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Abstract: HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV
disease. It often presents with significant neuropathic pain and is associated with
previous exposure to neurotoxic nucleoside reverse transcriptase inhibitors. However,
HIV-SN prevalence remains high even in resource-rich settings where these drugs are
no longer used. Previous evidence suggests that exposure to indinavir, a protease
inhibitor commonly used in antiretroviral therapy, may link to elevated HIV-SN risk.
Here we investigated whether indinavir treatment was associated with the development
of a "dying back" axonal neuropathy and changes in pain-relevant limb withdrawal and
thigmotactic behaviours. Following two intravenous injections of indinavir (50 mg/kg, 4
days apart), adult rats developed hindpaw mechanical hypersensitivity, which peaked
around 2 weeks post first injection (44% reduction from baseline). At this time, animals
also had 1) significantly changed thigmotactic behaviour (62% reduction in central
zone entries) comparing to the controls and 2) a significant reduction (45%) in hindpaw
intraepidermal nerve fibre density. Treatment with gabapentin, but not amitriptyline,
was associated with a complete attenuation of hindpaw mechanical hypersensitivity
observed with indinavir treatment. Furthermore, we found a small but significant
increase in microglia with the effector morphology in the lumbar spinal dorsal horn in
indinavir-treated animals, coupled with significantly increased expression of phospho-
p38 in microglia. In summary, we have reported neuropathic pain-related sensory and
behavioural changes accompanied by a significant loss of hindpaw skin sensory
innervation in a rat model of indinavir-induced peripheral neuropathy that is suitable for
further pathophysiological investigation and preclinical evaluation of novel analgesics.
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Dear Prof Keefe, 

 

We are submitting our revised manuscript characterizing a rodent model of HIV protease 

inhibitor indinavir induced peripheral neuropathy.  

 

We are pleased to hear that you, the Section Editor, and the reviewer #1 have considered that 

our manuscript is suitable for publication in PAIN pending minor revisions. We have 

addressed the reviewer’s minor concerns (highlighted in red color in the manuscript) as 

follows: 

 

1. Concern 1: “The authors should indicate the concentrations of each antibodies they used.”  

Response: We have included antibody concentrations in the result section as suggested by the 

reviewer (page 8, second paragraph; page 9, second paragraph). 

 

2. Concern 2: “There are also some spelling mistakes that need to be fix. For example, in the 

abstract: phospho-p38 instead of "phopspho-p38", p12 line 3-4 cold hypersensitivity instead 

of mechanical hypersensitivity.” 

Response: We have corrected the spelling mistakes (page 2, line 16; page 12, line 3). 

 

We feel that the above changes have addressed the minor concerns of the reviewer. We thank 

you for considering our submission for publication in Pain. 

 

 

Yours Sincerely, 

 

 
 

Dr. Wenlong Huang 
 

 

Response to Reviewers
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Abstract 

 

HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV 

disease. It often presents with significant neuropathic pain and is associated with previous 

exposure to neurotoxic nucleoside reverse transcriptase inhibitors. However, HIV-SN 

prevalence remains high even in resource-rich settings where these drugs are no longer used. 

Previous evidence suggests that exposure to indinavir, a protease inhibitor commonly used in 

antiretroviral therapy, may link to elevated HIV-SN risk. Here we investigated whether 

indinavir treatment was associated with the development of a “dying back” axonal neuropathy 

and changes in pain-relevant limb withdrawal and thigmotactic behaviours. Following two 

intravenous injections of indinavir (50 mg/kg, 4 days apart), adult rats developed hindpaw 

mechanical hypersensitivity, which peaked around 2 weeks post first injection (44% reduction 

from baseline). At this time, animals also had 1) significantly changed thigmotactic behaviour 

(62% reduction in central zone entries) comparing to the controls and 2) a significant 

reduction (45%) in hindpaw intraepidermal nerve fibre density. Treatment with gabapentin, 

but not amitriptyline, was associated with a complete attenuation of hindpaw mechanical 

hypersensitivity observed with indinavir treatment. Furthermore, we found a small but 

significant increase in microglia with the effector morphology in the lumbar spinal dorsal 

horn in indinavir-treated animals, coupled with significantly increased expression of phospho-

p38 in microglia. In summary, we have reported neuropathic pain-related sensory and 

behavioural changes accompanied by a significant loss of hindpaw skin sensory innervation in 

a rat model of indinavir-induced peripheral neuropathy that is suitable for further 

pathophysiological investigation and preclinical evaluation of novel analgesics. 
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Abstract 

HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV disease. It 

often presents with significant neuropathic pain and is associated with previous exposure to 

neurotoxic nucleoside reverse transcriptase inhibitors. However, HIV-SN prevalence remains high 

even in resource-rich settings where these drugs are no longer used. Previous evidence suggests that 

exposure to indinavir, a protease inhibitor commonly used in antiretroviral therapy, may link to 

elevated HIV-SN risk. Here we investigated whether indinavir treatment was associated with the 

development of a “dying back” axonal neuropathy and changes in pain-relevant limb withdrawal 

and thigmotactic behaviours. Following two intravenous injections of indinavir (50 mg/kg, 4 days 

apart), adult rats developed hindpaw mechanical hypersensitivity, which peaked around 2 weeks 

post first injection (44% reduction from baseline). At this time, animals also had 1) significantly 

changed thigmotactic behaviour (62% reduction in central zone entries) comparing to the controls 

and 2) a significant reduction (45%) in hindpaw intraepidermal nerve fibre density. Treatment with 

gabapentin, but not amitriptyline, was associated with a complete attenuation of hindpaw 

mechanical hypersensitivity observed with indinavir treatment. Furthermore, we found a small but 

significant increase in microglia with the effector morphology in the lumbar spinal dorsal horn in 

indinavir-treated animals, coupled with significantly increased expression of phospho-p38 in 

microglia. In summary, we have reported neuropathic pain-related sensory and behavioural changes 

accompanied by a significant loss of hindpaw skin sensory innervation in a rat model of indinavir-

induced peripheral neuropathy that is suitable for further pathophysiological investigation and 

preclinical evaluation of novel analgesics. 

 

(Word count = 250) 

Key words: HIV; peripheral; neuropathy; neuropathic pain; rat; indinavir; thigmotaxis
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Introduction 

 

HIV-associated sensory neuropathy (HIV-SN) is the most frequent neurological manifestation of 

HIV disease and is seen in 40-50% of patients whose HIV disease is otherwise well controlled by 

antiretroviral therapy (ART) [22; 24; 47]. HIV-SN is a distal symmetrical, predominantly sensory, 

polyneuropathy. The symptoms of HIV-SN present with a characteristic gloves and socks 

distribution and it is associated with significant neuropathic pain [1; 12; 31; 45; 48]. HIV-SN has 

been hither to thought to result from two clinically indistinguishable neuropathies with distinct 

pathogenesis: a distal axonal degeneration caused by interaction of sensory neurones with HIV 

proteins e.g. HIV glycoprotein gp120 [3; 16; 23; 32; 38; 47; 49] and ART-induced toxic neuropathy 

associated with nucleoside reverse transcriptase inhibitors (NRTIs) [22; 24; 50].  

 

Since NRTI introduction, the morbidity and mortality of HIV infection have been markedly reduced 

[22]. Whilst certain d-NRTIs such as zalcitabine (ddC) and stavudine (d4T) [18; 50] are 

undoubtedly neurotoxic, the prevalence of HIV-SN in resource-rich settings did not decline in 

patients who have never been exposed to these drugs [9; 22], suggesting that alternative or 

additional factors may underlie HIV-SN in the clinical setting. Protease inhibitors are regularly used 

a part of combinational ART. A number of studies have linked exposure to protease inhibitor 

medication to HIV-SN risk [8; 29; 39; 46], including a demonstration of indinavir potentiating the 

neurotoxicity of HIV in a transgenic rat model using cultured dorsal root ganglia (DRG) [39][52]. 

Thus, HIV-infected DRG cultures exposed to indinavir showed significant neuronal atrophy, neurite 

retraction, and process loss, compared with controls. However, this association between protease 

inhibitors and HIV-SN also remains far from clear. A review of adults initiating combinational 

ART in AIDS Clinical Trials Group (ACTG) studies found HIV-SN risk was only increased by 

protease inhibitor use if the patient was also using at least one neurotoxic d-NRTI [13]. Further 

analysis of patients involved in the US-based CHARTER (CNS HIV Anti-Retroviral Treatment 
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 4 

Effects Research) cohort found small, if any, independent effect of protease inhibitor exposure on 

HIV-SN risk [11].  

 

Rat models have been used to understand the pathogenesis of HIV-SN and to develop novel 

therapeutics for HIV-SN [17; 19-21; 23; 49-52]. Here we hypothesised that systemic indinavir 

treatment in rats would produce signs of peripheral neuropathy and neuropathic pain-like 

behaviours. Initially, we validated the approach in behavioural studies, which showed that 

indinavir-treated rats developed hindpaw mechanical and cold, but not heat, hypersensitivity and 

pain-related aberrations in complex, ethologically relevant thigmotactic behaviour [17; 49; 50]. We 

then elucidated the clinical diagnostic feature of a length dependent “dying back” small fibre axonal 

neuropathy by demonstrating loss of epidermal innervation following indinavir treatment.  

 

(Word count = 435) 
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Materials and Methods 

 

Ethical statement 

Animal experiments were conducted in accordance with United Kingdom law (Animal Scientific 

Procedures Act 1986; Project License PPL70/7162) and IASP guidelines [54]. The ARRIVE 

reporting guidelines were followed [25]. An ARRIVE checklist is provided in the supplementary 

materials. 

 

Experimental animals 

Temperature-controlled standard rat IVC cages (21C, 2-3 per cage) with corncob bedding were 

used for housing the animals (male adult Wistar rats; 200–300 g; Charles River, UK). We did not 

use environment enrichment. Rats were kept on a 12:12 h light–dark cycle. Normal rat chow (RM1 

pellets; Special Diet Services, Essex, UK) and tap water ad libitum were provided. Animals were 

allowed to acclimatise for 48 h following delivery.  

 

Study design  

In order to reduce experimental bias, we followed major domains of Good Laboratory Practice [30; 

43] (Supplementary Table 1). Behavioural experiments were carried out in the light phase in the 

behavioural laboratory, and intravenous (i.v.) and intraperitoneal (i.p.) injection procedures were 

conducted in the surgical laboratory, all at Imperial College London (Chelsea & Westminster 

Campus). We used batches of subset experiments (normally 2-3 animals per group) for thigmotaxis. 

Sequences of A-B-C then C-B-A (letters assigned to mask the cage labels during testing) were used 

to select animals.            
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 6 

Indinavir administration 

Under general anaesthesia [1-2% isoflurane (Abbott, UK) in O2 and N2O ratio 1:1], indinavir (0.5 

ml; 50 mg/kg in sterile saline; donated by Pfizer Ltd.) was administered via a tail vein. Four days 

later, a second injection of indinavir was carried out at the same dose and volume. Control animals 

were given sterile saline at equivalent volumes. Previous animal data with other antiretroviral drugs 

have shown that oral gavage and i.v. routes result in comparable nocifensive behavioural profiles 

[19]. Therefore, we decided to use the i.v. route, which would minimise handling stress caused by 

oral gavage. The dose and treatment regime were chosen based on previous studies with ddC and 

d4T [17; 19; 50].  

 

Hindpaw mechanical hypersensitivity 

The procedure to assess hindpaw withdrawal to mechanical stimuli was the same as in our previous 

study [50]. An electronic “von Frey” device (0.5 mm2 probe tip area; Somedic Sales AB, Sweden) 

was used to measure the withdrawal threshold in response to punctate static mechanical stimulation. 

We carried out 2 habituation sessions (40-50 min each) and then 2 baseline tests. Animals were 

placed in plexiglass boxes (23 x 18 x 14 cm) with 0.8 cm diameter mesh flooring for 

acclimatisation. When exploratory behaviour ceased, the probe was used to deliver an increasing 

force (rate of 8-15 g/s) and was applied to the mid-plantar until the animal actively withdrew the 

paw. This was repeated 4 times at 1 min interval between each application.  

 

Hindpaw cold hypersensitivity 

Cold hypersensitivity was assessed using the acetone drop method [5]. Animals were placed in 

plexiglass boxes (23 x 18 x 14 cm) with 0.8 cm diameter mesh flooring and allowed to acclimatise 

for 15 min or until exploratory behaviour ceased. The cooling stimulus was a single bubble of 

acetone applied to the mid plantar surface of each hindpaw delivered from the tip of a 1 ml syringe. 

A positive response was recorded when the rat withdrew its paw following the acetone application. 
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 7 

For each measurement, five acetone drop applications were delivered and a mean limb withdrawal 

rate calculated. At least 3 min were allowed to elapse between each test. 

 

Hindpaw response to noxious heat 

Hypersensitivity to noxious heat was assessed by measuring the limb withdrawal time following 

application of an infrared heat stimulus (Plantar test, Ugo Basile, Italy, Hargreaves et al., 1988). 

Briefly, animals were placed in a clear plexiglass box (23 x 18 x 14 cm) with a dry glass floor and 

allowed to acclimatise for 15 min or until exploratory behaviour ceased. A focused infrared beam 

(46C, wavelength 50 nm) was delivered to the plantar surface of the hindpaw. The paw withdrawal 

latency (s) to this stimulus was tested three times at intervals of not less than 3 min and a mean 

withdrawal latency calculated. To avoid thermal injury, an automatic cut-off time of 21 s was set. 

 

Thigmotactic behaviour  

The rationale of thigmotaxis as a predator avoidance ethologically-relevant behavioural outcome 

measure in rodent pain studies has been previously described [17]. At PID 15, the rats were 

introduced for the first time to the 100 x 100 cm open field arena, which was lit to a light intensity 

of 12 lux. Locomotor activity was then recorded for 15 min using a high-sensitivity Sanyo camera 

(VCB 3372, Japan). EthoVision software (v.4.1, Tracksys Ltd., UK) was used to track the 

movement of animals in the arena, and to calculate the frequency of entry and time spent in the 

virtual central zone (40 x 40 cm) as well as the total distance travelled in the whole open field arena.  

 

Pharmacological validation 

Animals received i.p. injections of either analgesic drugs or vehicle solutions twice per day (b.d.) 

between PID 12 and 15, during which the hindpaw withdrawal thresholds were measured in 

response to punctate static mechanical stimulation once per day at 1.5–2 h after the first injection. 

We chose to test gabapentin (0.5 ml; 30 mg/kg in sterile saline; a gift from Pfizer Ltd.) and 
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 8 

amitriptyline (0.5 ml; 10 mg/kg in sterile saline; Sigma, UK;), which was based on previous studies 

and clinical trials [15; 41; 50]. 

 

Immunohistochemistry and quantitative analysis 

The procedures for tissue processing, immunohistochemistry and quantitative analysis were the 

same as previously described [17]. Briefly, at PID 14, we terminally anaesthetised some animals 

with sodium pentobarbital, and then transcardially perfused them using 4% paraformaldehyde. 

Following perfusion, we removed L5 spinal cord, L5 DRGs, and glabrous hindpaw skin, and then 

post fixed the tissue in 4% paraformaldehyde overnight. We then used 30% sucrose in PBS to 

cryoprotect the tissue for 72 h. Cryostat sections of OCT-embedded tissue were cut  (spinal cords at 

20 µm, DRG at 10 µm, skin at 14 µm) and collected on superfrost slides. Sections were incubated 

with 10% normal donkey serum for 60 min followed by overnight incubation with the following 

appropriate primary antibodies: rabbit anti-GFAP (1:1000; Dako, UK), rabbit anti-CGRP (1:2000; 

Sigma, UK), rabbit anti-Iba1 (1:1000; WAKO, Japan), rabbit PGP 9.5 (1:1000; Ultraclone Ltd., 

UK). Following 3 PBS washes, sections were incubated with appropriate secondary donkey anti-

rabbit Cy3 or FITC antibodies (1: 400; Stratech, UK) for 2 h. Biotin-conjugated isolectin B4 (IB4; 

0.5 mg/mL used at 1:50; Sigma, UK) and ExAvidin–fluorescein isothiocyanate (1:400; Sigma, UK) 

were used to detect nonpeptidergic C-fibres in the skin. Following 3 PBS washes, slides were 

cover-slipped with Vectashield mounting medium (Vector Laboratories, UK) and visualised under a 

Zeiss Axioplan 2 fluorescent microscope (Zeiss, U.K). 

 

The experimenter who performed quantitative analysis was blind to treatment groups. We used 4 

areas (50,000 µm2 each) in the superficial dorsal horn and 4 areas (1,500 µm2 each) in the DRG 

from 5–7 randomly selected sections per rat to quantitatively analyse Iba1 immunoreactive cell 

numbers. We classified Iba1 immunoreactive cells in the dorsal horn as having “effector” 

morphology when their process lengths were less than double the soma diameter. In contrast, we 
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 9 

classified Iba1 immunoreactive cells in the dorsal horn as having “resting” morphology when their 

process lengths were double the soma diameter. We used 6–8 randomly selected sections from L5 

dorsal horn per rat to analyse the intensity of GFAP immunoreactivity that was expressed in 

arbitrary units. We also measured the intensity of IB4 or CGRP immunoreactivity in laminae I and 

II. We used 6-8 DRG sections per rat to analyse IB4/CGRP expression. The number of IB4+ or 

CGRP+ cells was expressed a percentage of the total DRG cells. We only sampled DRG cells with 

visible nucleus and distinctly delineated borders. We live counted PGP9.5+ epidermal fibres at 40X 

objective magnification using the method described previously [28]. Thus, we only counted single 

fibres crossing the dermal-epidermal junction without secondary branches. Then the epidermal 

innervation density (IENFD/mm) was calculated based on the epidermis length measure by Image J 

software 1.45 (NIH). 

 

For investigating the expression of phospho-p38 (pp-38) in microglia, spinal cord sections were 

incubated overnight with the primary antibody rabbit anti-pp-38 (1:100; Cell Signalling, USA), 

which was then amplified using a TSATM Biotin System (Perkin Elmer, UK). The slides were then 

incubated with rabbit anti-Iba1 (1:1000) primary antibody, followed by corresponding secondary 

antibody (1:400) solution. Double staining images were taken at 20x objective magnification using 

a Leica DM R light microscope (Leica Microsystems, Germany). The number of cells 

immunoreactive for both pp-38 and Iba1 in the superficial dorsal horn was counted using Photoshop 

CS5 (Adobe, USA) and expressed as a percentage of Iba1 immunoreactive cells.  

 

Statistics 

Statistical analysis for the behavioural study data was performed using IBM SPSS Statistics Version 

23. For the mechanical, cold, and heat hypersensitivity as well as the pharmacological validation 

study, two-way ANOVA was used to examine the main effects of treatments, times, and interaction 

between treatments and times where appropriate. The Tukey-Kramer post hoc multi-comparison 
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adjustment was used to determine if there was any significant difference between treatment groups, 

i.e. vehicle vs indinavir, and saline vs gabapentin or amitriptyline. For the thigmotaxis study, one-

way ANOVA followed by Tukey-Kramer post hoc multi-comparison adjustment was used to 

evaluate if there was a main treatment effect and if significant differences between groups 

(indinavir, vehicle and naive) existed. In addition, we included the total distance moved in the open 

field arena as a secondary outcome for the thigmotactic analysis. The box and scatter plots for the 

thigmotaxis data were made using OriginPro 2016 (OriginLab, USA). All measurements are 

expressed as mean value±standard error of the mean (SEM) in the Result section. In addition, 

behavioural data are presented using 95% confidence levels in the Supplementary Table 3. P<0.05 

was considered as statistically significant. 

 

For histological analysis, differences between vehicle- and indinavir-treated animals were 

determined using a non-parametric test, the Wilcoxon-Mann-Whitney Test. We report our data as 

mean values±SEM and consider P<0.05 as statistically significant.  
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Results 

 

No animals were excluded from the current study according to the inclusion and exclusion criteria 

set in the Supplementary Table 1. A summary of group sizes and primary outcome measures is in 

Supplementary Table 2.  

 

Indinavir treatment results in hindpaw hypersensitivity to mechanical stimuli 

To investigate the effect of indinavir treatment in mechanical sensitivity of rats we tested animals 

that have and have not received the drug for up to 42 days using an electronic ‘von Frey’ device. 

We observed that rats treated with indinavir (n=6) developed bilateral hindpaw mechanical 

hypersensitivity, which occurred from PID 4 and reached a peak at PID 14 (Figure 1). Withdrawal 

thresholds were changed from the baseline at -26%, -33%, -39%, -44%, -36% and -26% for PID 4, 

7, 11, 14, 28 and 35 respectively. Here, we did not observe significant difference in mechanical 

hypersensitivity between the left and right hindpaws (data not shown). Therefore, we pooled the 

withdrawal thresholds from both hindpaws. The hindpaw mechanical hypersensitivity following 

indinavir treatment was maintained until PID 42, and then the thresholds showed a trend returning 

to the baseline. The statistical analysis revealed significant effects of treatments, times and the 

interaction between treatments and times on hindpaw mechanical hypersensitivity development (for 

treatment: P=0.0001, df=1, F=944.05; for time: P=0.0001, df=7, F=62.170; for interaction between 

treatment and time: P=0.0001, df=7, F=55.844). 

 

Indinavir treatment results in hindpaw hypersensitivity to cold stimuli 

To examine if indinavir treatment could lead to changes in cold sensitivity we tested treated versus 

untreated animals using the acetone test. We observed that rats treated with indinavir (n=6) 

developed bilateral hindpaw cold hypersensitivity, which occurred from PID 6, plateaued between 

PID 13 and 31, and then maintained between PID 41 and 45 (Figure 2). Mean percentage changes 
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of the %response to cold stimuli from the baseline were -14%, 286%, 515%, 529%, 650%, 487%, 

501%, 258% and 258% for PID 6, 9, 13, 17, 21, 24, 31, 41 and 45 respectively. We did not observe 

significant difference in cold hypersensitivity between the left and right hindpaws (data not shown). 

Therefore, we pooled the thresholds from both hindpaws. The statistical analysis revealed 

significant effects of treatments, times and the interaction between treatments and times on hindpaw 

cold hypersensitivity development (for treatment: P=0.0001, df=1, F=1212.65; for time: P=0.0001, 

df=9, F=16.95; for interaction between treatment and time: P=0.0001, df=9, F=17.28). 

 

Indinavir treatment does not induce heat hypersensitivity 

We next tested if indinavir treatment results in changes in heat sensitivity. In contrast to the 

development of hindpaw mechanical and cold hypersensitivity following indinavir treatment, we 

did not observe increased hindpaw responses to noxious thermal stimuli using the Hargreaves’s 

device in indinavir-treated animals (n=6) as compared to the baseline and that of the vehicle-treated 

animals (n=6) (Figure 3). The statistical analysis revealed no significant effects of treatments, times 

and the interaction between treatments and times on hindpaw heat hypersensitivity development 

(for treatment: P=0.474, df=1, F=0.554; for time: P=0.935, df=5, F=0.255; for interaction between 

treatment and time: P=0.911, df=5, F=0.299). 

 

Thigmotaxis was increased following indinavir treatment  

An open field apparatus was used to assess the impact of indinavir treatment on thigmotactic 

behaviour. Such behaviour has been previously shown to be associated with pain behaviour in 

animal models of nerve trauma, varicella zoster virus, HIV gp120, and antiretroviral drugs [15; 17; 

49-52]. Here we showed that animals treated with indinavir (n=8) established hindpaw mechanical 

hypersensitivity at PID 14 (Indinavir: baseline=44.6±0.7 vs PID 14=25.8±0.6, P<0.05; Vehicle: 

baseline=45.5±0.6 vs PID 14=45.3±0.7, P>0.05). Then at PID 15 we showed a significant treatment 

effect on thigmotaxis behaviour using statistical analysis (P=0.021, df=2, F=4.671). Thus, at PID 
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15, track pattern analysis using entry number and time spent in the virtual inner zone demonstrated 

a significant effect of indinavir on spontaneous explorations. Animals received indinavir treatment 

had much lower number of entry (4.0±1.3) and less time spent (5.0±1.7 s) in the virtual zone in 

contrast to the naïve (n=8, 11.4±1.7 and 12.8±1.9 s; P<0.05, ANOVA/Tukey-Kramer post hoc test) 

and vehicle-treated (n=8, 10.5±1.9 and 11.4±1.5 s; P<0.05, ANOVA/Tukey-Kramer post hoc test) 

animals (Figure 4). We did not observe any difference in the total distance travelled in the open 

field among the groups at PID 15 (indinavir 7326.5±12.8cm vs naïve 7602.1±23.6 or vehicle 

7513.9±18.5cm, P>0.05), which is in line with our previous data [17; 49; 50]. 

 

Effects of analgesic drugs on hindpaw hypersensitivity  

We examined the pharmacological validity of our model using analgesic drugs, which have been 

shown either effective or not effective in the clinic for treating HIV-SN [41]. First we demonstrated 

that amitriptyline was not effective in reversing hindpaw mechanical hypersensitivity in animals 

treated with indinavir (Figure 5). The statistical analysis revealed no significant effects of 

treatments (amitriptyline/saline), times and the interaction between treatments and times on 

hindpaw mechanical hypersensitivity development (for treatment: P=0.179, df=1, F=2.087; for 

time: P=0.201, df=3, F=1.875; for interaction between treatment and time: P=0.538, df=3, 

F=0.738). In contrast systemic administration of gabapentin (Figure 5) was associated with a 

complete attenuation of hindpaw mechanical hypersensitivity observed with indinavir treatment. 

The statistical analysis revealed significant effects of treatments (gabapentin/saline), times and the 

interaction between treatments and times on hindpaw mechanical hypersensitivity (for treatment: 

P=0.0001, df=1, F=14486.08; for time: P=0.002, df=3, F=6.395; for interaction between treatment 

and time: P=0.0001, df=3, F=29.05). We did not observe any effects of vehicle administration. By 

PID 18, hindpaw mechanical hypersensitivity was re-established in the gabapentin group, 

suggesting a return of the neuropathic state. 
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Indinavir treatment results in reduced epidermal innervation of hindpaw skin 

We applied PGP 9.5 immunostaining to visualise unmyelinated fibres in the hindpaw skin. 

Following indinavir treatment (n=6) at PID 14, there was a significant reduction in intraepidermal 

nerve fibre density (IENFD) suggesting a withdrawal of unmyelinated axons from the epidermis 

when compared to that of the vehicle-treated animals (n=6) (Wilcoxon-Mann-Whitney Test, 

P=0.02; Figure 6). 

 

Systemic indinavir induces a minimal spinal microglial response and no inflammatory cell 

response in the DRG  

We examined if a glial cell response in the dorsal horn could be induced by systemic treatment of 

indinavir. We stained L5 sections with the microglial marker Iba1, and then counted the number of 

cells in the superficial dorsal horn exhibiting “effector” morphology, i.e. cell body hypertrophy and 

process retraction. We found that indinavir-treated rats had significantly increased numbers of 

microglia with “effector” morphology (indinavir: 7.66±0.61 vs vehicle: 2.80±0.31 cells per 50,000 

m2, n=5 per group, P=0.0001, Wilcoxon-Mann-Whitney Test; Figure 7). There appeared no 

difference in Iba1 immunoreactivity in other areas of the spinal cord (Supplementary Figures 1 and 

2). Then we assessed microglial activation by looking at pp-38 expression. Double immunostaining 

showed a significant increase in the number of microglia positive for pp-38 in animals treated with 

indinavir in comparison to the controls at PID 14 (indinavir: 41.41±7.68% vs vehicle: 6.65±2.15%; 

n=5, Wilcoxon-Mann-Whitney Test, P=0.008; Figure 8). The level of this increase is much less in 

contrast to that following spinal nerve ligation (Figure 8). We also investigated the astrocytic 

response to indinavir and found that there was no difference in GFAP immunoreactivity in the 

dorsal horn between the indinavir-treated and control groups at PID 14 (indinavir 91.39±14.27 vs 

vehicle 100.00±14.42, n=5 per group, P=0.68, Wilcoxon-Mann-Whitney Test; Figure 7). Nerve 

injury recruits macrophages into the DRG. Therefore, we examined if such macrophage infiltration 

accompanied the painful peripheral neuropathy induced by indinavir treatment. We found that the 
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number of Iba-1 immunoreactive cells in L5 DRG did not increase following indinavir treatment 

(n=5, vehicle 6.5±0.45 vs indinavir 7.52±0.97, P=0.36, Wilcoxon-Mann-Whitney Test; Figure 9). 

 

Systemic indinavir does not alter IB4 and CGRP expression of lumbar spinal cord and DRG 

We examined the expression of neurochemical markers for different DRG cell populations 

following indinavir treatment. Nonpeptidergic and peptidergic small-diameter DRG cells can be 

labelled with IB4 and CGRP respectively. After nerve trauma, the two markers are down-regulated. 

In contrast, here we found no change in the percentages of IB4+ DRG cells and CGRP+ DRG cells 

following indinavir treatment in the lumber spinal cord (n=5, IB4: vehicle 100.00±8.12% vs 

indinavir 108.55±13.51%, P=0.75, CGRP: vehicle 100.00±12.13% vs indinavir 90.34±19.15%, 

P=0.47, Wilcoxon-Mann-Whitney Test in both cases; Figure 7). A similar finding was found in the 

lumber DRG (n=5, IB4: vehicle 33.62±1.13% vs indinavir 33.98±0.50%, P=0.76, CGRP: vehicle 

31.52±1.05% vs indinavir 31.82±1.19%, P=0.86, Wilcoxon-Mann-Whitney Test in both cases; 

Figure 9). 
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Discussion  

 

Pharmacological agents such as drugs inhibit the protease activity of HIV (e.g. indinavir) are key 

components of drug therapy for HIV patients. However, limited clinical observations and one in 

vitro study suggest that indinavir exposure might increase the risk for HIV-SN [11; 29; 39; 41; 46]. 

We, and others, have previously extensively described the neurotoxicity associated with the d-NTRI 

group of antiretroviral drugs. However, we are the first who have comprehensively documented in 

vivo the neurotoxicity associated with wholly different class of antiretroviral drugs, the protease 

inhibitors, which were hitherto hinted at the above mentioned limited evidence, but in the main 

were not suspected of being neurotoxic. Our study provides the first in vivo evidence of an indinavir 

induced peripheral neuropathy in a rodent model. Here, we have shown a persistent painful 

peripheral sensory neuropathy developed in indinavir-treated animals that had no motor deficits, 

resembling a major clinical problem in HIV management. In accordance with the clinical 

presentation, we have shown not only simple reflex pain behaviour, which was sensitive to 

pharmacological perturbation, but also a complex thigmotactic behaviour associated with pain. 

Furthermore, we have shown, using histology, that our model is characterised by a retraction of 

epidermal axons, which is an established clinical diagnostic technique for HIV-SN [42] and other 

peripheral neuropathies that have a small fibre component [26; 34]. We have also demonstrated a 

small but significant microglial response in indinavir-treated animals at the time of peak hindpaw 

mechanical hypersensitivity. Prominently, this neurotoxicity seen in our model happens 

independently of HIV infection. The latter is a difficult confound to dissect in patients, because not 

only the two conditions co-exist, but also HIV and sensory neurons interaction can cause painful 

neuropathy [40; 50]. 

 

Here we have observed both mechanical and cold, but not heat, hypersensitivity in the hindpaws of 

indinavir-treated animals, contrasting to animal models of NRTIs-induced peripheral neuropathy, 
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which shows only hindpaw mechanical hypersensitivity [17; 19; 50]. This finding is also in contrast 

with early clinical data showing that patients with HIV-related painful neuropathy do not usually 

present with thermal hypersensitivity [33]. Our recent study involving a cohort of HIV-infected 

patients with and without HIV-SN, most of whom had received combinational ART including 

indinavir, has shown that the most frequent sensory abnormalities demonstrated in the HIV-SN 

group are loss of mechanical and vibration detection thresholds followed by a significant loss of 

cold and warm detection thresholds and heat pain threshold when compared to those of neuropathy 

free HIV positive patients and healthy volunteers, demonstrated by quantitative sensory testing [40]. 

The same study has also shown that whilst the presence of gain-of-sensory function is rare across all 

groups, a small minority of patients has features of mechanical wind-up ratio in HIV-SN patients. 

Subgroup analysis of a randomized controlled trial of pregabalin in HIV-SN has reported a small 

group of patients with signs of mechanical sensory gain [44]. Furthermore, by using the 

Neuropathic Pain Symptom Inventory it has been revealed that 42% of participants experiencing 

painful HIV-SN report symptoms of moderate and severe cold evoked pain, although this is not 

detected with sensory profiling [40]. Here, we have shown that indinavir-treated rats display 

increased thigmotaxis in the open field at the time of peak hindpaw mechanical hypersensitivity. 

This suggests the presence of pain-driven alterations in affect, which may be representative of 

ongoing pain and/or pain-related affective co-morbidities, which are known to be a feature of 

neuropathic pain in humans [14; 35; 36]. Indeed, our recent study has shown that participants with 

painful HIV-SN have reduced quality of life, a higher incidence of insomnia, and increased 

depression, anxiety, and catastrophizing, when compared to participants without HIV-SN [40].  

 

Previously it has been shown that in cultures of CD4 and CCR5 expressing rat DRG neurons 

infected with HIV-1 with subsequent treatment by indinavir, there is a marked reduction of neurites 

numbers and lengths, suggesting additive neurotoxic effects by indinavir [39]. Indinavir-treated 

DRG cultures also showed numerous TUNEL (an apoptosis marker)-positive nuclei in cells that 
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were ED-1 (a macrophage marker) immunoreactive, suggesting that resident DRG macrophages 

may be targets of indinavir toxicity. In the current study no DRG abnormalities were observed 

following indinavir administration, i.e. no change in CGRP+ or IB4+ neurons or in macrophage 

infiltration, which markedly contrasts to nerve trauma models. Furthermore, no changes were found 

in the central projections of primary afferents after indinavir treatment. Thus, we did not observe 

reduced CGRP expression and IB4 binding in L5 dorsal horn, where primary afferents from 

hindpaws end. This finding is in contrast to significant reductions in CGRP/IB4 immunoreactivity 

in L5 spinal dorsal horn seen in animals treated with d4T [17].  Activation of the innate immune 

system in the dorsal horn of the spinal cord is key in the development of pain after nerve injury [2; 

6]. However in the case of indinavir treatment we only observed a small but significant increase 

(1.7 folds) in microgliosis; we observed an increased microglial expression of pp-38, which is 

known to promote the microglial proinflammatory responses to produce mediators such as COX-2, 

IL-1β, BDNF and iNOS, contributing to neuropathic pain development and maintenance [6]. We 

did not observe any evidence of astrocyte response to indinavir treatment. Our observation of a 

minimal glial and immune response in the spinal cord and DRG following indinavir treatment is 

comparable to those reported in chemotherapy or metabolic agents induced chronic painful 

neuropathy [4; 6; 17; 53], highlighting the need for relevant animal models to address particular 

clinical scenarios. 

 

Importantly here indinavir administration resulted in a reduction in hindpaw IENFD, which is also 

manifested in many other painful neuropathies [27], such as SN resulted from ddC [50] and d4T 

[17] treatment, and direct neurotoxicity mediated by HIV virus [49]. Reduced IENFD, a key clinical 

diagnostic tool for HIV-SN, correlates inversely with neuropathic pain progress [40; 42]. There is 

evidence suggesting that protease inhibitors are associated with insulin resistance and resultant 

diabetic complications in HIV patients [7], which is thought to be mediated through the inhibition 

of insulin-regulated glucose transporter [10]. Therefore, it is possible that such diabetic 
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complications could also result in the development of diabetic peripheral sensory neuropathy with a 

characteristic loss of IENFD on skin biopsy [37]. In the current study, we found no significant 

difference in blood glucose levels and body weights at PID 19 and PID 45 between indinavir-

treated and vehicle-treated animals (data not shown), suggesting that the dose regime of indinavir in 

our study did not cause insulin resistance.  

 

Our study could explain the well-documented persistence of painful peripheral neuropathy in 

patients who have not been exposed to d-NRTIs or who were not susceptible to d-NRTI-

neurotoxicity, which had hitherto been assumed to be the main cause of neurotoxicity. Our study 

also highlights the importance of using animal models to study cause of the neurotoxicity of 

protease inhibitors in isolation, since there are too many confounds in patients because they have 

concomitant HIV disease and also take a plethora of other drugs, including a combination 

antiretroviral drugs. We chose to explore indinavir, one of the prototypical protease inhibitors, as it 

is representative of the class. However, we acknowledge that in well-resourced settings it has been 

replaced by new generation protease inhibitors, and it has also been replaced by other protease 

inhibitors on the World Health Organization's List of Essential Medicines. However, there is still a 

huge clinical legacy of patients who had been exposed to it and who have persistent peripheral 

neuropathy that requires clinical management. We do not know whether the neurotoxicity which we 

demonstrated as being associated with indinavir is a PI class effect or unique to indinavir - that is 

for further studies. Here we have not studied the dose effect for indinavir, as the purpose of this 

report is to test whether indinavir can produce neurotoxicity in isolation rather than mimic the 

patient living with HIV. The dose of 50 mg/kg was chosen to keep consistency with our previous 

ddC and d4T studies and is likely to under estimate the human dose if converted using surface area 

dosage conversion. However, we agree that a dose effect study is important to expand the testing of 

our hypothesis and will be included in future studies along with ddC and d4T. We also agree that 
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electron microscopy studies might be useful in yielding further information, but are outside the 

scope of the current study. 

 

In summary, we have established a rodent model of painful SN mediated by systemic indinavir 

treatment. Our model mimics a number of clinical features and reveals important mechanistic 

differences when compared to the previously reported d4T model (Table 1). HIV-SN continues to 

be one of the most prevalent morbidities experienced by people living with HIV in both high- and 

low-resource settings. Our model offers an important tool to better comprehend the pathogenesis, 

develop preventive strategies, and discover effective drugs for HIV-SN. 

(Word count = 1469) 
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Figure Captions 

 

Figure 1: The development of hindpaw hypersensitivity to punctate mechanical stimuli 

following indinavir treatment. We measured the withdrawal thresholds at the baseline (BL) 

and after indinavir (50 mg/kg, twice at 4 days apart) or vehicle administration. Two-way 

ANOVA with Tukey-Kramer post hoc multiple comparisons were used to determine the 

difference between treatment groups. Asterisk=significant difference from the vehicle group 

(P<0.05); ‡=significant difference from the baseline (P<0.05).  

 

Figure 2: The development of hindpaw hypersensitivity to cold stimuli following 

indinavir treatment. We measured withdrawal responses at the baseline (BL) and after 

indinavir (50 mg/kg, twice at 4 days apart) or vehicle administration using an acetone drop. 

Two-way ANOVA with Tukey-Kramer post hoc multiple comparisons were used to 

determine the difference between treatment groups. Asterisk=significant difference from the 

vehicle group (P<0.05); ‡=significant difference from the baseline (P<0.05). 

 

Figure 3: No hindpaw hypersensitivity to thermal stimuli following indinavir treatment. 

We measured withdrawal responses at the baseline (BL) and after indinavir (50 mg/kg, twice 

at 4 days apart) or vehicle administration using a noxious thermal stimulus (Hargreaves’s 

device). Two-way ANOVA with Tukey-Kramer post hoc multiple comparisons were used to 

determine the difference between treatment groups. Asterisk=significant difference from the 

vehicle group (P<0.05); ‡=significant difference from the baseline (P<0.05). 
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Figure 4: Thigmotactic changes in the open field arena following indinavir treatment at 

PID 15. (A) Virtual inner zone (dotted square in C, 40 x 40 cm2) entry number and (B) the 

time spent in the virtual inner zone were assessed in the naïve, vehicle-treated, and indinavir-

treated (50 mg/kg, i.v., twice at 4 days apart) animals. (C) Illustration of movement of (i) 

naive, (ii) vehicle-treated, and (iii) indinavir-treated animals in the arena. The statistical 

significance of differences between the indinavir group and its relevant control (*P<0.05) was 

determined by a one-way ANOVA with Tukey-Kramer post hoc multiple comparisons. (A-B) 

Data were displayed using box and scatter plots. Each box represents mean±SEM. Bars above 

and below each box represents standard deviations. The line and the circle within the box 

represents median and mean respectively.  

 

Figure 5: The effect of analgesic drugs on hindpaw mechanical hypersensitivity. (A: 

gabapentin; B: amitriptyline) The effects of drugs administered around peak change in 

hindpaw sensitivity to mechanical stimuli in animals received indinavir treatment. 

Withdrawal thresholds (g) are displayed as prior, during and post each drug treatment (open 

circle) versus vehicle (filled triangle). A shaded area is used to show drug treatment period. 

Arrows and arrowheads represent the start and end of drug administration respectively. Two-

way ANOVA with Tukey-Kramer post hoc multiple comparisons were used to determine the 

difference between drug and vehicle threshold values. *P<0.05 vs vehicle. 

 

Figure 6: Reduced IENFD following indinavir treatment at PID 14. (a) An example of 

PGP9.5 stained skin sections of a vehicle animal. (b) An example of PGP9.5 stained skin 

sections of indinavir-treated animal. Following indinavir treatment, there is a significant 

reduction in intraepidermal fibre numbers (Wilcoxon-Mann-Whitney Test, P=0.02), which is 

demonstrated in the quantitative analysis of IENFD in (c). Scale bar=100 µm. 
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Figure 7. Systemic indinavir treatment induced microgliosis, but not astrogliosis and 

changes in IB4 and CGRP expressions, in the lumbar spinal cord at PID 14. (a, b) CGRP 

expression (green) in laminae I and IIo of L5 dorsal horns. (d, e) IB4 labelling (red) within 

lamina Iii of L5 dorsal horns. (c, f) Quantitative analyses showing no IB4 and CGRP 

alterations in L5 dorsal horns between vehicle and indinavir animals. (g, h) GFAP expression 

in astrocytes in L5 dorsal horns. (i) Quantitative analysis showing no change in GFAP 

expression in L5 dorsal horns between vehicle and indinavir animals. Indinavir treatment 

significantly increased the number of microglia with effector morphology (k, l) compared to 

the vehicle (j). **P<0.01. N=5 per group. Scale bars=200 m for top two rows (a, b, d, & e); 

50 m for the third row (g & h) and for the bottom row (j & k). 

 

Figure 8: Systemic indinavir treatment increased the level of expression of phospho-p38 

in spinal cord microglia. Phospho-p38 (green; e.g. e) is expressed by Iba1 positive spinal 

microglia (red; e.g. d) within the dorsal horn. This expression is significantly increased at PID 

14 following indinavir treatment (50 mg/kg, twice at 4 days apart) (d, e, f) compared to 

vehicle treatment (a, b, c). N=5 per group. For comparison, the normally observed increase in 

the proportion of microglia that are immunoreactive for phospho-p38 following SNL is shown 

in (g). **P<0.01 vs vehicle. Scale bar=50 μm. 

 

Figure 9. Systemic indinavir treatment did not induce neurochemical changes in sensory 

neurons and macrophage infiltration in L5 DRGs at PID 14. IB4 binding (red) and CGRP 

expression CGRP (green) were not changed following indinavir treatment (b, e) vs vehicle (a, 

d), and this was quantified in (c, f). Iba1 immunostaining was used as a marker of 

macrophages in L5 DRGs following vehicle (g) or indinavir (h) treatment. There was no 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



29 

 

change in macrophage numbers in the DRG (quantified in i) following indinavir treatment. 

N=5 per group. Scale bars=50 m for top row (a & b), mid row (d & e), and bottom row (g & 

h). 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Summary 

Rats treated with HIV antiretroviral drug indinavir demonstrated alterations in neuropathic pain-

related sensory and thigmotactic behaviours accompanied by significant loss of hindpaw skin sensory 

innervation. 
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Table 1. Comparison of key neurochemical markers in the lumbar spinal cord and DRG 

between indinavir and d4T models at the time of peak hindpaw mechanical hypersensitivity. 

 Indinavir model D4T model 

Spinal cord dorsal horn   

IB4 and CGRP expression No change Significant reduced in the 

medial portion 

Microglia with effector 

morphology 

A small but significant increase A small but significant increase 

Phospho-p38 expression in 

microglia 

A significant increase No change 

Astrocytes No change No change 

   

DRG   

IB4 and CGRP expression No change No change 

Macrophages No change No change 

 

 

Table
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Supplementary materials 

 

1. Supplementary Table 1. Major domains of good laboratory practice to minimise the effects of 

experimental bias. 

 

 Description of procedures 

Sample Size 

Calculation 
 Group size was determined by sample size estimation for each 

experiment using SigmaStat Version 3.5 (ANOVA sample size, 

desired power = 0.8, alpha = 0.05).  

 Effect sizes for estimation were derived from previous studies in 

our group [1-3].  

Inclusion and 

Exclusion Criteria 
 In experiments for pharmacological validation and thigmotaxis, 

only rats that developed hindpaw mechanical hypersensitivity of at 

least 25% change from the baseline were included.  

Randomization  In experiments for mechanical, cold and heat hypersensitivity 

development and pharmacological studies, animals were 

randomized into treatment* groups by picking numbers out of a hat.  

 In experiments for thigmotaxis, random cage assignment to 

treatments was applied by picking numbers out of a hat.  

Allocation 

Concealment 
 The person creating the model (i.e. injection of indinavir or vehicle 

solution, administration of analgesic agent or vehicle solution) was 

unaware of the allocation to treatment group.  

 This was achieved by the blinding procedure described below, as 

well as masking cage labels or turning around the cages before each 
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behavioural assessment session. 

Reporting of 

Animals 

Excluded From 

Analysis 

 Any rat showing hunched posture, a marked behavioural change, 

exudates around wound or sensitivity to palpitation on handling that 

could be attributable to surgery, the drug, the dosing procedure, 

infection resulting from surgery or otherwise, was excluded. 

 The details of the number of excluded animals and the reason for 

exclusion are stated in the results section. 

Blinded 

Measurement, 

Assessment, and 

Analysis of 

Outcome 

 Codes were assigned to different treatments by an independent 

person and kept in a sealed envelope. The codes were not broken 

until the analysis had been completed. 

 The experimenter was ‘blinded’ to the treatments received and had 

no knowledge of the experimental group to which an animal was 

randomized.  

*Treatment here refers to drug administration, i.e. indinavir versus vehicle, and each 

pharmacological analgesic agent versus vehicle. 

 

2. Supplementary Table 2. Details of groups and primary outcomes for behavioural experiments. 

 
 Group names Group 

sizes 

Primary outcomes 

MH development  Indinavir/vehicle 6/6 HPW threshold in response to punctate 

static mechanical stimulus 

CH development  

Indinavir/vehicle 

 

6/6 

HPW threshold in response to cold 

stimulus 

HH development HPW threshold in response to heat 

stimulus 

Thigmotaxis Indinavir/vehicle/naive 8/8/8 Frequency of entry and duration in the 

inner zone 

Pharmacological 

validation 

Gabapentin/vehicle 6/6 HPW threshold in response to punctate 

static mechanical stimulus 

Amitriptyline/vehicle 6/6 HPW threshold in response to punctate 

static mechanical stimulus 

 

MH = mechanical hypersensitivity;  

CH = cold hypersensitivity; 

HH = heat hypersensitivity; 

HPW = hindpaw withdrawal 
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3. Supplementary Table 3. Behavioural data presented with mean and 95% confidence levels (CI). 

 Vehicle Indinavir 

MH development Mean 95% CI Mean 95%CI 

Baseline 44.8 44.2, 45.5 45.3 44.3, 46.4 

PID 4 45.7 43.8, 47.6 33.8 32.8, 34.7 

PID 7 46.4 44.8, 48.0 30.5 28.3, 32.8 

PID11 44.2 43.2, 45.2 27.6 27.0, 28.1 

PID 14 44.2 43.6, 44.7 25.4 24.6, 26.1 

PID 28 44.9 43.2, 46.6 28.9 27.9, 29.9 

PID 35 45.1 43.7, 46.5 33.7 32.2, 35.2 

PID 42 45.4 43.8, 46.9 41.9 41.2, 42.6 

     

CH development Mean 95% CI Mean 95%CI 

Baseline 0.1 0.0, 0.0 0.1 0.1, 0.1 

PID 6 0.1 0.0, 0.0 0.1 0.1, 0.1 

PID 9 0.1 0.0, 0.0 0.5 0.3, 0.6 

PID13 0.1 0.1, 0.1 0.7 0.7, 0.8 

PID 11 0.0 0.0, 0.0 0.7 0.7, 0.8 

PID 21 0.0 0.0, 0.0 0.8 0.7, 0.8 

PID 24 0.1 0.0, 0.0 0.7 0.6, 0.8 

PID 31 0.1 0.0, 0.0 0.7 0.6, 0.8 

PID 41 0.1 0.0, 0.0 0.4 0.2, 0.6 

PID 45 0.1 0.0, 0.0 0.4 0.3, 0.6 

     

HH development Mean 95% CI Mean 95%CI 

Baseline 11.1 10.1, 12.0 10.8 10.0, 11.7 

PID 6 11.2 10.9, 11.5 10.6 10.0, 11.2 

PID 9 11.3 10.8, 11.9 10.6 10.0, 11.1 

PID13 11.2 10.7, 11.6 10.7 10.5, 10.8 
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PID 11 11.5 10.9, 12.0 10.7 10.4, 11.0 

PID 21 11.4 11.2, 11.6 10.8 10.5, 11.2 

     

 Saline Gabapentin 

MH Mean 95% CI Mean 95%CI 

Day 12 22.7 22.0, 23.4 42.5 41.4, 43.6 

Day 13 19.8 18.8, 20.8 45.4 44.9, 45.9 

Day 14 17.4 16.5, 18.3 44.3 43.1, 45.6 

Day 15 18.3 16.8, 19.7 45.6 44.2, 47.0 

     

 Saline Amitriptyline 

MH Mean 95% CI Mean 95%CI 

Day 12 21.8 21.2, 22.3 22.5 21.7, 23.4 

Day 13 19.9 19.4, 20.4 20.5 20.0, 21.0 

Day 14 19.9 18.9, 20.9 20.2 19.4, 20.9 

Day 15 20.6 20.0, 21.2 20.3 19.5, 21.1 

     

 Vehicle Indinavir 

MH-thigmotaxis Mean 95% CI Mean 95%CI 

Baseline 45.8 45.0, 46.5 44.8 44.0, 45.6 

PID 14 45.7 44.5, 47.0 25.6 24.6, 26.6 

     

 Duration (second) Entry number 

Thigmotaxis Mean 95% CI Mean 95%CI 

Naive 15.3 11.5, 19.0 13.3 9.6, 17.1 

Vehicle-treated 12.9 9.4, 16.3 12.5 8.2, 16.8 

Indinavir-treated 5.3 0.7, 9.8 4.0 0.7, 7.3 

MH = mechanical hypersensitivity;  

CH = cold hypersensitivity; 

HH = heat hypersensitivity; 
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3. Supplementary Figure 1. Iba1 staining of the lumbar spinal cord from vehicle-treated 

animals at low (10x) objective magnification. (a-e), example images of Iba1 staining of transverse 

sections of the L5 spinal cord from 5 animals. Scale bar=100μm. 

 

 

4. Supplementary Figure 2. Iba1 staining of the lumbar spinal cord from indinavir-treated 

animals at low (10x) objective magnification. (a-e), example images of Iba1 staining of transverse 

sections of the L5 spinal cord from 5 animals. Scale bar=100μm. 
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 ITEM RECOMMENDATION Section/ 
Paragraph 

Title 1 Provide as accurate and concise a description of the content of the article 
as possible. 

      

Abstract 2 Provide an accurate summary of the background, research objectives, 
including details of the species or strain of animal used, key methods, 
principal findings and conclusions of the study. 

      

INTRODUCTION  

Background 3 a. Include sufficient scientific background (including relevant references to 
previous work) to understand the motivation and context for the study, 
and explain the experimental approach and rationale. 

b. Explain how and why the animal species and model being used can 
address the scientific objectives and, where appropriate, the study’s 
relevance to human biology. 

      

Objectives 4 Clearly describe the primary and any secondary objectives of the study, or 
specific hypotheses being tested. 

      

METHODS  

Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. 
Animal [Scientific Procedures] Act 1986), and national or institutional 
guidelines for the care and use of animals, that cover the research. 

      

Study design 6 For each experiment, give brief details of the study design including: 

a. The number of experimental and control groups. 

b. Any steps taken to minimise the effects of subjective bias when 
allocating animals to treatment (e.g. randomisation procedure) and when 
assessing results (e.g. if done, describe who was blinded and when). 

c. The experimental unit (e.g. a single animal, group or cage of animals). 

A time-line diagram or flow chart can be useful to illustrate how complex 
study designs were carried out. 

      

Experimental 
procedures 

7 For each experiment and each experimental group, including controls, 
provide precise details of all procedures carried out. For example: 

a. How (e.g. drug formulation and dose, site and route of administration, 
anaesthesia and analgesia used [including monitoring], surgical 
procedure, method of euthanasia). Provide details of any specialist 
equipment used, including supplier(s). 

b. When (e.g. time of day). 

c. Where (e.g. home cage, laboratory, water maze). 

d. Why (e.g. rationale for choice of specific anaesthetic, route of 
administration, drug dose used). 

      

Experimental 
animals 

8 a. Provide details of the animals used, including species, strain, sex, 
developmental stage (e.g. mean or median age plus age range) and 
weight (e.g. mean or median weight plus weight range). 

b. Provide further relevant information such as the source of animals, 
international strain nomenclature, genetic modification status (e.g. 
knock-out or transgenic), genotype, health/immune status, drug or test 
naïve, previous procedures, etc. 
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Housing and 
husbandry 

9 Provide details of: 

a. Housing (type of facility e.g. specific pathogen free [SPF]; type of cage or 
housing; bedding material; number of cage companions; tank shape and 
material etc. for fish). 

b. Husbandry conditions (e.g. breeding programme, light/dark cycle, 
temperature, quality of water etc for fish, type of food, access to food 
and water, environmental enrichment). 

c. Welfare-related assessments and interventions that were carried out 
prior to, during, or after the experiment. 

      

Sample size 10 a. Specify the total number of animals used in each experiment, and the 
number of animals in each experimental group.  

b. Explain how the number of animals was arrived at. Provide details of any 
sample size calculation used. 

c. Indicate the number of independent replications of each experiment, if 
relevant. 

      

Allocating 
animals to 
experimental 
groups 

11 a. Give full details of how animals were allocated to experimental groups, 
including randomisation or matching if done. 

b. Describe the order in which the animals in the different experimental 
groups were treated and assessed. 

      

Experimental 
outcomes 

12 Clearly define the primary and secondary experimental outcomes assessed 
(e.g. cell death, molecular markers, behavioural changes). 

      

Statistical 
methods 

13 a. Provide details of the statistical methods used for each analysis. 

b. Specify the unit of analysis for each dataset (e.g. single animal, group of 
animals, single neuron). 

c. Describe any methods used to assess whether the data met the 
assumptions of the statistical approach. 

      

RESULTS  

Baseline data 14 For each experimental group, report relevant characteristics and health 
status of animals (e.g. weight, microbiological status, and drug or test naïve) 
prior to treatment or testing. (This information can often be tabulated). 

      

Numbers 
analysed 

15 a. Report the number of animals in each group included in each analysis. 
Report absolute numbers (e.g. 10/20, not 50%2). 

b. If any animals or data were not included in the analysis, explain why. 

      

Outcomes and 
estimation 

16 Report the results for each analysis carried out, with a measure of precision 
(e.g. standard error or confidence interval). 

      

Adverse events 17 a. Give details of all important adverse events in each experimental group. 

b. Describe any modifications to the experimental protocols made to 
reduce adverse events. 

      

DISCUSSION  

Interpretation/ 
scientific 
implications 

18 a. Interpret the results, taking into account the study objectives and 
hypotheses, current theory and other relevant studies in the literature. 

b. Comment on the study limitations including any potential sources of bias, 
any limitations of the animal model, and the imprecision associated with 
the results2. 

c. Describe any implications of your experimental methods or findings for 
the replacement, refinement or reduction (the 3Rs) of the use of animals 
in research. 

      

Generalisability/ 
translation 

19 Comment on whether, and how, the findings of this study are likely to 
translate to other species or systems, including any relevance to human 
biology. 

      

Funding 20 List all funding sources (including grant number) and the role of the 
funder(s) in the study. 
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