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Conformal loop quantum gravity provides an approach to loop quantization through an underlying
conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself
has no conformal invariance is reinstated with a constrained scalar field setting the physical scale.
Conformally equivalent metrics have recently been shown to be amenable to loop quantization including
matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to
allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group
parameter that requires no further fixing as its present standard form does. Here, we find that this can be
naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally
incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field
becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is
implemented. We then discuss how different Immirzi parameters under this description may be related by
conformal frame transformations and yet share the same quantization having, for example, the same area
gaps, modulated by the scalar gravitational field.

DOI: 10.1103/PhysRevD.96.084011

I. INTRODUCTION

Loop quantum gravity (LQG) offers a major nonpertur-
bative approach, through mathematically tractable and
conceptually appealing constructions, to quantizing general
relativity (GR) that circumvents its nonrenormalizability
using conventional quantum field theory [1–3]. Although
LQG is not a unified theory per se, recent demonstrations
of its coupling to other fields are important necessary
features as a viable theory of quantum gravity. The for-
mulated interactions with Yang-Mills fields do not follow
straightforwardly despite the gauge structure inherent in the
symmetries of LQG, since LQG has developed its own
extensive unique representations in terms of spin networks
and spin foams.
Physically indispensable couplings have also been

established recently with fermions and most recently with
scalar bosons [4,5]. The coupling to scalar fields in
particular has wide implications since they go far beyond
merely a form of matter. Scalar fields are responsible for
generating mass through the Higgs mechanism, and induc-
ing cosmic inflation as inflatons may serve to resolve the
problem of time [6,7] and provide models for a variety of
problems in physics and cosmology [8–10].
Leaving matter couplings aside, the incorporation of

scalars has made possible the extensions of LQG to
beyond-Einstein fðRÞ and scalar-tensor (ST) theories of
gravity [11–13]. The purpose of this paper is to address a

fundamental issue of LQG—the Immirzi ambiguity—using
a constrained or dynamical gravitational scalar field. This
ambiguity arises when Ashtekar’s original complex “new
variables” [14,15] for an SU(2) spin-gauge connection
formalism of GR were revised by Barbero to be real
“Ashtekar-Barbero” connection variables [16] as a basis
for the subsequent LQG [3]. Immirzi was quick to point out
that these variables involve a free “(Barbero-)Immirzi”
parameter β and went on to show that a different choice of
this parameter leads to inequivalent quantum theories of
gravity having different eigenspectra of operators [17–19].
Indeed, the discrete volumes and areas formulated by

Rovelli and Smolin [20] depend on the values of β entering
into LQG, resulting in unitarily unrelated quantizations.
While this somewhat unexpected theoretical ambiguity has
persisted, to date the mainstream view seems to be taking a
“pragmatic” approach by fixing β [21] to phenomenologi-
cally match the black hole entropies predicted by the
resulting LQG with the Bekenstein-Hawking values.
However, some felt such a practice unnatural as exemplified
by Rovelli’s opinion that “the result is not entirely satisfac-
tory,” remarking “the sense that there is something important
which is not yet understood is unavoidable” [2], while some
others have developed models with the Immirzi parameter
turned into a scalar field [22–24]. Given gradually impend-
ing contact of LQG with the real world [1,2] and increased
understandingofquantumgravity effects suchasdecoherence
through the emission and absorption of gravitons [25–30], the
physical ramifications of the Immirzi parameter on spacetime
fluctuations towards the deep Planckian domain have been
receiving ever more interest and attention [31].
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At the outset, Immirzi suggested resolving this ambi-
guity may require “a group larger than SU(2)” [18]. Some
time ago, motivated by York’s conformal analysis of
dynamical freedoms of gravity [32] and the scaling
properties of loop-quantized geometry [33], one of us
considered extending the kinematics of LQG to accom-
modate conformal symmetry [34,35] leading to the
development of “conformal loop quantum gravity” [36]
using conformally transformed variables. As GR is not
conformally invariant, its conformally extended phase
space is subject to a new conformal constraint [34,35].
Further recent theoretical motivations and justifications
for the conformally invariant LQG variables can be found
in Refs. [37–39].
The purpose of this paper is to report on a new

conformal quantization scheme for general ST gravity
coupled to matter, containing general relativity as a
special case, that is amenable to LQG implementations.
By taking advantage of the freedom of changing con-
formal frames and the conformal invariance of the
Einstein gravitational action in the sense of ST theory,
we show that when LQG is implemented with a con-
formally transformed Einstein metric, different values of
the corresponding Immirzi parameter are related by a
global change of conformal frame. This novel feature
suggests the resulting conformal loop quantum ST
gravity will be free from the Immirzi ambiguity asso-
ciated with standard LQG and many of its variants in the
literature. In particular, we discuss the prospect of
quantized areas with different choices of β to have the
same discrete spectrum albeit modulated by a power of
the scalar field that could arise from the microscopic
gravitational constant and new quantum behavior of
geometry at the Planck scale.
We use metric signature ð−;þ;þ;þÞ with a; b;… ¼ 1,

2, 3 and α; β;… ¼ 0, 1, 2, 3 as spatial and spacetime
coordinate indices, respectively, and i; j;… ¼ 1, 2, 3 and
I; J;… ¼ 0, 1, 2, 3 as triad and tetrad indices, respectively.

II. CONFORMAL EINSTEIN FRAME IN
SCALAR-TENSOR GRAVITY

Among various potential physical effects of the Immirzi
parameter is that it may effectively shift the gravitational
constant [40,41]. Combined with ongoing interest in the
possible role of conformal properties in LQG including its
implications for the Immirzi ambiguity, this consideration
leads to the following framework for the loop quantization
of ST gravity that is invariant under changes of conformal
frames.
Two types of conformal frame for ST gravity have

received particular attention in the literature [42]: (a) the
Einstein frame in which the gravitational action has a
leading term identical to the Hilbert action and (b) the
Jordan frame in which the matter action is unaffected by the
scalar field. In other words, the Einstein frame is somewhat

more gravity oriented with the Jordan frame more matter
oriented.
To relate more directly with the standard loop quantiza-

tion of gravity, we find it useful to start from the Einstein
frame as adopted in Ref. [8] rather than the Jordan frame as
adopted in Refs. [12,13]. Furthermore, a global conformal
invariance of the gravitational action to be made clear
below allows us to formulate a new loop quantization
scheme where different Immirzi-type parameters can be
conformally related.
In the Einstein frame, using the Einstein metric ḡαβ, with

scalar curvature R½ḡ�, and ḡ ¼ j det ḡαβj, and the scalar field
ϕ̄, the total Lagrangian (density) for a general ST gravity is
given by Ref. [8] to be

L ¼ LES þ LSP þ LM; ð1Þ

where

LES ¼
1

2κ
½ ffiffiffī

g
p

R½ḡ� − 2
ffiffiffī
g

p
ḡαβϕ̄;αϕ̄;β� ð2Þ

is here referred to as the Einstein-scalar Lagrangian,

LSP ¼ −
2

κ

ffiffiffī
g

p
Vðϕ̄Þ ð3Þ

is a scalar potential Lagrangian for some potential function
Vðϕ̄Þ, and

LM ¼ LM½Ω2ðϕ̄Þḡαβ;ψ � ð4Þ

is a matter Lagrangian for some metric coupling function
Ωðϕ̄Þ and matter fields ψ . In the above, κ is a coupling
constant which may be identified as κ ¼ 8πG=c4 if the ST
theory reduces to GR with ϕ̄ ¼ const. For the Brans-Dicke
theory, Ω2ðϕ̄Þ ∝ exp½−ϕ̄= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ 3=2
p � using the Brans-

Dicke coupling constant ω. GR is also obtained in the
limits ω → −3=2 and Ω → const. The combination
Ωðϕ̄Þḡαβ is called the “physical metric” [42] as it defines
the spacetime geometry that matter “feels”.
Below we will focus on the Einstein-scalar Lagrangian

LES and use it to derive a set of conformal spin-gauge
variables for ST gravity. Starting from the scalar-tensor
variables ðḡαβ; ϕ̄Þ in the Einstein frame, one can always
change to an alternative conformal frame with variables
ðgαβ;ϕÞ by reparametrizing the scalar field ϕ̄ ¼ ϕ̄ðϕÞ
and conformally transforming the metric tensor ḡαβ ¼
F2ðϕÞgαβ for some function FðϕÞ. Analogous to previous
works on conformal loop quantum gravity [34–37] with a
constrained scalar field ϕ, we choose FðϕÞ so that gαβ is
given by

ḡαβ ¼ ϕ2gαβ: ð5Þ

OLIVIER J. VERAGUTH and CHARLES H.-T. WANG PHYSICAL REVIEW D 96, 084011 (2017)

084011-2



In addition, we adopt the reparametrization

ϕ̄ ¼ lnϕ ð6Þ

of the scalar field, which is dynamical, except for GR
reduction, so that the Einstein-scalar Lagrangian (2)
becomes

LES ¼
1

2κ
½ϕ4 ffiffiffi

g
p

R½ϕ2gαβ� − 2
ffiffiffi
g

p
gαβϕ;αϕ;β�: ð7Þ

We will refer to the conformal frame with variables
ðgαβ;ϕÞ obtained from the Einstein frame variables ðḡαβ; ϕ̄Þ
through Eqs. (5) and (6) as the conformal Einstein frame.
Its usefulness in addressing the Immirzi ambiguity follows
from the form of Lagrangian (7) being invariant under the
following global conformal transformations:

ϕ → Λ−1ϕ; gαβ → Λ2gαβ ð8Þ

for any positive constant Λ.
As will become clear later, unlike standard approaches,

our idea is to introduce the Ashtekar-Barbero–type varia-
bles in the conformal Einstein frame and show that any
choice of the corresponding Immirzi parameter can be
mapped to a different value, such as unity, in an alternative
conformal Einstein frame transformed using Eq. (8).

III. CANONICAL ANALYSIS IN THE
CONFORMAL EINSTEIN FRAME

Prior to canonical quantization of ST gravity in a
conformal Einstein frame, the preceding Lagrangian for-
malism will in this section be transcribed to the corre-
sponding Arnowitt-Deser-Misner canonical formalism.
First, using Eq. (5), we can map the spatial metric h̄ab,
lapse function N̄, and shift vector N̄a associated with the
Einstein metric ḡαβ to their counterparts hab, N, and Na

according to

h̄ab ¼ ϕ2hab; ð9Þ

N̄ ¼ ϕN; ð10Þ

N̄a ¼ Na: ð11Þ

We then evaluate the extrinsic curvature in the conformal
Einstein frame using the above to get

Kab ¼
1

2N
ð−hab;0 þ Na;b þ Nb;aÞ: ð12Þ

After some calculations involving conformal change rela-
tions [43], the above then yields the Einstein-scalar
Lagrangian up to a total divergence of the form

LES ¼
ϕ2

2κ

ffiffiffi
h

p
NðKabKab − K2 þ R½h�Þ þ 2

κ

ffiffiffi
h

p
ϕϕ;0K

−
2Na

κ

ffiffiffi
h

p
ϕϕ;aK −

2N
κ

ffiffiffi
h

p
ðϕϕ;aÞ;a −

2

κN

ffiffiffi
h

p

× ½ϕ2
;0 − 2Naϕ;0ϕ;a − ðN2hab − NaNbÞϕ;aϕ;b�:

ð13Þ

This gives rise to the canonical momenta for the metric
pab ¼ δ

R
LESd3x=δhab;0 and scalar πϕ ¼ δ

R
LESd3x=δϕ;0

as follows:

pab ¼ −
1

κN

ffiffiffi
h

p
habϕðϕ;0 − ϕ;cNcÞ

−
ϕ2

2κ

ffiffiffi
h

p
ðKab − habKÞ; ð14Þ

where h ¼ det hab, and

πϕ ¼
ffiffiffi
h

p �
2

κ
ϕK −

4

κN
ðϕ;0 − ϕ;cNcÞ

�
; ð15Þ

yielding

ϕ;0 ¼ ϕ;cNc −
κN

4
ffiffiffi
h

p πϕ þ
N
2
ϕK: ð16Þ

It also follows from Eq. (12) that

hab;0 ¼
4κN

ϕ2
ffiffiffi
h

p
�
pab −

1

4
habϕπϕ

�
þ Na;b þ Nb;a: ð17Þ

By using Eqs. (12), (13), (16), and (17), up to a total
divergence we can derive

HES ¼ pabhab;0 þ πϕϕ;0 − LES

¼ NC⊥ þ NaCa ð18Þ

with the Hamiltonian and diffeomorphism constraints as
follows:

C⊥ ¼ 2κffiffiffi
h

p ϕ−2pabpab −
ϕ2

2κ

ffiffiffi
h

p
R½h� þ 2

κ

ffiffiffi
h

p
habϕϕ;a;b

þ κ

4
ffiffiffi
h

p π2ϕ −
κffiffiffi
h

p ϕ−1πϕp; ð19Þ

Ca ¼ −2habpbc
;c þ ϕ;aπϕ ð20Þ

in terms of p ¼ habpab.
From the totally constrained nature of the Hamiltonian

(18), C⊥ and Ca are required to vanish weakly:
C⊥ ≈ 0; Ca ≈ 0. The consistency of this is ensured by the
Dirac algebra of C⊥ and Ca under their Poisson brackets as
established in Appendix A, which is satisfied also by the
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Hamiltonian and diffeomorphism constraints for canoni-
cal GR.
The canonical generator of the local conformal trans-

formation that preserves the Einstein metric ḡαβ is given by

C ¼ ϕπϕ − 2p: ð21Þ

For the GR case, we require in addition the weakly
vanishing C ≈ 0 as well, with the consistent closure con-
dition under Poisson brackets previously established in
Refs. [34,35]. In general, the uniformed smeared C gen-
erates the discussed global conformal invariance of LES
using Eq. (8) as will be discussed further below.

IV. CONFORMAL ASHTEKAR-BARBERO
VARIABLES AND CONFORMAL

IMMIRZI PARAMETER

Having obtained the Hamiltonian formalism of ST
gravity in the conformal Einstein frame with variables
ðgαβ;ϕÞ, we can now proceed to finding their counterpart
for the standard Ashtekar-Barbero variables and explore the
property of the resulting Immirzi parameter in what
follows.
In terms of the triad eai and its densitization Ea

i ¼
ffiffiffi
h

p
eai

associated with hab, we have the standard relation

hab ¼ δijeiae
j
b ¼ hδijEi

aE
j
b: ð22Þ

Substituting (16) into (14) we obtain

pab ¼ −
1

2
Chab −

ϕ2

2κ

ffiffiffi
h

p
ðKab − habKÞ: ð23Þ

It then follows from Eq. (22) that

hab;0 ¼
1

h
ðhabhcd − hachbd − hadhbcÞEc

i E
d
i;0 ð24Þ

and hence

pabhab;0 ¼ Ea
i K

i
a;0 − ðEa

i K
i
aÞ;0;

where

Ki
a ¼ −

1

κ
ffiffiffi
h

p ϕ2KabEb
i þ

1

2h
ChabEb

i : ð25Þ

Contracting (25) with Ei
c we get

Kab ¼ −κ
ffiffiffi
h

p
ϕ−2Ki

aEi
b þ

κ

2
ffiffiffi
h

p ϕ−2Chab: ð26Þ

UsingKab ¼ Kba we see from Eq. (25) thatKi
aEi

b ¼ Ki
bE

i
a.

However, we will from now on treat Ki
a and Ea

i as
independent variables without imposing this condition.
Instead we define

Kab ¼ −κ
ffiffiffi
h

p
ϕ−2Ki

ðaE
i
bÞ þ

κ

2
ffiffiffi
h

p ϕ−2Chab ð27Þ

in terms of arbitrary Ki
a and Ea

i . Then by using Eqs. (23)
and (27) we can calculate that

pab ¼ h
4
ðhadhbc þ hachbd − 2habhcdÞKi

cEi
d: ð28Þ

By contracting the above with hab, we have

p ¼ −hhabKi
aEi

b ¼ −Ki
aEa

i : ð29Þ

Then using (28) and (24) we can evaluate that

pabhab;0 ¼ −Kj
bE

b
j;0 − Ki

½aE
i
b�E

a
jE

b
j;0: ð30Þ

This implies an additional constraint Ki
½aE

i
b� or equivalently

Ck ¼ ϵkijKa½iEa
j� ¼ −ϵkijKl

½aE
l
b�E

a
i E

b
j ð31Þ

called the spin constraint [34]. It is equivalent to the
rotation constraint defined in Ref. [3] and generates local
SU(2) transformations [44]. From Refs. [13,34], this
constraint is first class, forming a closed Poisson bracket
algebra with the Hamiltonian, diffeomorphism, and con-
formal constraints.
The following variables then form canonical pairs:

ðκKi
a; κ−1Ea

i Þ and ðϕ; πϕÞ: ð32Þ

Using these canonical variables and (29), we see that the
conformal constraint for GR (21) becomes

C ¼ ϕπϕ þ 2Ki
aEa

i : ð33Þ

For any positive constant β, a trivial canonical trans-
formation from (32) yields

ðβκKi
a; β−1κ−1Ea

i Þ and ðϕ; πϕÞ: ð34Þ

Since Γi
a commute with Ea

i under Poisson brackets, we can
further perform a canonical transformation from (32) to
yield

ðAi
a ¼ Γi

a þ κKi
a; κ−1Ea

i Þ and ðϕ; πϕÞ ð35Þ

and alternatively from (34) to yield

ðA0i
a ¼ Γi

a þ βκKi
a; β−1κ−1Ea

i Þ and ðϕ; πϕÞ: ð36Þ

We refer to canonical variables (35) and more generally
(36) as conformal Ashtekar-Barbero variables and β
involved as the conformal Immirzi parameter. For any β,
the variable Ai

a has the same construction as the SU(2) spin
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connection with densitized triad Ea
i as the conjugate

momentum. As they have the same structure as the standard
Ashtekar-Barbero variables of LQG, they are amenable to
loop quantization based on a spin-network representation
with a Hilbert space here denoted by HSN [1–3].
To quantize the scalar-spin variables (36) as a whole, we

follow the kinematic quantization recently developed in
Ref. [5], where a diffeomorphism invariant representation
using a Hilbert space HSF for the scalar field in which the
field operator ϕ is diagonal. This leads to the total Hilbert
space

H ¼ HSF ⊗ HSN ð37Þ

as with the treatment of LQG coupled to a scalar field in
Ref. [5]. The quantum states are therefore expressed as
superpositions of

Ψ½ϕ; A� ¼ Ψ½ϕ� ⊗ Ψ½A� ð38Þ

in terms of the cylindrical functions of A:

Ψ½A� ¼ ψðhe1 ½A�;…; hen ½A�Þ ð39Þ

involving holonomies he1 ½A�;…; hen ½A� over edges
e1;…; en.
In terms of the variables ðAi

a; Ea
i Þ, the spin constraint (31)

can be rewritten as the familiar Gauss constraint

Ck ¼ DaEa
k ¼ Ea

k;a þ ϵkijAi
aEa

j ð40Þ

that generates rotations. Since the scalar states Ψ½ϕ� are
SU(2) invariant and by construction Ψ½A� satisfy the
quantum Gauss law, the spectra of invariant operators such
as areas on Ψ½ϕ; A� are unchanged under actions from
Eq. (40). As with Eq. (31), from Refs. [13,34], the above
Gauss constraint is also first class, being closed under
Poisson bracket algebra with the Hamiltonian, diffeomor-
phism, and conformal constraints [13,34].
The new conformal properties of the conformal

Ashtekar-Barbero variables mean that the standard
Immirzi ambiguity no longer has a direct analogy as will
be explained below. By using

�
ϕ0 ¼ β1=2ϕ; π0ϕ ¼ β−1=2πϕ

E0a
i ¼ β−1Ea

i ; K0i
a ¼ βKi

a

ð41Þ

and the structures of C⊥ and Ca, and Ck (see Appendix B for
details), the canonical variables (36) are equivalent to

ðA0i
a ¼ Γi

a þ κK0i
a; κ−1E0a

i Þ and ðϕ0; π0ϕÞ: ð42Þ

With a global conformal transformation, the canonical
variables (42) are in turn equivalent to Eq. (35).

Therefore the two sets of canonical variables Eqs. (35)
and (36) are equivalent.
At the quantum level the global conformal transforma-

tion of a quantum state Ψ½ϕ; A� is generated by the
uniformly smeared conformal constraint

C ¼
Z

Cd3x ð43Þ

as follows:

�
1 −

iϵC
ℏ

�
Ψ½ϕ; Aa

i � ¼ Ψ½ϕþ ϵϕ; Aa
i þ 2ϵκKa

i �; ð44Þ

for an infinitesimal ϵ, where C given by Eq. (33) can be
implemented through Thiemann’s quantization of Ki

aEa
i

terms [3,45] and Lewandowski and Sahlmann’s quantiza-
tion of πϕ → −iℏδ=δϕ terms [5].
The quantum implementation of the invariance under

global conformal transformation (41) causes no ordering
issues, as it contributes only to commuting powers of β as a
c number in e.g. the Hamiltonian constraint C⊥ leaving an
overall transformation according to Eq. (B15) as

C0⊥ ¼ β1=2C⊥: ð45Þ

Therefore Dirac quantization using C⊥ or C0⊥ yields the
same physics irrespective of the choice of β. Specifically,
we have invariant discrete areas and volumes using the
Einstein frame densitized triad under the global conformal
transformation

Ēa
i ¼ ϕ2Ea

i ¼ ϕ02E0a
i ð46Þ

by using Eq. (41), which is clearly independent of the value
of conformal Immirzi parameter β.

V. CONCLUSION AND OUTLOOK

In this paper we address loop quantization in a wider
context of ST gravity. Our main motivation has not been
just to extend LQG beyond GR, but to seize on the freedom
of conformal frame transformations available in ST gravity
that may help rendering the ambiguous Immirzi parameter
in current LQG into a more natural conformal gauge
parameter having no preferred values. For this purpose
we have found it useful to start from the Einstein frame of
ST gravity followed by certain conformal frame trans-
formation into the conformal Einstein frame in Sec. II,
since the resulting scalar-gravitational action specified by
the Einstein-scalar Lagrangian (2) used to define canonical
variables of gravity has a global conformal symmetry (8).
This indicates that loop gravitational variables built in such
a conformal frame may inherit a global conformal sym-
metry under which the corresponding Immirzi parameter is
the gauge parameter.
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We have therefore been led by the above observation
to the construction of the Hamiltonian formalism of ST
gravity in the conformal Einstein frame in Sec. III as a
prerequisite for canonical quantization. Like canonical GR,
the resulting Hamiltonian ST system is also totally con-
strained, having a more involved set of the Hamiltonian
constraint (19) and diffeomorphism constraints (20). Furthe-
rmore, these constraints satisfy the same Dirac algebra
under their Poisson brackets with respect to the conformal
Einstein frame canonical variables as explicitly established
in Appendix A. We then build on this canonical structure a
new set of conformal Ashtekar-Barbero variables with a
corresponding conformal version of the Immirzi parameter β
in Sec. IV. Remarkably, this conformal Immirzi parameter
does indeed represent the global conformal gauge parameter
whose value should not appear in physical observables such
as area operators after quantization. These main findings also
apply to GR as a special case of ST gravity where the
conformal constraint equation C ≈ 0 must be satisfied
making the scalar gravitational field a pure gauge.
Additionally, we remark that the above canonical treat-

ment may also be approached using a conformal version of
the Holst action [46], relevant for the spin foam extension
to this work. The new starting point would be to consider
the Hilbert part of Lagrangian (2) in its Palatini form

LP ¼ 1

2κ
ēēαI ēβJF̄αβ

IJ ð47Þ

in terms of the tetrad ēαI with determinant ē and curvature
F̄αβ

IJ associated with ḡαβ ¼ ϕ2gαβ as in Eq. (5). A plausible
candidate for the conformally modified Palatini-Holst
Lagrangian of Eq. (47) would then be

LPH ¼ 1

2κ

�
ēēαIēβJF̄αβ

IJ

−
1

2
eeαIeβJϵIJKLFαβ

KL

�
ð48Þ

in terms of the tetrad eαI with determinant e and curvature
Fαβ

IJ associated with g
αβ

¼ θ2gαβ using another (multi-

plier) scalar field θ.
Note that in Eq. (48), the extra Holst term is associated

with a conformally transformed metric g
ab
, nonidentical to

ḡab as used in Eq. (47) and so this action is different from
that in Ref. [37], which is recovered from Eq. (48) by
equating ϕ and θ. On the other hand, the standard Palatini-
Holst action is recovered from Eq. (48) through conformal
gauge fixing with constants ϕ ¼ 1 and θ ¼ β−1=2 yielding
the usual Immirzi parameter β. Furthermore, Lagrangian
(48) can be shown to reduce to the Einstein-Hilbert action
for GR after varying the scalars ϕ and θ and the connection
1-forms of the tetrad eαI. However, leaving ϕ and θ free
retains the freedom of conformal frame transformation in
the quantum dynamics to be explored in the context of the
Immirzi ambiguity.

Finally, although a fully quantum description of the
conformal LQG formalism without a free Immirzi param-
eter proposed in this work is yet to be completed, one may
already wonder how the well-accepted Bekenstein-
Hawking entropy of black holes could be recovered.
Admittedly, here we see little immediate phenomenological
analogy of matching the Immirzi parameter as done in
standard LQG. Nonetheless, given our revised spacetime
dynamics with an extended conformal gauge structure and
a coupled scalar field, it seems reasonable to expect a
different kinematical and perhaps more dynamical
approach to the quantum black hole entropy problem.
This would involve reformulating the ensembles of micro-
states of quantum geometry that incorporate the effects of
the additional scalar field and redefine the corresponding
state counting. It might also be useful to identify a quantum
dissipator to allow relaxation to thermal equilibrium,
ideally to achieve the corresponding Hawking temperature
for black holes or Unruh temperature for accelerating
frames. It would then be interesting to calculate the
resulting entropies. Last but not least, given the math-
ematical similarity between the conformal constraint (33)
and Thiemann’s complexifier [3], our suggested reformu-
lation may allow to implement recently proposed new
mechanism of obtaining the Bekenstein-Hawking entropy
formula in LQG from an analytic continuation to β ¼ i
[47–50] in a more natural way [51]. The progress of the
above continued work is deferred for future publications.
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APPENDIX A: DIRAC ALGEBRA OF
CONSTRAINTS IN THE CONFORMAL

EINSTEIN FRAME

In this Appendix, we show that the Dirac algebra for the
Hamiltonian constraint C⊥ and diffeomorphism constraints
Ca is satisfied using the Poisson bracket f·; ·g with respect
to the conformal Einstein frame variables ðhab; pab;ϕ; πϕÞ,
where both metric and scalar fields are dynamical.
We use the Dirac δ function given by Refs. [52,53] as a

bidensity of weight zero in the first and weight one in the
second argument, having the properties [54,55]

δ;a0 ðx; x0Þ ¼ −δ;aðx; x0Þ; ðA1Þ

fðx0Þδ;aðx; x0Þ ¼ fðxÞδ;aðx; x0Þ þ f;aðxÞδðx; x0Þ: ðA2Þ
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1. Poisson bracket fC⊥ðxÞ;C⊥ðx0Þg
For the Poisson bracket between two Hamiltonian

constraints given by Eq. (19), it is useful to consider the
smeared version of the Hamiltonian constraint

Σ½ξ� ¼
Z

ξðxÞC⊥ðxÞd3x; ðA3Þ

where ξðxÞ is an arbitrary smearing function.
Applying the functional derivatives to the Hamiltonian

constraints, by the antisymmetrical property of the Poisson
bracket, all terms not containing any derivative of the
smearing function ξ and μ cancel out, and therefore what
remains, after integration by parts and inserting the diffeo-
morphism constraint, is

fΣ½ξ�;Σ½μ�g ¼
Z

f−ξ;bðx00Þμðx00Þhabðx00ÞCaðx00Þ þ ξðx00Þμ;bðx00Þhabðx00ÞCaðx00Þ

− ξ;ðaðx00Þμðx00Þϕ−1ðx00Þϕ;bÞðx00Þ½8pabðx00Þ − 4habðx00Þpðx00Þ þ habðx00Þϕðx00Þπϕðx00Þ�
þ ξðx00Þμ;ðaðx00Þϕ−1ðx00Þϕ;bÞðx00Þ½8pabðx00Þ − 4habðx00Þpðx00Þ þ habðx00Þϕðx00Þπϕðx00Þ�gd3x00: ðA4Þ

The Poisson bracket between the nonsmeared constraints is
recovered by take the double functional derivative with
respect to both smearing functions:

fC⊥ðxÞ; C⊥ðx0Þg ¼ δ

δξðxÞ
δ

δμðx0Þ fΣ½ξ�;Σ½μ�g: ðA5Þ

Let us consider the second term of Eq. (A4):

F½ξ; μ� ¼ −
Z

ξ;ðaðx00Þμðx00Þϕ−1ðx00Þϕ;bÞðx00Þ

× ½8pabðx00Þ − 4habðx00Þpðx00Þ
þ habðx00Þϕðx00Þπϕðx00Þ�d3x:

Integrating by parts with respect to the first smearing
function and removing the surface term, we get

F½ξ; μ� ¼
Z

ξðxÞfμðxÞϕ−1ðxÞϕ;ðaðxÞ

× ½8pabðxÞ − 4habðxÞpðxÞ
þ habðxÞϕðxÞπϕðxÞ�g;bÞd3x:

Taking the variational derivative with respect to ξ, the
expression becomes

δF
δξðxÞ ¼

Z
fμðxÞϕ−1ðxÞϕ;ðaðxÞ½8pabðxÞ − 2habðxÞpðxÞ

þ habðxÞðϕðxÞπϕðxÞ − 2pðxÞÞ�g;bÞd3x:

The functional derivative with respect to the second
smearing function at a point x0 leads to

δF
δμðx0ÞδξðxÞ
¼

Z
fϕ−1ðxÞϕ;ðaðxÞ

× ½8pabðxÞ − 2habðxÞpðxÞ þ habðxÞðϕðxÞπϕðxÞ
− 2pðxÞÞ�δ3ðx; x0Þg;bÞd3x: ðA6Þ

Following the same procedure on the last term of (A4) but
taking the functional derivatives in the opposite order yields

δF0

δξðxÞδμðx0Þ ¼
Z

fϕ−1ðx0Þϕ;ðaðx0Þ

× ½8pabðx0Þ − 2habðx0Þpðx0Þ
þ habðx0Þðϕðx0Þπϕðx0Þ
− 2pðx0ÞÞ�δ3ðx0; xÞg;b0Þd3x: ðA7Þ

By Schwarz’s theorem, both derivatives can be inter-
changed and therefore Eqs. (A6) and (A7) cancel each other
out such that the Poisson bracket (A4) reads

fC⊥ðxÞ; C⊥ðx0Þg ¼ δ

δξðxÞ
δ

δμðx0Þ
×
Z

f−ξ;bðx00Þμðx00Þhabðx00ÞCaðx00Þ

þ ξðx00Þμ;bðx00Þhabðx00ÞCaðx00Þgd3x00:
ðA8Þ

Finally, the functional derivatives are applied on the last
two terms to obtain the looked for Poisson bracket between
two Hamiltonian constraints:

fC⊥ðxÞ; C⊥ðx0Þg ¼ habðxÞCaðxÞδ3;bðx0; xÞ
− habðx0ÞCaðx0Þδ3;b0 ðx; x0Þ: ðA9Þ
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2. Poisson bracket fCaðxÞ;Cbðx0Þg
Between two diffeomorphism constraints given by Eq. (20), the Poisson bracket is also solved using smeared constraints

of the form

Σ½ξa� ¼
Z

ξcðxÞCcðxÞd3x: ðA10Þ

Here ξaðxÞ is a function for the smeared diffeomorphism constraint. Calculating the functional derivatives of the above
smeared constraints leads to the expression

fΣ½ξa�;Σ½μb�g ¼
Z

f−4ξðaðx00Þμb;aðx00Þhbcðx00ÞpcÞd
;d ðx00Þ − 2ξðaðx00Þμbðx00Þhac;bðx00ÞpcÞd

;d ðx00Þ

þ 4ξa;bðx00Þμðbðx00Þhacðx00ÞpcÞd
;d ðx00Þ þ 2ξaðx00Þμðbðx00Þhbc;aðx00ÞpcÞd

;d ðx00Þ − ξa;aðx00Þμbðx00Þϕ;bðx00Þπϕðx00Þ
− ξaðx00Þμbðx00Þϕ;bðx00Þπϕ;aðx00Þ þ ξaðx00Þμb;bðx00Þϕ;aðx00Þπϕðx00Þ þ ξaðx00Þμbðx00Þϕ;aðx00Þπϕ;bðx00Þgd3x00

to be used below. To recover the sought after Poisson
brackets, the functional derivatives with respect to both
smearing functions ξa and μb has to be taken:

fCaðxÞ; Cbðx0Þg ¼ δ

δξaðxÞ
δ

δμbðx0Þ fΣ½ξ
c�;Σ½μc�g:

Using the definition of the diffeomorphism constraint in
Eq. (20), the calculation reduces to

fCaðxÞ; Cbðx0Þg ¼ CbðxÞδ3;aðx0; xÞ − Caðx0Þδ3;b0 ðx; x0Þ
− 4hd½a;b�ðxÞpdc

;c ðxÞδ3ðx0; xÞ
þ 2ϕ;½aðx0Þπϕðx0Þδ3;b0�ðx; x0Þ
þ 2ϕ;½aðxÞπϕðxÞδ3;b�ðx0; xÞ
þ 2ϕ;½aðxÞπϕ;b�ðxÞδ3ðx; x0Þ: ðA11Þ

Following the same procedure but exchanging the indices a
and b yields to the Poisson bracket

fCbðxÞ; Caðx0Þg ¼ CaðxÞδ3;bðx0; xÞ − Cbðx0Þδ3;a0 ðx; x0Þ
þ 4hd½a;b�ðxÞpdc

;c ðxÞδ3ðx0; xÞ
− 2ϕ;½aðx0Þπϕðx0Þδ3;b0�ðx; x0Þ
− 2ϕ;½aðxÞπϕðxÞδ3;b�ðx0; xÞ
− 2ϕ;½aðxÞπϕ;b�ðxÞδ3ðx; x0Þ: ðA12Þ

Taking half of the sum of Eqs. (A11) and (A12), we obtain

fCðaðxÞ; CbÞðx0Þg ¼ CðaðxÞδ3;bÞðx0; xÞ − Cðaðx0Þδ3;b0Þðx; x0Þ:
ðA13Þ

We see that the Poisson bracket is symmetric under the
exchange of the two indices; therefore, all the antisym-
metric terms are equal to zero and so we have

fCaðxÞ; Cbðx0Þg ¼ CbðxÞδ3;aðx0; xÞ − Caðx0Þδ3;b0 ðx; x0Þ:

Finally, the Poisson bracket between two diffeomor-
phism constraints reads

fCaðxÞ; Cbðx0Þg ¼ Caðx0Þδ3;b0 ðx; x0Þ þ CbðxÞδ3;aðx0; xÞ:
ðA14Þ

3. Poisson bracket fCaðxÞ;C⊥ðx0Þg
To derive the Hamiltonian-diffeomorphism Poisson

bracket, we use the fact that the Poisson bracket
between the diffeomorphism constraint and any weight-
one element f, as e.g. the Hamiltonian constraint, gives the
same result:

fCcðxÞ; fðx0Þg ¼ fðxÞδ3cðx; x0Þ: ðA15Þ

Using its linearity, we can obtain the Poisson bracket by
calculating it for every term of the Hamiltonian constraint
separately. Considering the first term of Eq. (19),

S ¼ 1ffiffiffi
h

p ϕ−2pabpab; ðA16Þ

and using the properties of the Dirac δ function (A1) and
(A2), the first Poisson bracket can be calculated. It is
derived by separating it into simpler terms using the
property

ff; ghg ¼ ff; gghþ gff; hg: ðA17Þ
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We therefore obtain using the variation of h−1=2 that

fCeðxÞ; Sðx0Þg ¼
�
CeðxÞ;

2κffiffiffiffiffiffiffiffiffiffi
hðx0Þp

�
ϕ−2ðx0Þhaðcðx0ÞhdÞbðx0Þpabðx0Þpcdðx0Þ

þ 2κffiffiffiffiffiffiffiffiffiffi
hðx0Þp fCeðxÞ;ϕ−2ðx0Þghaðcðx0ÞhdÞbðx0Þpabðx0Þpcdðx0Þ

þ 2κffiffiffiffiffiffiffiffiffiffi
hðx0Þp ϕ−2ðx0ÞfCeðxÞ; haðcðx0ÞghdÞbðx0Þpabðx0Þpcdðx0Þ

þ 2κffiffiffiffiffiffiffiffiffiffi
hðx0Þp ϕ−2ðx0Þhaðcðx0ÞfCeðxÞ; hdÞbðx0Þgpabðx0Þpcdðx0Þ þ 4κffiffiffiffiffiffiffiffiffiffi

hðx0Þp ϕ−2ðx0Þpabðx0ÞfCeðxÞ; pabðx0Þg:

This expression after some calculations reduces to the
Poisson bracket

fCaðxÞ; Sðx0Þg ¼ SðxÞδ;aðx; x0Þ: ðA18Þ

This shows that the first term follows the weight-one
element rule (A15). By extending linearly to the other
terms, we extrapolate to the global Hamiltonian constraint
and therefore have

fCaðxÞ; C⊥ðx0Þg ¼ C⊥ðxÞδ;aðx; x0Þ: ðA19Þ
Therefore, combining all results in this Appendix, we

have the following Poisson brackets Eqs. (A9), (A14),
and (A19):

fC⊥ðxÞ; C⊥ðx0Þg ¼ habðxÞCaðxÞδ3;bðx0; xÞ
− habðx0ÞCaðx0Þδ3;b0 ðx; x0Þ; ðA20Þ

fCaðxÞ; Cbðx0Þg ¼ Caðx0Þδ3;b0 ðx; x0Þ
þ CbðxÞδ3;aðx0; xÞ; ðA21Þ

fCeðxÞ; C⊥ðx0Þg ¼ C⊥ðxÞδ3;eðx; x0Þ; ðA22Þ

which all consistently vanish weakly if the constraints
C⊥ðxÞ and CaðxÞ vanish weakly. The above relations form
the same Dirac algebra of constraints as with the metric
tensor-only theory of GR [56].
Furthermore, since the conformal Ashtekar-Barbero

variables are constructed from the conformal Einstein
frame ST variables using a set of canonical transformations,
the argument about the previous Poisson brackets is also
valid [57] in these new variables in Eq. (35) or (36).

APPENDIX B: GLOBAL CONFORMAL
TRANSFORMATION RELATIONS

Here we summarize how various physical quantities used
in this work undergo changes with a global conformal
transformation used in the main text of this work. It follows
directly from Eq. (5) that, under a global conformal

transformation given by Eq. (8), we have the following
relations:

hab → Λ2hab; ðB1Þ

hab → Λ−2hab; ðB2Þ
ffiffiffi
h

p
→ Λ3

ffiffiffi
h

p
; ðB3Þ

N → ΛN; ðB4Þ

Na → Na; ðB5Þ

Na → Λ2Na: ðB6Þ
Using the above and Eq. (12) we have

Kab → ΛKab; ðB7Þ

Kab → Λ−3Kab; ðB8Þ

K → Λ−1K: ðB9Þ
Furthermore, from Eqs. (14) and (15) we have

pab → Λ−2pab; ðB10Þ

pab → Λ2pab; ðB11Þ

p → p; ðB12Þ

πϕ → Λπϕ; ðB13Þ

R½h� → Λ−2R½h�: ðB14Þ
From Eqs. (19)–(21) we see that

C⊥ → Λ−1C⊥; ðB15Þ

Ca → Ca; ðB16Þ

C → C; ðB17Þ
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and hence

LES → LES; ðB18Þ

HES → HES: ðB19Þ

In terms of the triad variables, we find that

eia → Λeia; ðB20Þ

eai → Λ−1eai ; ðB21Þ

Ei
a → Λ−2Ei

a; ðB22Þ

Ea
i → Λ2Ea

i ; ðB23Þ

Ki
a → Λ−2Ki

a: ðB24Þ

Finally, from Eqs. (31), (B23), and (B24) we have

Ck → Ck: ðB25Þ
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