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Mechanosensitive channels are ion channels which act as cells’ safety valves, opening when the osmotic
pressure becomes too high and making cells avoid damage by releasing ions. They are found on the cellular
membrane of a large number of organisms. They interact with each other by means of deformations they induce
in the membrane. We show that collective dynamics arising from the interchannel interactions lead to first- and
second-order phase transitions in the fraction of open channels in equilibrium relating to the formation of channel
clusters. We show that this results in a considerable delay of the response of cells to osmotic shocks, and to an
extreme cell-to-cell stochastic variations in their response times, despite the large numbers of channels present
in each cell. We discuss how our results are relevant for E. coli.
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I. INTRODUCTION

Abrupt changes in the osmolarity of the environment is a
hazard most organisms are subject to at one time or another
[1–6]. A sudden drop in osmolarity (an osmotic shock) will
cause water to rush into a living cell and requires an immediate
response by the cell to prevent it from getting damaged or
undergoing lysis from the increased tension on the cellular
membrane. Mechanosensitive (MS) channels are ion channels
located on the cell membrane, which open when the membrane
tension becomes too high [7,8], and play a crucial role in the
cell’s defence mechanism against osmotic shocks [9,10]. They
act as safety valves, releasing ions and decreasing the osmotic
pressure and the membrane tension. MS channels are found
in many organisms and have been well characterized in the
bacterium E. coli [11–13].

The cellular membrane in which the MS channels are
inserted is a lipid bilayer. The interior of the bilayer is
hydrophobic, making it energetically favourable for it to
thicken or compress to match the hydrophobic parts of the
channel proteins inserted in the membrane [14]. This results in
a deformation profile around each channel, with the thickness
of the bilayer being a function of position. This deformation
mediates a short-range effective force between two neighbor-
ing channels, similar to the force between two nearby corks
floating on water, which interact through the deformation
they induce on the surface of water. This interaction can be
attractive or repulsive, depending on the shapes of the two
molecules. Furthermore, a theoretical analysis suggests that
the interaction between two neighboring channels lowers the
tension needed to open them during an osmotic shock [15],
raising the possibility that their function could be influenced by
their spatial distribution on the membrane (as already noticed
for other membrane proteins [16,17]). This is reinforced by
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the fact that the channels’ attractive forces suggest that they
may agglomerate into clusters. Our goal in this paper is to
determine the consequences that the interchannel interaction
has on the dynamics of this system, focusing in particular on
channel clustering and its consequences for the cell’s response
to osmotic shocks.

A preliminary study of mechanosensitive channel cluster-
ing was done in Refs. [18,19]. In that work, diffusion, leading
to the formation of clusters of channels, and opening were
considered two separate processes. This assumption made the
model easier to analyze, but it is hard to justify: in reality,
diffusion and gating take place simultaneously.

In this work, we formulate a model of the collective
dynamics of MS channels, where diffusion and gating are
considered simultaneous, and no assumption of time sep-
aration between clustering and gating is made. Using a
combination of analytic techniques and numerical simulations,
we analyze the equilibrium and the dynamics of the system,
focusing in particular on the response of the channels to
osmotic shocks. We find that the interplay between the
spatial and the internal degrees of freedom of the channels
leads to unexpected collective phenomena, with possible
implications for their biological function. We show that the
fraction of open channels undergoes a phase transition as
the membrane tension increases; and this transition changes
from second-order to first-order as the density of channels
crosses a critical value. We explain this change in the nature
of the transition as the result of collective gating induced
by a cluster of channels which appears for high densities.
Studying the time evolution of the system after applying
an osmotic shock, we find that clustering leads to dramatic
changes in the channels’ response, slowing considerably their
gating. In addition, clustered channels show extreme ensemble
variations in their response times, despite the large numbers
of channels present in each cell, which could translate into
large stochastic cell-to-cell differences in response times in
a population of cells. Finally, we discuss how our results
are relevant for the stress response of E. coli and other
organisms.
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FIG. 1. Diagram representing the lattice model. Channels interact
with nearest neighbors with energies εoo, εcc, and εoc, depending on
the states of the interacting channels.

II. MODEL

In our model, we regard the cellular membrane as a
two-dimensional (2D) square lattice of size L, where each
of the sites can be either empty or occupied by a channel. We
focus on the mechanosensitive channels of large conductance
(MscL), which have been well studied in this context [20–22].
The total number N of channels is regarded as constant, so
that the density ρ of channels (mean number of channels per
lattice site) is fixed; we are in the canonical ensemble. We
consider that MscL can be in one of two states, closed or
open. The interaction energies between two channels have
been obtained by minimizing the energy functional defined
by the deformation profile [15]. For small distances (a few
nanometers) between channels, if εoo, εcc, and εoc are the
interaction energies between a pair of open channels, a
pair of closed channels, and an open and a closed channel,
respectively, we have εoo < εcc < 0 and εoc > 0: two open
channels and two closed channels attract each other, the
attraction being stronger in the first case; and a closed channel
repels an open channel (see Ref. [18] for the complete energy
profiles). Figure 1 illustrates our lattice model.

If we consider that all channels are in the same state,
without the possibility of gating, this model is exactly the
lattice gas model. The 2D lattice gas model is exactly solvable,
due to its equivalence to the Ising model [23], and presents a
phase transition from a homogeneous to a clustered channel
distribution as the density of channels increases [18].

The model we describe shares some similarities with the
spin-1 Ising model analyzed in a mean-field approximation in
the grand canonical ensemble in Ref. [24], but our approach has
the advantage of yielding more information about the spatial
distribution of channels.

III. RESULTS

A. Equilibrium distributions

We start by studying the equilibrium properties of the
system, as defined by our lattice model. We use a mean-
field approximation, which will allow us to write explicit
expressions for the energy and entropy of the system, from
which we can find its free energy. As a simplifying assumption,
we assume the existence of at most one cluster. For the

energy values we consider, the existence of a single cluster in
equilibrium is reasonable and supported by test simulations.
Let f be the fraction of channels in the cluster; the other
channels are spread throughout the rest of the membrane.
Furthermore, let φin be the fraction of open channels within
the cluster, and φout the fraction of open channels out-
side the cluster. The three quantities f , φin, and φout are
the thermodynamic variables of our model. Our next job is to
write the free energy of the system in terms of these variables.
Cluster formation and channel gating are then studied by
finding the global minimum of the free energy. For example, a
cluster is present if f > 0 in the state of minimum free energy.

The free energy per channel, F/N , for a given temperature
T can be written as

F

N
= (eint + emem) − T s, (1)

where the entropy per channel, s, can be estimated via com-
binatorial analysis, calculating the number of configurations
that channels can assume. The energy per channel is divided
into two terms: the interaction among channels, eint, and the
interaction of each channel with the membrane, emem. For each
of the configurations devised in the preceding calculation, the
interaction among channels can be estimated considering that
channels interact only with nearest neighbors. The interaction
with the membrane depends on the difference of energies
between closed and open states and the work due to the
variation on the channel’s area in the gating process. In
the mean-field approximation, we find (see Appendix A for
complete derivation of the results)

s = kB

{
ln

[
(1 − ρ)

ρ(1 − f )(1 − φout)

]

+f ln

[
ρ(1 − f )(1 − φout)

(1 − ρf )(1 − φin)

]
+ 1

ρ
ln

[
(1 − ρf )

(1 − ρ)

]

+φout(1 − f ) ln

[
(1 − φout)

φout

]
+ φinf ln

[
(1 − φin)

φin

]}
;

(2)

eint = 2f [εcc + 2(εco − εcc)φin + (εcc − 2εco + εoo)(φin)2];

(3)

emem = (�G0 − τ�A)

2
[2f φin + 2(1 − f )φout − 1]. (4)

Here the parameters �G0, �A, and τ are the difference
between the energies of open and closed states, the difference
in membrane areas between the open and closed configurations
of a channel, and the membrane tension, respectively. The term
�G0 covers both the energetic cost of membrane deformation
and the cost of changing the internal structure of the channel.
We used �G0 = 50 kBT and �A = 20 nm2, following
Ref. [25]. For these parameters, a single noninteracting
channel has a 50% opening probability at the tension τ =
2.5 kbT /nm2 [15].

The equilibrium distribution for this system is then given by
the values feq , φout

eq , and φin
eq which minimize the free energy,

for given values of ρ and τ (in the following, the subscript eq
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FIG. 2. Fraction of open channels in the system, Po (a), and
fraction of channels that belong to the cluster, f (b), as functions of the
membrane tension τ , for different values of ρ. Here εoo = −15.0 kBT ,
εcc = −5.0 kBT , and εoc = 10.0 kBT .

will be omitted). The fraction of open channels on the whole
lattice is given by Po = f φin + (1 − f )φout. Figure 2 shows
how f and Po vary as functions of the membrane tension, τ ,
for different values of the density ρ.

We see in Fig. 2(a) that the fraction of open channels Po

undergoes a transition from nearly zero (all channels closed)
to nonzero values as the membrane tension τ increases. The
nature of the transition depends on the channel density ρ. For
small values of ρ, the transition is continuous: Po increases
smoothly from zero beyond a critical value of τ . For ρ

greater than a critical value ρc, however, the transition is
discontinuous, with Po jumping abruptly to a positive value
at the critical tension.

The key to explaining this phenomenon is in the correspond-
ing behavior of the cluster fraction f , depicted in Fig. 2(b). At
low tensions, the channels are closed. Since the force between
two closed channels is attractive, they can form a cluster if
their density is high enough; this is the case for the two upper
curves in Fig. 2(b). Comparing with Fig. 2(a), we see that
these correspond to the densities for which the transition in Po

is abrupt: if a cluster already exists at low tension, Po has a
discontinuous transition. The reason for this comes from the
fact that the interaction energy between two open channels is
much greater than any other combination of channels, and this
becomes more and more so as the tension increases, since high
tensions favor the opening of the channels. In equilibrium, if
one of the channels in the cluster is open, all the others are
open as well, because any mixture of open and closed channels
incurs a heavy cost in free energy. So at a critical tension, the
whole cluster opens, and since the cluster contains a finite
fraction of the channels in the cell, this results in the abrupt
jump in Po seen in Fig. 2(a).

For lower channel densities, on the other hand, there is
no cluster at lower tensions. As the tension is increased, it
eventually becomes favorable for channels to open, and as they
do, they will tend to bunch together in a cluster, because of the
high open-open interaction energy. But because in this case
there was no cluster to start with, the number of open channels
will increase gradually as the tension rises, and so will the
cluster size. This predicts that the cluster size f and the fraction
of open channels Po will undergo a continuous transition and
increase in tandem. This is exactly what we see in Fig. 2(a).
In both the low- and high-density regimes, the clustering
reduces considerably the threshold for channel opening [see
Fig. 2(a)], which might have implications for the response of
the cell to osmotic shock, as we shall see in the following.
These collective phenomena are a direct consequence of the
inextricable link between the spatial distribution of channels
and their internal gating dynamics.

B. Osmotic shock

In order to understand the response of the channels to
an osmotic shock, we have to go beyond the equilibrium
theory and look at their time-dependent activation dynamics.
To study the coupled gating and diffusion dynamics, we use
a Monte Carlo simulation scheme with two possible actions
in each step: (1) with probability pG, a randomly chosen
channel attempts changing its state (closed or open) or (2)
with probability 1 − pG, it attempts to move to one of its
four neighboring sites, if it is vacant. The attempts succeed
with a probability of acceptance, A, according to the criterion
A = e−β�E if �E > 0, or A = 1 if �E � 0, where �E is the
change in energy between final and initial configurations of the
system following the attempt. Thus, the algorithm is a variation
of the Kawasaki dynamics, for which the position updates are
local, making it suitable for nonequilibrium simulations of the
lattice gas [23]. The probability pG is determined by the ratio of
the rates of diffusion and gating: pG = λG/(λG + λD), where
λG = 1/�tG and λD = 1/�tD are the rates of gating and
diffusion, given by the experimentally measured characteristic
times of gating and diffusion, �tG and �tD , respectively.
Each Monte Carlo step is given after N random choices
of channels to attempt change of state or diffusion, where
N is the total number of channels. We relate a Monte
Carlo step, �tMC , to a real time interval using the weighted
average �tMC = pG�tG + (1 − pG)�tD . In our simulations,
we have used �tG = 4 μs and �tD = 208 μs [26,27] (see
Appendix B), for which we have �tMC

∼= 8 μs. Since the
increase in channel area during the gating process precludes
the determination of a single value for the lattice constant, we
had to choose it in a range of reasonable biological values.
We use L = 400 and ρ = 0.002 for lattice size and channel
density, respectively, in accordance to typical values for E. coli
(see Appendix B). In all our simulations, we start the system
from an equilibrium situation at low membrane tension τ .
We then increase τ abruptly, mimicking an osmotic shock,
and follow the dynamics of the channels using the algorithm
described above. The value of τ is kept fixed throughout the
simulation.

It is instructive to compare the time evolution of a
hypothetical system of noninteracting channels to that of the
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FIG. 3. (a) Average fraction of open channels as a function of
simulated time, for different values of τ . Black squares represent
the same system without interaction between channels. Real time is
shown in parentheses on the x axis. (b) Number of samples with a
given fraction of open channels, for three different transients, for the
interacting case with τ = 3.0 kbT /nm2. The parameters are λD/λG =
0.02, L = 400, ρ = 0.002, εoo = −15.0 kBT , εcc = −5.0 kBT , and
εoc = 10.0 kBT . For each set of parameters, 500 samples were
considered, and error bars correspond to one standard deviation.

real system of interacting channels. After approximately 10
MC steps per channel, all the noninteracting channels are open
and stay in this state until the end of the simulation [black
squares, Fig. 3(a)]. The behavior of the system of interacting
channels, in contrast, is governed by two processes acting on
vastly different time scales [black circles, Fig. 3(a)]: (1) the
fast opening of the isolated channels outside the cluster and
(2) the much slower opening of the channels in the cluster.
The most striking aspect of the dynamics shown in Fig. 3(a)
is the dramatic variability of the opening times of the cluster:
in one run of the simulation, the cluster may open in a few
microseconds, and in another it may take 100 milliseconds
to open. This massive variation is a result of the long-range
correlations created by the interactions between channels. The
stochastic nature of the cluster is a direct effect of the nontrivial
collective behavior of the interactive channels.

The variation is further highlighted by the histogram of the
fraction of open channels in a cell some (long) time after
the osmotic shock is applied, in 500 independent runs of
the Monte Carlo simulation [see Fig. 3(b)]. We see that the
distribution is bimodal, with roughly similar numbers of cells
with open and closed clusters, even after very long times after
the shock. This means that in a population of cells subjected
to osmotic shock, there will be massive differences in the
response times from one cell to another, even if the cells are
genetically identical and even though they feel exactly the
same stress. In essence, the collective dynamics that emerged

from the channel interactions amplifies stochastic fluctuations
at the molecular scale to the “macroscopic,” population scale,
making them potentially detectable by population assays.

We note that this large variability disappears once the
tension becomes strong enough. For τ = 4.0 kbT /nm2 and
5.0 kbT /nm2 [respectively, up and down triangles in Fig. 3(a)],
both clustered and freely diffusing channels respond very
quickly, with all the channels in the system opening after only
10 MC steps.

Finally, we would like to emphasize that the membranes
are a crowded environment and that the tight packing of
channels within this environment may introduce additional
effects on gating. The most important effect appears due to the
packing frustration and entropic tension. Packing frustration
may lead to a decrease in the tendency to gate due to space
limitation created by neighbors. Additionally, entropic tension
originated by environmental crowding may have a significant
influence on MS channels’ conformational change due to
volume exclusion [28]. These effects could be considered,
as a first approximation, accounting to a different choice of
parameters in a simple extension of our model (specifically
the energy difference between open and closed states).

IV. CONCLUSION

Using fluorescence microscopy and Western blot analysis
[29], the average number of MscLs in native E. coli cells has
been estimated between 300 and 1000 channels. These results
are similar to the one obtained with ribosome profiling [30]
that measures 360 to 560 channels per cell. These numbers
take the channel density close to or above the threshold for
cluster formation at low tensions. Patch-clamp experiments
complemented with fluorescent and atomic force microscopy
show evidence for crowding and collective response of
channels in liposomes [31]. Other studies have shown nonho-
mogeneous distributions of overexpressed MS channels in live
bacterial cells [29,32,33]. Although all these studies suggest
cluster formation for native channels, the debate around this
question is still open. A recent study, through use of photo-
activated localization microscopy and single-particle tracking,
had shown strong indications that labeling with fluorescent
molecules predisposes MscL channels to form clusters [34].
In either case, if there is any form of channel aggregation
in bacterial cells, the collective phenomena we describe here
may be directly relevant for the osmotic response of bacteria.
Furthermore this model can be extended to other types of
channels, such as electrically sensitive ion channels, which are
also expected to react cooperatively to external stimuli [35].

Possible evidence for the large variability in channel
activation predicted by our analysis is the recent observation
of very late channel gating activity in E. coli cells subjected
to osmotic shock [26]: gating was seen as long as 100 ms
after the shock. Since isolated MscL channels are known to
gate within a few microseconds after their tension threshold is
passed, it is difficult to explain this observation if the channels
do not interact. This is naturally explained by the variability
of channel activation, however: Fig. 3 shows that a cluster
could take a time of the order of 100 ms to open. Another
recent work [36] also highlights the large cell-to-cell variability
of the downshock responses. Furthermore this work shows
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a very slow cell volume recovery, which may also indicate
cooperative activity of channels.

Calculations based on the ionic flux through a single
open channel suggest that as few as five to 10 channels
would be enough to protect a cell [26]. This contrasts with
the recent measurements of MscL numbers on native cells,
which indicate numbers of channels up to two orders of
magnitude greater than this estimate. With so many channels
in a native E. coli cell, simultaneous opening of all channels
would lead to a drastic release of intracellular material, as
well as depolarization of the membrane potential [26], with
potentially fatal consequences for the cell. Hence this high
expression level of channels is still a mystery. As seen in
Fig. 3, the presence of the cluster significantly delays the
opening of the whole system of channels, compared with
the noninteracting case, for a shock with smaller membrane
tension. Thus, clustering could provide a mean to self-regulate
the simultaneous opening of a large number of channels, in
order to restore the osmotic equilibrium of the cell and function
as a channel reservoir if more of them are needed in case of a
severe shock. This is an admittedly speculative, but plausible,
fitness advantage for the large numbers of channels found in
E. coli.
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APPENDIX A: DERIVATION FOR THE FREE
ENERGY EXPRESSION

Consider a square lattice of size L, in which each site
can be empty or occupied by a channel, with a total of N

indistinguishable channels on the lattice. These channels are
either grouped in a cluster of size nc or scattered on the lattice
and can assume two possible states: open or closed. Let us
assume that there are o open channels and c closed channels
on this lattice and also assume that oin of these open channels
belong to the cluster and oout are scattered (in a same sense,
there are cin closed channels in the cluster and cout closed
channels scattered, so that the relations o = oin + oout and
c = cin + cout are valid).

The total number of configurations for this system will be
the product of the number of configurations of the cluster
and the number of configurations of the area outside the clus-
ter. The number of configurations for the cluster (disregarding
permutations between indistinguishable channels) is given by

nc!

oin!cin!
. (A1)

The number of configurations of the area outside the cluster
considers the permutation of the sites ((L2 − nc)!) ignoring
permutations between channels and permutation between
empty sites. Thus we have

(L2 − nc)!

oout!cout!(L2 − N )!
. (A2)

Using the relations

o − oin = oout,

c − cin = N − nc − oout,

cin = nc − oin,

we obtain for the product of Eqs. (A1) and (A2):

nc!(L2 − nc)!

oin!(nc − oin)!oout!(N − nc − oout)!(L2 − N )!
(A3)

or even in a more elegant form:

1

(N − nc)!

(L2 − nc)!

(L2 − N )!

(
N − nc

oout

)(
nc

oin

)
.

With the total number of configurations of indistinguishable
channels given by (A3), we can calculate the entropy for the
system:

S = kB log

[
nc!(L2 − nc)!

oin!(nc − oin)!oout!(N − nc − oout)!(L2 − N )!

]
,

(A4)

which gives (using Stirling’s formula)

S = kB

{
N log

[
(L2 − N )

(N − nc − oout)

]

+ nclog

[
nc(N − nc − oout)

(L2 − nc)(nc − oin)

]

+L2log

[
(L2 − nc)

(L2 − N )

]

+ ooutlog

[
(N − nc − oout)

oout

]

+oinlog

[
(nc − oin)

oin

]}
. (A5)

Defining the quantities

ρ = N

L2
, f = nc

N
, φout = oout

N − nc

, φin = oin

nc

, (A6)

we have

S = kBN

{
log

[
(1 − ρ)

ρ(1 − f )(1 − φout)

]

+ f log

[
ρ(1 − f )(1 − φout)

(1 − ρf )(1 − φin)

]

+ 1

ρ
log

[
(1 − ρf )

(1 − ρ)

]
+ φout(1 − f )log

[
(1 − φout)

φout

]

+φinf log

[
(1 − φin)

φin

]}
. (A7)

To calculate the energy of the channels inside the cluster,
consider Pm as the probability that m of the four neighbors of
a chosen node are open. This probability can be estimated by

Pm �
(

4

m

)(
oin

nc

)m(
1 − oin

nc

)4−m

=
(

4

m

)
(φin)m(1 − φin)4−m.

022410-5



FERNANDES, GUSEVA, AND DE MOURA PHYSICAL REVIEW E 96, 022410 (2017)

If εoo, εco, and εcc are the interaction energies between two
open channels, one closed channel and one open channel,
and two closed channels, respectively, then the energy that
accounts for the interactions inside the cluster can be estimated
by

Eint = oin

2
[(4εco)P0 + (3εco + εoo)P1 + (2εco + 2εoo)P2

+ (εco + 3εoo)P3 + (4εoo)P4]

+ (nc − oin)

2
[(4εcc)P0 + (3εcc + εco)P1

+ (2εcc + 2εco)P2 + (εcc + 3εco)P3 + (4εco)P4],

which can be further simplified to

Eint = 2Nf [εcc + 2(εco − εcc)φin + (εcc − 2εco + εoo)(φin)2].

(A8)

The region outside the cluster is only sparsely populated by
channels, so that the chance of a close encounter between two
channels is very small. Given that, we disregard any interaction
energy between channels outside the cluster.

For all the channel on the lattice it is also needed to consider
the conformation energy, as a function of the membrane
tension, or, in other words, how the channels sense variations
of this tension. Considering all channels on the lattice, we have

Emem = (oin + oout)
(�G0 − τ�A)

2

− (N − oin − oout)
(�G0 − τ�A)

2

= (�G0 − τ�A)

2
(2oin + 2oout − N )

= N
(�G0 − τ�A)

2
[2f φin + 2(1 − f )φout − 1],

(A9)

where �G0 is the difference between the energies of open and
closed states, �A is the deformation area of the channels and
τ is the membrane tension. We then have for the total energy
of the system, E = Eint + Emem:

E = N

{
2f [εcc + 2(εco − εcc)φin

+ (εcc − 2εco + εoo)(φin)2]

+ (�G0 − τ�A)

2
[2f φin + 2(1 − f )φout − 1]

}
.

(A10)

Finally, we have for the system’s free energy:

F = E − T S

= N

{
2f [εcc + 2(εco − εcc)φin

+ (εcc − 2εco + εoo)(φin)2]

+ (�G0 − τ�A)

2
[2f φin + 2(1 − f )φout − 1]

}

− NkBT

{
log

[
(1 − ρ)

ρ(1 − f )(1 − φout)

]

+ f log

[
ρ(1 − f )(1 − φout)

(1 − ρf )(1 − φin)

]

+ 1

ρ
log

[
(1 − ρf )

(1 − ρ)

]

+ φout(1 − f )log

[
(1 − φout)

φout

]

+ φinf log

[
(1 − φin)

φin

]}
. (A11)

APPENDIX B: LATTICE SIZE, DENSITY AND
CHARACTERISTIC TIMES FOR GATING AND DIFFUSION

As a simplifying approach to study the gating dynamics,
we consider a membrane which is solely populated by MscL.
To obtain the total number of lattice sites Ns , we divide
the total membrane area of E. coli, ≈6 × 10−12 m2 [37],
by the area of a single channel. As the area occupied by
a single channel increases during the gating process, it is
not possible to determine a single value for this parameter.
Considering the radius of the closed channel, 2.5 nm, this
gives a total number of lattice sites equal to Ns = 305 577,
and hence, for a regular square lattice, we have a lattice size
L = √

Ns ≈ 553. If on the other hand we consider the radius
of the open channel, 3.5 nm, we have Ns = 155 907, and thus
L ≈ 395. In the simulations, we use L = 400, as it is still in
the biologically relevant interval, and because small variations
in this parameter will not change qualitatively the results.

As discussed in Ref. [26], previous studies suggest that
the channels gate ∼3–5 μs after tension threshold is reached.
Thus, we set

�tG = 4 μs. (B1)

For the diffusion coefficient of MscL we choose D =
0.059 nm2/μs, a value close to the one obtained experimen-
tally in Ref. [34]. Considering diffusion in a bidimensional
circle of radius 2r , where r = 3.5 nm is the radius of a single
open channel (approximately to the size of one lattice cell), we
can obtain an estimate of the diffusion time using σ 2 = 4Dt ,
with σ ≈ 2r . Thus,

t = σ 2

4D
= 49

4 × 0.059
≈ 208 μs.

With this, we set

�tD = 208 μs. (B2)

Finally, considering the quantification of MscL in E. coli
done in Ref. [29], the number of channels is estimated in
the range 300–1000. We use the value N = 320, which
gives a density ρ = 320/(400)2 = 0.002. For the interaction
energies used before, εoo = −15 kBT , εcc = −5 kBT , and
εoc = 10 kBT , this density is above the threshold for cluster
formation in the lattice gas model.
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