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Abstract 

CO2 flooding process as a common enhanced oil recovery method may suffer from interface 

instability due to fingering and gravity override, therefore, in this study a method to improve the 

performance of CO2 flooding through an integrated ultraosund-CO2 flooding process is 

presented. Ultrasonic waves can deliver energy from a generator to oil and affect its properties 

such as internal energy and viscosity. Thus, a series of CO2 flooding experiments in the presence 

of ultrasonic waves were performed for controlled and uncontrolled temperature conditions. 

Results indicate that oil recovery was improved by using ultrasound-assisted CO2 flooding 

compared to conventional CO2 flooding. However, the changes were more pronounced for 

uncontrolled temperature conditions of ultrasound-assisted CO2 flooding. It was found that 

ultrasonic waves create a more stable interface between displacing and displaced fluids that 

could be due to the reductions in viscosity, capillary pressure and interfacial tension. In addition, 

higher CO2 injection rates, increases the recovery factor in all the experiments which highlights 

the importance of injection rate as another factor on reduction of the fingering effects and 

improvement of the sweep efficiency. 

 

Keywords: CO2 Flooding; Ultrasound; High frequency waves; Controlled and uncontrolled 

temperature; Unconventional EOR. 
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1. Introduction 

As oil production declines after primary and secondary recovery methods, tertiary recovery 

methods need to be considered to further reduce the residual oil saturation in reservoirs. Carbon 

dioxide (CO2) flooding is one of the enhanced oil recovery (EOR) techniques in which CO2 is 

injected into oil reservoirs to increase oil recovery. Because of its availability, relatively low cost 

and environmental considerations, CO2 is attracting renewed interest as a flooding medium [1]. 

CO2 flooding was proposed for the first time in 1930s, and more laboratory and field studies 

were conducted between 1950s-70s [2] [3] [4] [5] [6]. Those studies concluded that CO2 could 

be efficiently implemented to increase oil recovery, since then, CO2 flooding has become one of 

the most commonly used EOR methods [7]. On the other side, one of the major problems 

associated with any flooding process where a high viscous fluid is displaced by a less viscous 

one, is unstable displacement front. As a result of such instability, viscous fingering develops at 

the interface of two fluids and starts to grow as the flooding process continues. Therefore, sharp 

interface of displacement front diminishes by time and early breakthrough of displacing fluid 

happens. This results in a poor sweep efficiency and a portion of oil remains untouched in the 

reservoir. This is one of the main concerns in gas injection processes; such as CO2 flooding 

enhanced oil recovery method [8]. In 2010, Bagci [9] studied the effect of CO2 flooding and 

injection rate on recovery factor in a reservoir with high viscosity oil. It was found that CO2 

breakthrough occurred shortly after the experiment was started. His analysis showed that it was 

due to the governance of viscous forces and the trivial effects of mass transfer between CO2 and 

oil. In addition, the total oil recovery affected substantially for different injection rates due to the 

associated unstable displacements. Overall, recovery of oil improved at the elevated injection 

rate of CO2. 
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According to the experimental studies, in addition to the influence of viscous forces, near 

miscibility condition reduces interfacial tension and oil viscosity, and in turns enhances the final 

oil recovery [10, 11]. A series of immiscible CO2 flooding experiments were carried out on 

heavy oil samples from Wilmington field in United States in 1988 by Mayer et al. [12]. The 

experiments showed that oil recovery was increased due to the reduction of oil viscosity, and oil-

swelling. They concluded the improved performance was attributed to more favourable 

displacement characteristics in the cores. In 2010, Torabi [13] conducted a series of experimental 

studies to examine the effect of oil viscosity, injection rates, and permeability on the 

performance of heavy oil water flooding, immiscible CO2 flooding, and immiscible CO2 in water 

alternating gas (WAG) processes. Torabi’s experiments revealed that as the viscosity of oil 

decreases, oil recovery increases for both WAG, and CO2 flooding processes. Based on Torabi’s 

studies, less viscous oil showed around 42% higher recovery factor than high viscosity oil for 

CO2 flooding process. It was also found that in a sand pack with lower permeability, only 25% of 

oil was recovered. This shows that changes in oil viscosity and permeability of the porous media 

affect the stability of CO2 flood front, and in turn the final recovery factor of immiscible CO2 

flooding process. Similar trend of oil recovery was observed when Nasir and Chong [14] 

performed a number of experiments to study the effect of different CO2 injection rates on oil 

recovery in CO2 flooding process. They showed that recovery factor increases with increasing 

injection rate. In 2013, Cao and Gu [15] studied the mechanisms of oil recovery from immiscible 

CO2 flooding process in core samples of tight sandstone reservoirs. They showed that oil 

recovery was improved as they increased injection pressure. Their analysis showed that oil 

recovery improvement was achieved by the reductions of oil viscosity and interfacial tension, 

and the increase of CO2 solubility. In 2016, Bikkina et al. [16] conducted a set of laboratory 
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experiments to investigate the effect of reservoir wettability on the efficiency of CO2 -EOR 

process. It was found that oil recovery was significantly higher in oil-wet core samples compared 

to water-wet ones.  

On the other hand, techniques such as electromagnetic heating and ultrasound that use electronic 

means to generate micro- and ultrasonic-waves have been introduced to decrease oil viscosity 

and mobilize it [17] [18] [19] [20] [21] [22] [23]. Also it was noted that energy through these 

sources may help to have an efficient oil-water de-emulsification process [24] [25] [26]. The aim 

of these methods is to deliver an external energy into oil through waves. The transmitted energy 

can influence physical and chemical properties of hydrocarbons, however, the increase of 

temperature is one of the most important effects that causes oil viscosity reduction and 

eventually oil mobilization. In the current study, we limit our investigation into the use of 

ultrasonic waves for oil recovery processes and, equipment and experiments are designed 

accordingly. Ultrasound technique as one of the unconventional enhanced oil recovery (EOR) 

methods was introduced by Duhon and his co-worker [17, 18]. They revealed that ultrasonic 

waves had a considerable influence on displacement efficiency and oil recovery in the coreflood 

experiments. Johnston [27] indicated that reductions in viscosity and surface tension of fluids 

under influence of ultrasound, enhances percolation of oil which causes increase in oil recovery. 

The reductions were assumed to be due to heat generation by ultrasound absorption in the 

medium. In fact, ultrasound reduces interfacial tension (IFT) and reservoir oil viscosity, and 

increases medium temperature, which in turns enhance the displacement efficiency [28, 26, 29]. 

In 2005, the effect of ultrasound on interfacial tension (IFT) was studied by Hamida and 

Babadagli [29] by series of pendant drop experiments. They revealed that oil recovery 

enhancement under influence of ultrasound could be due to a remarkable change in the 
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interfacial forces between oil and water. In 2012, Mohammadian et al. [30] conducted a study on 

the mechanisms lead to improvements in recovery of oil with the application of ultrasound waves 

in a waterflooding process. The results show that ultrasound radiation improved oil recovery by 

3%. In their study, noticeable temperature rises were recorded during the ultrasonic-assisted 

waterflooding experiment. This change could affect the properties of fluids such as interfacial 

tension (IFT) and viscosity, which could be a source of increased mobility of hydrocarbons. In 

2013, Abramov et al. [31] developed a new technique to improve oil recovery under the 

influence of ultrasound radiation from failing wells. They showed that ultrasound can noticeably 

improve oil recovery by 30-50 % from wells where reservoir rock has high porosity (>15%) and 

permeability (>20 mD). They concluded the technique is environmentally safe and successful for 

the purpose of oil recovery improvement. Furthermore, in 2015, Abramov and his colleagues 

[32] performed a series of field tests to develop a sonochemical enhanced oil recovery technique 

for the treatment of horizontal wells. Their results revealed a significant enhancement in oil 

production from all wells undergone sonochemical treatment. Later, in 2016, Abramov et al. [33] 

suggested an ultrasound assisted method for treatment of perforation zones in horizontal oil wells 

(reduction of water cut). A reduction in water cut (20 %) and an increase in oil production up to 

91% was reported after the treatment. In recent years, Hamidi and his co-workers [28, 26, 34, 35] 

performed several experiments to study oil recovery mechanisms under influence of ultrasound 

in porous media. They found that heat generation, emulsification, cavitation, and the reduction of 

oil viscosity are the most important mechanisms that improve oil recovery factor under the 

influence of ultrasound. In their study [28], they indicated that all liquids viscosities were 

decreased as the result of ultrasonic stimulation and it was more pronounced in uncontrolled 

temperature condition compared to controlled temperature condition.  Furthermore, Hamidi et 
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al.’s study on residual oil mobilization in porous media through ultrasonic wave application, 

suggested a mechanism where alteration of capillary forces is crucial and it is directly 

proportional to the applied ultrasound power and frequency [34]. In other studies by Hamidi et 

al. [26], they developed a technique to investigate the effect of ultrasound radiation at the 

interface of oil and brine in porous media using a microscope. Diffusion of phases and 

generation of emulsion were disclosed in the period that ultrasound was applied. They concluded 

that emulsification could be another mechanism that improves oil recovery process through short 

pulses of ultrasound application. Recently, they tested ultrasound assisted surfactant flooding 

process. Based on phase behaviour analysis of surfactant-brine-oil (SBO), they found that 

interfacial tension remains low and there is a decrease in surfactant consumption in surfactant 

flooding processes [35]. Overall the complexity of such process hindered theoretical modelling 

of ultrasonic enhanced oil recovery technique. For example, Mohsin and Meribout [36] 

developed a model which involves heat and acoustic modules to predict the performance of 

ultrasound on oil recovery in a single phase (oil) flow process and they tested their model with 

their experimental data. They also found that there was a pressure increase due to ultrasonic 

waves which led to improved oil recovery. 

In all previous studies ultrasound was applied to the systems where liquid-liquid or liquid-solid 

interface were the focus of investigation. However, gas flooding processes could also be 

potentially good candidates for ultrasound applications. Based on the aforementioned proven 

mechanisms of ultrasound, combining ultrasound application with CO2 flooding (Ultrasound-

Assisted CO2 Flooding) in order to improve oil recovery could be of benefit. Therefore, the aim 

of this study is to identify changes in the oil recovery using ultrasound-assisted CO2 flooding 

with different CO2 injection rates and temperature conditions (controlled and uncontrolled). The 
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purpose of controlled and uncontrolled temperature conditions was to analyse the influence of 

ultrasound on the improvement of oil recovery in CO2 flooding process through heating effects 

in porous medium.  In all the experiments, oil recovery was monitored and the performance of 

CO2 flooding, and ultrasound-assisted CO2 flooding processes were compared. 

2. Experimental Setup and Procedure 

2.1 Equipment 

In this study, high-frequency waves were produced by a generator (Genesis 
TM 

XG-500-6) and 

delivered to a water bath by means of an immersible transducer (W: 15 cm × L: 35 cm × H: 5 

cm). The generator emits ultrasonic waves at a frequency of 40 kHz and a power of 500 W. The 

ultrasonic bath (W: 21 cm × L: 50 cm × H: 30 cm) was fabricated to provide a suitable medium 

for ultrasound radiation. The bath efficiency was calculated as 35.4% by the calorimetric 

technique [37], this indicates the rate of power dissipated in bulk solution is 176.9 W. Ultrasonic 

bath properties are shown in Table 1. A sandpack was used to represent the porous media and it 

was immersed into the water bath by a sandpack holder. A syringe pump (KD 100 Scientific) 

was used for injection of liquid into the sandpack. There is a CO2 cylinder as a source of gas in 

the experiments. A chiller (Julabo F25-HL) was used in temperature-controlled experiments to 

maintain the bath temperature constant. The experimental setup is shown in Fig. 1.  

2.2 Materials 

In this study, paraffin oil was used as oleic phase and its properties are shown in Table 2. The 

paraffin oil viscosity was measured by Anton Paar™ AMVn Automated Micro Viscometer at 

two different temperatures (25 °C and 40°C). Carbon dioxide (CO2) was chosen as the injection 

gas in all the experiments. Cylindrical sandpack with the diameter of 5 cm and length of 20 cm 
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was packed with sands of 60 to 80 µm in diameter. It has a pore volume of 109.95 cm3, or 

simply the porosity of 28%. 

2.3 Procedure 

To run each experiment, first the sandpack was immersed in the water bath to provide a suitable 

surrounding for ultrasound radiation. Brine (3% NaCl) was injected into the sandpack until it is 

fully saturated. Then, paraffin oil was injected into the sandpack at a rate of 4.17 cc/min.  Once 

the core was saturated with paraffin, water saturation (Sw) and oil saturation (So) was calculated. 

Then, the sandpack underwent a waterflooding process until no more oil was produced and 

critical oil saturation was achieved (Soc). This was the starting point of the experiments as in this 

research CO2 flooding and ultrasound-assisted-CO2 flooding were considered as tertiary methods 

of recovery (EOR) and it was assumed that no more oil could be produced by secondary 

recovery methods (waterflooding process). However, the authors were aware of different 

strategies that might be implemented in field operations (EOR from early stages of production). 

Initial oil and water saturations of sandpack are 0.9 and 0.1 respectively. Waterflooding process 

was performed on the sandpack, which gave an oil recovery factor of 27%. Residual oil 

saturation at the beginning of the CO2 flooding process was 0.65 with water saturation of 0.35. In 

tertiary recovery process, CO2 was injected at different injection rates (2, 3.5, 5 and 10 cc/min) 

and the amount of produced oil was measured that is discussed in details in the next section. In 

ultrasound-assisted CO2 flooding experiments, the ultrasonic waves were applied during 

injection of CO2 into the sandpack. Tests were conducted under two different temperature 

conditions: (i) controlled temperature condition; where temperature inside the ultrasonic bath 

was maintained constant (about 25 °C) by using a chiller, and (ii) uncontrolled temperature 

condition where there was no control on temperature of the system. 
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3. Results and Discussion  

3.1   CO2 flooding without using ultrasound 

The first series of experiments were performed as a benchmark to study the effect of CO2 

flooding on oil recovery improvement without using ultrasound at different CO2 injection rates. 

The obtained results were compared to the second series of experiments in which ultrasound was 

applied. Results of the first series of experiments are presented in Figure 2. It can be seen that the 

highest oil recovery was achieved for the CO2 injection rate of 10 cc/min, and the lowest oil 

recovery for the CO2 injection rate of 2 cc/min. This is because of the fact that higher CO2 

injection rates can stabilize the interface of CO2 and oil bank. Higher injection rate of CO2 

provides larger viscous force to push oil and water in the sandpack. Therefore, it creates a larger 

oil bank, where oil saturation that is left behind interface is low, and as a result the stable flood 

front reduces the likelihood of viscous fingering and therefore increases the sweep efficiency and 

oil recovery [14]. Lower injection rates can promote the occurrence of gravity segregation which 

is a result of large density difference between the less dense CO2 gas and, significantly more 

dense oil. In the other words, increasing the CO2 injection rate can reduce the tendency of gravity 

segregation of phases, as a larger oil bank is moving toward production wells, in addition, with 

higher injection rate of CO2, it would be easier to overcome the capillary forces in porous media 

[38, 15]. Therefore, choosing a right injection rate is critical in any CO2 flooding recovery 

process to avoid the gravity override problems. 

3.2 Ultrasound-assisted CO2 flooding  

In the second series of experiments, the effect of ultrasound-assisted CO2 flooding on oil 

recovery improvement in controlled and uncontrolled temperature conditions was investigated. 

Figures 3 and 4 show oil recovery factors associated with different injection rates in controlled 
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and uncontrolled temperature conditions respectively. As it is observed, oil recovery was 

improved in both tested conditions of ultrasound-assisted CO2 flooding, compared to the cases 

without using ultrasound (Figure 2). However, these changes were more pronounced for 

uncontrolled temperature conditions of ultrasound-assisted CO2 flooding. Furthermore, in these 

series of experiments, by increasing the CO2 injection rate, the oil recovery was also improved.  

In Figures 5 and 6, we compared oil recovery factor and production rate of three processes 

investigated in this study for different rates. Comparison of recovery factors and flow rates 

determines the breakthrough time of CO2 flood front. For example Figures 5a and 6a show that 

for the CO2 injection rate of 10 cc/min, breakthrough of CO2 flood (end of oil bank production) 

happens around 12 minutes after the start of the injection process, regardless of type of the 

process, i.e. breakthrough is unique for ultrasonic-assisted cases and CO2 flooding without using 

ultrasonic, and it happens at a later time as CO2 injection rate decreases.  

It can be concluded that higher production rate of uncontrolled ultrasound-assisted CO2 flooding 

compared to two other cases is associated with a more stable flood front. This shows that having 

same breakthrough time for all processes with same CO2 injection rate, the higher recovery 

factor means lower residual oil saturation, which means more stable and efficient immiscible 

displacement process. Therefore, lower residual oil saturation or in the other words, higher 

sweep efficiency, demonstrates the effectiveness of ultrasonic wave’s applications in oil recovery 

processes. Same trend was observed for other injection rates as can be seen in Figures 5b, 6b; 5c, 

6c; and 5d, 6d. 

The increase in oil recovery under ultrasound-assisted CO2 flooding could be attributed to the 

reduction of oil viscosity. This finding is consistent with that of Torabi’s research [13] which 

revealed that in CO2 flooding experiments, as the viscosity of oil decreases, oil recovery 
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increases. Fluid viscosities are critical factors affecting sweep efficiency of any enhanced oil 

recovery project as they determine the importance of viscous forces in porous media and stability 

of the moving front. Lower viscosity contrast between displacing and displaced fluids leads to a 

more stable flood front in immiscible oil recovery processes. This is the main reason for the 

improvement observed in oil recovery by ultrasound-assisted CO2 flooding in the current study. 

In the temperature controlled experiments, the reduction in viscosity of oil could be due to the 

bubbles implosion produced by pressure impulse as a result of the ultrasound radiation (known 

as cavitation effect). Cavitation happens in a liquid under the influence of ultrasound radiation 

when its pressure falls below the vapour pressure, thus generating a bubble or cavity [39]. 

Injected CO2 may enter these cavitation zones inside the oil at the interface of oil and CO2, 

which decreases the viscosity, and consequently improves the mobility of oil, and in turn creates 

a stable interface. In addition, capillary forces are affected by ultrasound radiation in porous 

media as ultrasonic waves alter the interface shape between two immiscible fluids. Bubbles that 

are trapped inside the pores during gas flooding absorb the ultrasonic energy and as a result, start 

to vibrate. The oscillating energy of bubbles may induce a slip effect which improves the flow of 

fluids inside the pores. This might be explained by the reduction of meniscus effect at the rock-

fluids interface and therefore there would be a reduced capillary pressure effect [40, 41]. Fluid 

slip on solid walls can be described by molecular theories. Fluid displays slip flow when it is in 

nano-or micro-channels where in these types of channels mean free path of molecules, is 

comparable to the width of pores [42]. This phenomenon can be induced by ultrasonic waves 

through the cavitation in oil phase, and it is strengthened inside the pores by penetration of 

displacing gas molecules, CO2 in this study, into them. Therefore, a combined effect of viscosity 

reduction due to ultrasonic waves, CO2 filled cavities created by ultrasound waves, and capillary 
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pressure reduction in porous media, might improve the performance of ultrasound-assisted CO2 

flooding process. 

Oil recoveries for different CO2 injection rates shown in Figure 4 are related to the last series of 

experiments which is ultrasound-assisted CO2 flooding process in uncontrolled temperature 

condition. Oil recovery using ultrasound-assisted CO2 flooding in uncontrolled temperature 

condition, is improved compared to both temperature controlled CO2 flooding, and CO2 flooding 

without using ultrasound cases for all injection rates.  For instance, the ultimate oil recovery 

using ultrasound-assisted CO2 flooding in uncontrolled temperature condition with the CO2 

injection rate of10 cc/min, is 40.9%. It shows ultimate oil recovery of the CO2 injection rate of 

10 cc/min is increased by 7.1 % compared to the case using ultrasound under controlled 

temperature condition. The only difference between two series of the ultrasound-assisted CO2 

injection is their temperature conditions; one is at constant temperature condition, and the other 

one at uncontrolled temperature condition, and the temperature profile of the ultrasonic bath 

through the entire process is shown in Figure 7. Therefore, based on the results, one can 

conclude that temperature increase at uncontrolled temperature condition, results in a 

corresponding increase in oil recovery. An increase in the reservoir temperature, results in a 

reduced interfacial tension leading to improved CO2 displacement efficiency. As a result of this 

temperature increase in porous media, oil recovery by CO2 displacement is improved [30]. These 

changes which result in a more stable displacement front, through reducing viscosity which in 

turn diminishes fingering effects and therefore an improved mixing, cause a change in viscous 

force distribution. Figure 8 shows pressure drop for three cases of experiment with injection 

flowrates of 10, 5, 3.5, and 2 cc/min. Relatively higher pressure drops are observed for ultrasonic 

assisted CO2 flooding cases, furthermore, ultrasonic assisted CO2 flooding experiments show a 
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higher pressure drop for uncontrolled temperature case compared to controlled case. It can be 

concluded that the more stable displacement front, i.e. lower fingering effects, the higher 

pressure drop to push oil bank ahead of CO2. Similar observation reported by Hassan et al.’s [43] 

on the decrease of interfacial tension with temperature at constant pressure condition. They 

reported the rate of decrease in interfacial tension is more noticeable at higher temperatures. On 

the other hand, an increase in temperature results in a reduction of oil viscosity leading to an 

additional improvement of CO2 displacement efficiency. Thermal energy sources in ultrasound-

assisted CO2 flooding are: (1) the cavitation phenomena by which an enormous amount of 

thermal energy is released during the collapse of bubbles (known as absorption effect), (2) 

boundary friction is another phenomena in pore scale, which results in an escalation in 

temperature of liquid at the solid-fluids interface . Difference in vibration velocity of fluids and 

rock results in an energy transformation (sound wave to heat) at rock-fluids interface. This 

happens at both solid-fluids, and suspending particles-fluids interface, and (3) the ultrasound 

energy dissipation in the porous material [28, 44]. Generally higher wave frequencies correspond 

to stronger absorption effects and greater boundary frictions. In addition, higher recovery at 

uncontrolled temperature condition means higher gas saturation in the core which can be 

concluded that displacement process has a more stable front. Figure 9 summarizes the ultimate 

oil recovery in all the experiments, using different rates of CO2 injection. 

Further studies such as the use of high resolution microscopes might help us to understand the 

discussed mechanisms of ultrasonic wave’s behaviour in enhanced oil recovery methods. Also it 

would be interesting to develop a model of ultrasonic waves’ effects on CO2 flooding process to 

predict the results obtained from our experiments, which can be used to explore and expand this 

method into the field applications.  
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4.0 Conclusions 

In this study the effect of ultrasonic waves on oil recovery with CO2 flooding was investigated. 

Ultrasonic wave’s behaviour in a coreflood test showed promising results due to involved 

complex mechanisms in the molecular and pore scale level. The followings could be concluded 

based on the experiments conducted in this research: 

1. In ultrasound-assisted CO2 flooding under controlled/uncontrolled temperature condition, 

oil recovery was improved compared to CO2 flooding without using ultrasound. This 

increase could be attributed to mechanisms such as reductions in viscosity, capillary 

pressure, and interfacial tension. 

2. Ultrasonic waves create a stable interface between displacing and displaced fluids, which 

means reduction of the fingering effects and improvement of the sweep efficiency.  

3. More oil was recovered in uncontrolled temperature experiments compared to the 

controlled temperature experiments. 

4. Higher injection rates improved the sweep efficiency through lowering the chance of CO2 

gravity override effects. This means in any CO2 flooding design, a minimum injection rate 

needs to be determined to decrease the gravity override issues. The highest recovery was 

achieved in ultrasound-assisted CO2 flooding under uncontrolled temperature condition 

with the highest injection rate of 10 cc/min, resulting in an ultimate oil recovery of around 

40.9%.  
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Table 1 
Properties of the ultrasonic bath. 

Type of 

transducer 
Generator 

Operating 

frequency 

(kHz) 

Operating 

power output 

(W) 

Bath size 

(W×L×H) 

(cm) 

Calorimetric 

efficiency 

(%) 

Immersible 
GenesisTM 

XG-500-6 
40 500 21×50×30 35.4 

 

 

Table 2 
Properties of paraffin oil used in the tests. 

Type of oil 
Dynamic Viscositya 

@ 25°C (cp) 

Dynamic Viscositya 

@ 40°C (cp) 

Densityb@ 25°C 

(g/cm3) 
API 

Thermal 
conductivity 

(W/m°C) 

Paraffin oil 31.73 17.41 0.73 61.28 0.145 
aAnton PaarAMVn Automated Micro Viscometer. 
bPrecisa XT220A Density Measurement Device. 
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Fig. 1: Schematic diagram of ultrasound assisted CO2 flooding in controlled temperature 

condition 

 

 

 

 

Fig. 4: The effect of ultrasound-assisted CO2 flooding on oil recovery in uncontrolled 

temperature condition 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60

O
il

 R
e

co
v

e
ry

 %

Time [min]

CO2 flooding without using ultrasound

2cc/min 3.5cc/min 5cc/min 10cc/min
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60

O
il

 r
e

co
v

e
ry

 %

Time [min]

Ultrasound-assisted CO2 flooding in 

controlled temperature condition

2 cc/min 3.5cc/min 5cc/min 10cc/min

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60

O
il

 r
e

co
v

e
ry

 %

Time [min]

Ultrasound-assisted CO2 in uncontrolled 

temperature condition

2cc/min 3.5cc/min 5cc/min 10cc/min

Fig. 3: The effect of ultrasound-

assisted CO2 flooding on oil recovery 

in controlled temperature condition 

 

Fig. 2: Effect of CO2 Injection on oil 

recovery without using ultrasound 
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(a)                                                                          (b) 

 

 (c)                                      (d) 

Fig. 5: Effect of CO2 flooding and ultrasound-assisted CO2 flooding in controlled/uncontolled 

temperature conditions on oil recovery using:(a) 10cc/min,(b) 5cc/min, (c) 3.5cc/min,(d) 

2cc/min CO2 injection rate. 
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(a)                                                                     (b) 

 

(c)                                                                     (d) 

Fig. 6:Flow rate of produced oil for CO2 flooding and ultrasound-assisted CO2 flooding in 

controlled/uncontolled temperature condition cases using:(a) 10cc/min,(b) 5cc/min, (c) 

3.5cc/min,(d) 2cc/min CO2 injection rate. 
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Fig. 7. Ultrasonic bath temperature changes under influence of ultrasonic waves (40 kHz and 500 

W) 
 

 

 
(a)                                      (b) 

 
(c)                                      (d) 

Fig. 8. Pressure drop versus time for CO2 injection rate of: (a) 10 cc/min, (b) 5 cc/min, (c) 3.5 

cc/min, (d) 2 cc/min,  
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Fig. 9: Results comparison of ultimate oil recovery in all the methods using different CO2 

injection rates  
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Highlights: 

• Effect of ultrasound-assisted CO2 flooding on oil recovery was investigated. 

• Experiments were conducted for uncontrolled and controlled temperature conditions. 

• Sandpack was put inside the ultrasonic bath. 

• More oil was recovered under ultrasound-assisted CO2 flooding.  

• More oil was recovered in uncontrolled temperature experiments.  

 

 




