: first, sort the support vectors (SVs) into an array; 
second, split the sorted array. 

2.1 Support vector sorting  

 In the feature space, data are mapped to the minimal sphere. Assume this sphere is 
S，and the center is a . According to ( )2( , ) exp 1K x x q x x= − ⋅ − = , we can get 



2
( , ) ( ) ( ) ( ) 1K x x x x x=< Φ ⋅Φ >= Φ = , which means all the data points are located 

on the surface of the unit ball. Assume this ball is B , and the center is O . So, the 
covering is the intersection, whose shape is a cap. Denote the center of the cap as aʹ′ , 
as shown in Fig.1. Since SVs are on the surface of S , they are also on the intersection 

hyper line of S  and B . ( )viΦ  and ( )v jΦ are SVs in the feature space, and θ  is the 

angle between the support vectors and two sphere center. The transverse section of 
the cap is illustrated in Fig.2. 
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Fig. 1. Intersection between ball and sphere 

θ θ

R R
Φ(vi) Φ(vj)

a

	  	  	  

O  

Fig. 2. Transverse section of the cap 

 Given a dataset containing N data points{ }| ,1x x x i Ni i ⊆ ≤ ≤ , let 

}{ ,1 SVi iV v v is a SV i N= ≤ ≤ . In this research, we will use the geometric properties 

of samples in the feature space as follows [21]: 

Lemma 1 ( ( )) ( ( ))v oa v oai jʹ′ ʹ′∠ Φ = ∠ Φ ,v v Vi j∀ ∈  



Lemma 2 1, , ( ( ) ( )) || || || ( ) ||x X v V v o x v x v aθ − ʹ′∀ ∈ ∈ ∠ Φ Φ < ⇔ − < −Φ  

Lemma 3 1, , || || || ( ) || ,x X v V v x v a x v− ʹ′∈ ∈ − < −Φ ⇔  belongs to the same cluster. 

 The following corollary can be proven by the above three properties, as in [17]: 

 Corollary In the feature space of Gaussian Kernel, SVs are collected in terms of 

clusters on the intersection hyper line of S  and B . This is illustrated in Fig.3. 
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Fig. 3. The distribution of SVs in three clusters 
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Fig. 4. The Sequence of SVs 

 From the above properties, for any ,v v Vi j ∈ , in the feature space, they have the 

same angle as Oaʹ′  in Fig.1, and if the angle between the sample point and the SV is 

less thanθ , the point and the SV belong to the same cluster. In the data space, the 

point to which the distance from the SV is less than 1|| ( ) ||v a− ʹ′−Φ  has the same 

cluster label as the SV, and thus the computation of the feature space can be convert-

ed to the computation of input space.  

 Therefore, we can use the angle between two SVs ( vi and v j ) and O  to measure 

the distance between two SVs. The relation between the angle and the Gaussian ker-

nel function is as follows: cos( ( ) ( )) ( ) ( ) ( )j ji j i iv O v v v K v v∠Φ Φ =< Φ ⋅Φ >= ⋅ . 

Namely, the comparison of the distance of two SVs is transformed into the compari-



son of the kernel function, and the greater the distance between the two SVs is, the 

larger the angle is, and the smaller the kernel value is. 

The similarity matrix for SVs is constructed according to the values of the kernel 

function. Then, according to the matrix, SVs are sorted as follows: first, the two SVs 

whose ( )viΦ , ( )v jΦ  have the minimum distance are selected as the head and tail of 

an ordered array; Second, find the SV whose ( )vkΦ  has the minimum distance from 

the head (or tail) of the sorted array as the head (or tail) of the array. Repeat this step 

until all data points are stored in an array and we can get the sequence of SVs in the 

feature space on the circumference, as shown in Fig.4. 

2.2 Partition clustering  

This part mainly uses the CASS-PS algorithm to partition the cluster. 
In the data space, we firstly calculate the distance between each sample point (ex-

cept for SVs) and each SV, and find the nearest SV. Then we insert the point into the 
adjacent position of the array in which the SV is located. Repeat this process until all 
the sample points are stored in the array. In order to observe the transformation of the 
distance between adjacent elements more directly, we draw the distance curve be-
tween the adjacent sample points according to the distance between elements. The 
distance curve can show obvious changes in distance between adjacent elements, and 
especially it has a great wave between adjacent sample points of SVs. 

At the same time, we can use the wavelet filter function to reduce the impact of 
noise points or isolated points, and thus we can find the best segmentation point more 
accurately. Then we set up a threshold whose value can be set as the mean amplitude, 
and we ignore the part below the threshold in order to simplify the determination of 
split points. So the continuous curve is divided into several discontinuous curve seg-
ments. Furthermore, we find the position which has the maximum distance between 
adjacent elements as the splitting point in each curve. Then we sort these splitting 
points after finding the splitting points of all (the whole) curve, and the position which 
has the maximum distance between adjacent splitting points is selected as the first 
splitting place. According to this procedure, it can be decided that the next step is re-
segmentation or termination. After algorithm terminates, we output the number of 
clusters. 

2.3 The implementation of PC-SVR algorithm  

In this research we mainly use the geometric properties of sample points in the feature 
space and CASS-PS to improve the cluster partitioning, which is the second stage of 
the SVC algorithm. In the feature space, SVs are collected based on the clusters on 



the intersection hyper line of the minimal sphere and the unit ball. Sorting SVs is 
based on the similarity between two SVs, which is based on the value of the kernel 
function. Since SVs are already sorted, it is useful to avoid the limitation of the 
CASS-PS algorithm, that is, the sample points of different clusters tend to overlap. 

The detailed steps of our algorithm are finally given as follows: 
(1) Given a sample set { }|S x x Xi i= ⊆ , its sample size is N, and set parameters 

q and C. Initialize a one-dimensional array based on the sample size; 
(2) Calculate the kernel matrix of the sample set; 
(3) Calculate the radius R of the minimal sphere and SVs according to Lagrange 

polynomial; 
(4) Calculate the kernel matrix of SVs, and construct a similarity matrix of support 

vectors; 
(5) Sort SVs according to the similarity matrix and get a sorted array of SVs. At 

the point, the first stage of the algorithm has been completed; 
(6) Calculate the distance from other sample points to all SVs, and find the closest 

SV to the sample point to be sorted. Insert the sample point into the back of the SV; 
(7) Repeat Step 6, until all other sample points are completed with the interpola-

tion, and we get a new sample point array; 
(8) Draw the curve of the distance between adjacent sample points. Apply the 

wavelet filter function to the sample point array to reduce noise.  Set a certain thresh-
old and retain the portion above the threshold as the split segment; 

(9) Find the points that have the maximum distance (the peak of the distance curve) 
in various segments, and sort these points. According to the number of clusters, select 
the corresponding points as the splitting points to split the array of sample points; 

(10) Label cluster labels on the sample points. 

3 Experiment analysis 

3.1 Evaluation criteria of experimental results 

In this paper, Rand index [27], Adjust Rand index [28] and Accuracy index [29] are 
used to evaluate the clustering results. 

The Rand index is a method for calculating the similarity between the two cluster-
ing results, and it is an external evaluation metric. This method evaluates the effec-
tiveness of clustering by comparing the real results and the results obtained by the 
clustering algorithms. Given a dataset that contains n  elements and its known parti-
tion result P, we run the algorithm to be evaluated to get another partition result Q. 
Suppose r  is the number of data which belong to the same cluster in P and Q, s  is 
the number of data which belong to different clusters in P and Q, t  is the number of 
data belong to the same cluster in P but belong to the different cluster in Q, and v  is 
the number of data belong to the same cluster in Q but belong to a different cluster in 
P. On the base of the above, r  and s  can determine the similarity of clustering re-



sults, while t  and v  can describe the inconsistency of the results. Rand index is giv-
en as follows:  

 
r s

RI
r s t v

+
=
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 (1) 

The values of Rand index range in [0, 1], and the greater the value of RI is, the bet-
ter the clustering results are.  

The adjust Rand index will standardize the clustering results in addition to the 
comparison of the known clustering results and the results obtained by an algorithm. 
The formula is as follows: 
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In the above, P and Q represent the two clustering results of a sample set consisting 
of n elements, and PK  and QK  are the numbers of clusters in P and Q, respectively. 

Ni  
and jN represent the numbers of elements in clusters i  and j   in P and Q, re-

spectively, and ijN  represents the number of elements in both cluster i  in P and 

cluster j  in Q. Adjust Rand index ranges in [-1, 1], and the greater the index value is, 
the more similar the results of the two clustering results are. Adjust Rand index can 
also be used as a method for determining whether the algorithm is applicable to cer-
tain datasets. 

Accuracy is one of the most commonly used external evaluation indices. The for-
mula is as follows: 

 1
m
i icAC
N
=∑

=  (3) 

In the above, m represents the number of clusters, and N represents the number of 
elements in the sample set. The above formula is based on the principle of similarity 
comparison between the correct results and the results obtained by the clustering algo-
rithm. It is one of the most basic evaluation methods in clustering analysis. 

3.2 Experimental datasets 

In this research, the experiments are carried out by both artificial data and real data. 
All the datasets are described in Table 1. The two artificial datasets: Example1 and 
Example2. 

 Example1 is a set of two-dimensional datasets with the size of 150 2× . In order to 
verify the feasibility of the algorithm, the dataset is relatively easy to separate. 



Example2 is a set of concentric ring datasets with the size of 250 2× . This type of 
dataset is difficult to cluster, and the purpose is to verify whether the algorithm can 
deal with the linearly inseparable situations. 

Table 1. Description of datasets 

Dataset Dims Size Clusters 
Example1 2 150 3 
Example2 2 250 2 
Iris 4 150 3 
Wine 13 178 3 
Wisconsin 9 683 2 
Balance Scale 4 625 3 

 
The four read datasets used in this research are taken from UCI [30], and they are 

frequently used in clustering analysis: Iris dataset, Wine dataset, Wisconsin dataset 
and Balance Scale dataset. 

3.3 Experimental results and analysis 

(1) We make a comparison between the experimental results on two artificial da-
tasets based on the PC-SVR algorithm and the original clustering algorithm of simi-
larity segmentation based point sorting algorithm (CASS-PS). The two artificial da-
tasets are shown in Fig.5. 

    
(a) Example 1                                                    (b) Example 2 

Fig. 5. Two artificial datasets 

As shown in Fig.6, the clustering results of the two algorithms on Example 1 are 
both satisfactory. But the PC-SVR algorithm is more accurate than the CASS-PS 
algorithm, and it does not have wrong clustering points. Fig.6 shows that PC-SVR 
which uses the sorting and clustering algorithm after sorting SVs makes the sorting 
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process more accurate, and it does not tend to cause the data points of same cluster 
assigned to the wrong ones.  

    
(a) The clustering result for PC-SVR                  (b) The clustering result for CASS-PS 

Fig. 6. A comparison of Example1 clustering effect 

Fig.7 shows the results on Example 2 dataset obtained by using the two algorithms. 

    
(e) Final clustering result for PC-SVR                 (f) Final clustering result for CASS-PS 

Fig. 7. The comparison of clustering effect on Example2 

As shown in Fig.7, PC-SVR inherits the advantages of SVC to deal with the linear 
inseparable datasets when clustering, and it is more accurate than SVC. For this type 
of datasets, the clustering result of CASS-PS algorithm is not satisfactory.  

(2) The comparison of time cost between PC-SVR and SVC is presented in Table 
2. 

Table 2 presents the comparison between SVC and PC-SVR on the two artificial 
datasets and four sets of classical data in terms of the running time. From this table, 
we can see the efficiency of the PC-SVR algorithm has been greatly improved com-
pared with the original SVC algorithm. 
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Table 2. Time comparison between SVC and PC-SVR (in second) 

Datasets SVC PC-SVR 
Example1 215.0942 5.6316 
Example2 47.1435 9.3601 
Iris 39.8895 4.9608 
Wine 637.2953 5.6940 
Balance scale 50.1387 20.787 
Wisconsin 37.3594 18.326 

  
(3) We use Rand Index to make a comparison of experimental results between the 

PC-SVR algorithm and other four present algorithms on three sets of real datasets. 
The other four clustering algorithms are Support Vector Clustering, Cluster Algorithm 
of Similarity Segment based Point Sorting, Convex Decomposition based Cluster 
Labeling and Cone Cluster Labeling. The above experimental results about CDCL 
and CCL is from reference [22]. The results are shown in Fig.8. 

 

  

Fig. 8. Comparison of Rand Index 

From the bar chart presented above, we can see that the Rand Index of the five al-
gorithms on different datasets and the PC-SVR algorithm basically achieves outstand-
ing results. Although it does not have the best clustering results with Wine dataset, it 
is only 0.03 lower than the highest one. 

 In addition, in order to fully verify the clustering performance of the PC-SVR al-
gorithm, we use the other two indices of clustering results to evaluate and compare 
the clustering performance of PC-SVR algorithm and the other four classical algo-
rithms which are K-means, Hierarchical Clustering, Support Vector Clustering and 
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Cluster Algorithm of Similarity Segment based Point Sorting on the four real datasets, 
that is, Adjust Rand Index and Accuracy. The results are listed in Table 3 and Table 4.  

Table 3. Ajust Rand Index  

Dataset Iris Wine Balance 
scale Wisconsin 

K-Means 0.7302 0.3711 0.1335 0.4914 

HC 0.5621 -0.0054 0.0854 0.0073 

SVC 0.00018143 0  0 0.0024 

CASS-PS 0.5621 0.6569 0.131 0.0073 

PC-SVR 0.941 0.6162 0.1298 0.5921 

 

Table 4. Accuracy  

Dataset Iris Wine Balance 
scale Wisconsin 

K-Means 0.8933 0.7022 0.5264 0.8514 

HC 0.6867 0.3876 0.5216 0.6327 

SVC 0.34 0.3989 0.4608 0.6292 

CASS-PS 0.7688 0.882 0.5696 0.6643 

PC-SVR 0.9975 0.8384 0.6416 0.8858 

 
The above results show that the PC-SVR algorithm can ensure the quality of the 

clustering and improve the speed of clustering, and the clustering performance is ex-
cellent. 

4 Conclusion and Future Work 

In this paper, the PC-SVR algorithm based on support vector sorting has been pro-
posed, and it is divided into two parts: support vector sorting and segmentation. In the 
first part, we sort the SVs on the basis of their geometrical properties of the feature 
space. In the second part, we partition the samples by using the point sorting-based 
partition cluster algorithm and generate the clustering. Experimental results demon-
strate the effect of PC-SVR for improving the performance of SVC, and better clus-
tering performance has been achieved compared with existing approaches. 
    In the future work, we would explore the potential application fields of our ap-
proach, for instance, in the field of bioinformatics and social media analysis. 
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